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We investigate worlds that lie on a slice through the parameter space of the standard model over which

quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the

electron and the average mass of the lightest baryon flavor multiplet. We classify as congenial worlds that

satisfy the environmental constraint that the quark masses allow for stable nuclei with charge one, six, and

eight, making organic chemistry possible. Whether a congenial world actually produces observers capable

of measuring those quark masses depends on a multitude of historical contingencies, beginning with

primordial nucleosynthesis and including other astrophysical processes, which we do not explore. Such

constraints may be independently superimposed on our results. Environmental constraints such as the ones

we study may be combined with information about the a priori distribution of quark masses over the

landscape of possible universes to determine whether the measured values of the quark masses are

determined environmentally, but our analysis is independent of such an anthropic approach. We estimate

baryon masses as functions of quark masses via first-order perturbation theory in flavor SUð3Þ breaking.
We estimate nuclear masses as functions of the baryon masses using two separate tools: for a nucleus

made of two baryon species, when possible we consider its analog in our world, a nucleus with a similar

binding energy, up to Coulomb contributions. For heavy nuclei or nuclei made of more than two baryons,

we develop a generalized Weizsäcker semiempirical mass formula, in which strong kinematic flavor

symmetry violation is modeled by a degenerate Fermi gas . We check for the stability of nuclei against

fission, strong particle emission (analogous to � decay), and weak nucleon emission. For two light quarks

with charges 2=3 and �1=3 , we find a band of congeniality roughly 29 MeV wide in their mass

difference, with our own world lying comfortably away from the edges. We also find another, less robust

region of congeniality with one light, charge �1=3 quark, and two heavier, approximately degenerate

quarks with charges �1=3 and 2=3. No other assignment of light quark charges yields congenial worlds

with two baryons participating in nuclei. We identify the region in quark mass space where nuclei would

be made from three or more baryon species. We discuss issues relevant to the congeniality of such worlds,

but a full characterization of them is left for future investigation.
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I. OVERVIEW

A. Introduction

It is logically possible that certain physical quantities
might be environmentally selected, rather than uniquely
determined by fundamental principles. For instance,
although early scientists such as Johannes Kepler sought
an explanation for the sizes of the orbits of the planets in
terms of fundamental mathematical laws, we now recog-
nize that these result from complicated dynamics that
involve significant environmental contingencies. Many so-
lar systems are possible (indeed, many are now known to
exist) with very different configurations. Today we under-
stand that the size and shape of the Earth’s orbit is environ-
mentally selected: we happen to live on a planet whose
orbit allows intelligent observers to evolve. If the orbit
were much different, we would not find ourselves inhabit-
ing this particular planet. The extent to which the size of
other planetary orbits in our Solar System are environ-
mentally constrained is a subject of active inquiry. For
instance, Jupiter may play a role in stabilizing the inner

Solar System over large time scales. Other orbits, such as
that of the planet Mercury, might have little to do with the
emergence of life on Earth and consequently might not be
explained by environmental selection.
From time to time modern scientists have suggested that

the values of certain physical constants, and perhaps even
the form of some of the laws of nature, might similarly be
environmentally determined [1,2]. This idea, known
loosely as the anthropic principle, has received support
recently on both the theoretical and phenomenological
fronts. Inflationary cosmology suggests that our Universe
may be one of a vast, perhaps infinite, number of causally
disconnected universes, and studies of flux compactifica-
tion in string theory suggest that—at least in that version of
quantum gravity—the laws of nature and physical con-
stants could be different in each of those universes [3]. If
that were the case, then each universe would evolve ac-
cording to its own laws and only some would lead to the
evolution of physicists who would try to make sense of
what they observe. In those universes some of the laws of
nature and physical constants may be explained not by
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some deep principle, but rather by the requirement that
they be consistent with the evolution of intelligent observ-
ers [4,5].

Whatever one may think of these theoretical arguments,
the prediction of the value of the cosmological constant �
on essentially these grounds deserves to be taken seriously.
At a time when the experimentally measured value of �
was consistent with zero, Weinberg [6] pointed out that
values outside of a very small range (on the scale of
fundamental physics) would prevent galactic structure for-
mation and that probabilistic considerations suggested a
value close to the environmental bound imposed by the
structure we see around us (suggestions along similar lines
had been made earlier by Linde [7], Banks [8], and by
Barrow and Tipler in Sec. 6.9 of [2]). Shortly after Martel,
Shapiro, and Weinberg refined this anthropic argument in
[9], a positive value of� was measured that was consistent
with their prediction [10]. Such an environmental expla-
nation is all the more persuasive in the absence of any
attractive alternative derivation of � from a dynamical
principle.

Anthropic reasoning raises some deep questions that
will be difficult (perhaps even impossible) to answer sci-
entifically. Is there a multiverse to begin with? Are string
theory and eternal inflation the correct tools with which to
study the space of possible universes? What parameters of
the standard model (SM) are environmentally selected, and
what is the a priori distribution over which environmen-
tally selected parameters range? These questions would
have to be addressed before one could claim that some
parameter, like the up-down quark mass difference, is
environmentally selected. However, there is another, less
daunting question to be asked about the parameters of the
SM. To what extent is a particular parameter environmen-
tally constrained? Over what range of a parameter do the
laws of physics allow for the existence of an observer? This
is the question we attempt to formulate and, at least in part,
answer in this paper. The answer to this question might be
of little scientific significance outside of an anthropic
framework; nevertheless, the question is well formulated
and can, at least in principle, be answered if we understand
the relevant physics well enough.

In order to determine the environmental constraints on
the interactions and physical constants in our Universe, we
must be able to deduce the physical consequences of
varying the laws and parameters that are familiar to us.
If we do not understand the theoretical landscape well
enough to declare certain regions environmentally barren
of observers or others fruitful, it will not be possible to
place environmental constraints on the various ingredients
of the SM. The generally accepted environmental expla-
nation for the radius of the Earth’s orbit provides a good
example of how this process might work: there are envi-
ronmental constraints on carbon-based life forms.
Biochemical structures cannot survive if it is too hot and

biochemical reactions grind to a halt if it is too cold. One
could, in principle, make these limits precise by studying
the dependence of carbon chemistry and biology on tem-
perature. At the end of a long and careful study one could
imagine arriving at an understanding of the temperature
constraints on the emergence of carbon-based life forms.
Combined with a similar understanding of planetary sci-
ence, these would translate into environmental constraints
on the orbital radius of a planet inhabited by carbon-based
life. These questions are clearly within the purview of
science, and this is the type of analysis we would like to
carry out within the SM. The question of whether the
Earth’s radius was environmentally selected depends on
whether the Universe contains many planetary systems and
on the distributions of orbital radii, compositions, and so
forth. Likewise, the question of whether some aspect of the
SM is environmentally selected depends on whether there
is a multiverse and on the a priori distribution of SM
properties and parameters over that multiverse. This sec-
ond question involves totally different physics—cosmol-
ogy, grand unification, etc.—and is much harder to answer
than whether some parameter of the SM is environmentally
constrained.
In order to carry out an environmental analysis of the

SM we must first clearly specify the criterion for an
anthropically acceptable universe, i.e. one in which we
believe observers may exist. Then we must adopt and
justify a specific scheme for varying (‘‘scanning’’) some
parameters over the landscape of possible worlds, while
holding other parameters fixed. This procedure defines the
slice through the space of SM parameters which is to be
investigated. Then we must use our knowledge of the
physics of the SM to predict the consequences of scanning
those parameters and, in particular, to determine which
choices of parameters would correspond to worlds that
meet our criterion of anthropic acceptability.1

In this paper we attempt to carry out such an environ-
mental analysis for the masses of the three lightest quarks.
We have chosen to study quark masses because the depen-
dence of the strong interaction on the masses of the quarks
is nontrivial and yet is understood well enough to offer
some hope that we can make definitive statements about
the probability of the evolution of observers as a function
of them.
We propose to vary the masses of quarks holding as

much as possible of the rest of SM phenomenology con-
stant. In particular we leave the mass and charge of the
lightest lepton, the electron, and the mass of the lightest
baryon flavor multiplet unchanged. In pursuit of our ob-
jective we are forced to vary the masses of the muon and
tauon (and other mass scales) relative to the QCD mass

1Note that the approach we are taking allows only for local
variations about the laws of physics that we see in our Universe.
We have nothing to say about universes with entirely different
interactions and particle content.
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scale, but this has no effect on the questions of interest. We
also leave the weak interactions of quarks and leptons
unchanged. It is not sufficient to simply hold all the other
parameters of the SM fixed and vary only the quark masses.

If one insisted on varying quark masses while keeping
all the other parameters of the SM fixed, for example, at
some unification scale or at the scale of electroweak sym-
metry breaking, then the resulting changes to the low-
energy physics would be too extreme for us to analyze.
In particular, nuclear binding in the SM depends strongly
both on the quark masses and on �QCD, the scale below

which QCD becomes strongly coupled. If we imagined that
�QCD were set by the renormalization group running of a

unified gauge coupling held fixed at some high mass scale
M0, then�QCD would changewith the masses of the quarks

and leptons.
Holding �QCD fixed as the light quark masses are varied

is not only inconvenient for calculation, but also as theo-
retically unmotivated as adjusting it in a mild way, as we
prefer to do here. In Sec. II we describe in detail which
parameters of the SM must vary along with the quark
masses in order that we have enough control of the strong
interactions to make sharp predictions about nuclear
masses.

The worlds we will study will look much like our own.
They will have some stable baryons, some of them
charged. The charged stable baryons, whether positively
or negatively charged, will capture electrons or positrons to
form neutral atoms2 with chemistry that will be essentially
identical to ours. This leads us to adopt the existence of
stable nuclei with charge one (some isotope of hydrogen)
and charge six (some isotope of carbon) to be the criterion
for an acceptable universe. One could argue that other
elements, especially oxygen (charge eight) are necessary
for carbon-based life. We find that worlds with stable
carbon also have stable oxygen and a variety of other
elements, so it is not necessary to refine our criteria in
this regard. Note that carbon might have very different
nuclear physics in worlds with different quark masses. If,
for example, the charges of the stable baryons were differ-
ent from our world, then the baryon number of carbon
would not be 12, but the chemistry of the element with
charge six would be nearly the same as the chemistry of
carbon in our world.

For convenience, from now on we will call a universe
congenial if it seems to support the evolution of an ob-
server. An uncongenial universe is the opposite. Our cri-
terion for congeniality is, as already stated, the existence of
stable nuclei with Z ¼ 1 and Z ¼ 6. We realize that these
may not be necessary if some exotic form of life not based
on organic molecules were possible. Likewise they may
not be sufficient if there were some other obstruction to the

development of carbon-based life. The former is interest-
ing but very difficult to study. The latter is very important
and requires further investigation.
For instance, Hoyle famously predicted—with better

than 1% accuracy—the location of a 7.65 MeV excited
state of 12C, based on the fact that, without such a reso-
nance, stars would produce only a negligible amount of
carbon, since the fusion of three � particles would proceed
very slowly [11]. It is difficult, however, to translate the
requirement of efficient carbon synthesis into a statement
about the fine-tuning of the fundamental SM parameters,
since the rate of carbon production depends on the spacing
between two different nuclear energy levels (which are
very difficult to compute from first principles) and also
on stellar temperatures (which could conceivably be differ-
ent in other universes with different interactions). Fur-
thermore, Hoyle’s argument presupposes that most of the
carbon available for the evolution of organic life has to be
produced in stars by the fusion of the three �’s, which
might or might not be true of all universes in the landscape
that have stable isotopes of carbon.
Another example of an argument for an astrophysical

obstruction to the development of carbon-based life comes
from the work of Hogan, who has argued that the existence
of a stable, neutral baryon would short-circuit big-bang
nucleosynthesis and/or leave behind deadly clouds of neu-
tral baryons [12]. However, some of the worlds we study
have stable neutral baryons but may have different early
histories than Hogan considers: for example, in some of
our worlds the deuteron is not stable while 3H (the tritium
nucleus or ‘‘triton’’) is, a possibility not contemplated by
Hogan. The lack of a stable deuteron could interrupt the
reaction path that Hogan identifies as leading to an explo-
sive big-bang r-process in worlds with stable neutrons.
Furthermore, the availability of stable 3H would change

stellar dynamics significantly, since two tritium nuclei can
make 4He plus two free neutrons by a strong interaction, in
contrast to the weak interaction pp ! 2Heþ�e in our
world. Finally, whether the presence, in some given uni-
verse, of roaming clouds of stable neutral baryons left over
from big-bang nucleosynthesis would prevent the evolu-
tion of life everywhere presumably depends on very com-
plicated astrophysical considerations.
This highlights a distinction between two types of cri-

teria for congeniality. The first, which we adopt, is that the
laws of nature should be suitable for the evolution of life
(as we know it). The second, which we put aside for later
work, is that the history of a universe evolving according to
those laws should lead to intelligent life. Clearly the latter
is a much more difficult problem, involving aspects of
astrophysics, celestial dynamics, planetary physics, etc.,
each of which has its own complex rules. Returning to the
planetary analogy, it is akin to showing that planets in the
habitable zone would have any number of other attributes,
like atmospheres, water, plate tectonics, etc., that might be

2If the stable hadrons have negative charge, neutrinos would
offset the negative lepton number of the positrons.
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necessary for life. For example, none of the astrophysics or
celestial mechanics leading to earthlike planets seems to
rely on the existence of unstable, but long-lived �-emitting
nuclei. However, the Earth would be a featureless ocean
with very different life forms if it were not for plate
tectonics powered by uranium and thorium decays in the
Earth’s core. Such considerations are clearly important—
Weinberg’s constraints on the cosmological constant fol-
low from consideration of the history of the Universe, not
the form of the SM—but they are beyond the scope of this
paper. Constraints on the formation of life from such
cosmological or astrophysical considerations can always
be cleanly superimposed upon the constraints from nuclear
physics studied in this paper.

B. Variation of quark masses

Quark masses in the SM,ma, are determined by Yukawa
couplings, ga, by ma ¼ gav, where v is the Higgs vacuum
expectation value (VEV). In our world, the quark Yukawa
couplings range from �10�5 for the u quark up to �1 for
the t quark. The a priori connection, if any, between the
quark masses and the scale of the strong interactions,
�QCD, is unknown. We would like to consider the widest

possible range of variation of quark masses, limited only
by our ability to study their consequences with the tools of
the SM. Quarks fall into two classes: light quarks, with
masses less than or of the order of�QCD, and heavy quarks,

with masses above �QCD. Heavy quarks do not participate

in the physics of nuclei and atoms. If Yukawa couplings are
varied widely, the number of light quarks can range from
zero to six, and their charges can be þ2=3 or �1=3, con-
strained only by the fact that there are at most three of
either charge.

In our world, with light u and d quarks and a somewhat
heavier s quark, the methods of flavor SUð3Þ perturbation
theory have been moderately successful in baryon spec-
troscopy. Using flavor SUð3Þ perturbation theory we can
extract enough information from our world to predict the
masses of the lightest baryons in worlds with up to three
light quarks, provided their mass differences are small
enough to justify the use of first-order perturbation theory.
In practice this is not an important limitation because we
find that a quark species does not participate in nuclear
physics unless its mass is considerably less than the mass
of the s quark in our world. So first-order perturbation
theory in quark masses should be even better in the other
worlds we explore than it is in our world. In fact, the
principal limitation to our use of perturbation theory in
the quark masses comes from possible higher-order cor-
rections to the extraction, from the experimentally mea-
sured baryon masses, of the reduced matrix elements of
SUð3Þ tensor operators. For a similar reason, we are limited
to at most three species of light quarks by the fact that we
cannot extract flavor SUð4Þ reduced matrix elements from

the measured baryon spectrum, given how badly that sym-
metry is broken in our world.
To summarize, we consider worlds where baryons made

of up to three species of light quarks participate in nuclear
physics. We circumvent ambiguities associated with the
extraction and renormalization scale dependence of quark
masses by presenting results as functions of the ratio of
quark masses to the sum of the three light quark masses,
mT , in our world.

C. Our slice through the standard model

Previous research has considered the environmental
constraint on the value of the Higgs VEV v, with the
Yukawa couplings fixed to the values they have in our
world [13]. Along this particular slice through the SM
parameter space, all quark and lepton masses scale to-
gether. The requirement that stable atoms exist is found
to roughly impose the constraint

0<
v

v� & 5; (1.1)

where v� is the Higgs VEV in our Universe.3 A general
argument has been proposed for why this particular choice
of a slice might correspond approximately to the landscape
resulting from string theory and eternal inflation [14].
In this paper we will consider a very different slicing

(see Fig. 1), in which the three light quark masses are
allowed to vary independently, with minimal variation on
the other phenomenological aspects of the SM. First we
must fix a scale with respect to which all other relevant
masses will be defined. We do this by fixing the electron
mass equal to its value in our world, me ¼ m�

e ¼
0:511 MeV. Next, we choose a set of quark mass values.
Our world, for example, is specified by mu ¼ m�

u ¼
1:5–3 MeV, md ¼ m�

d ¼ 2:5–5:5 MeV, and ms ¼ m�
s ¼

95� 25 MeV [15]. Finally, we adjust �QCD so that the

us

slice 1

slice 2

FIG. 1. Two slices through the parameter space of the SM are
shown in this cartoon representation of that space. For simplicity
the space is drawn as two-dimensional and the slices as one-
dimensional. The two slices meet at the point that corresponds to
the parameters of our own world ( labeled ‘‘us’’ in the figure).
We may imagine slice 1 to correspond to varying quark masses at
fixed �sðMZÞ, while slice 2 would correspond to the subspace we
investigate in this paper.

3Throughout this paper we will use the super- or subscript � to
label the value of a parameter in our own world.
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average mass of the lightest baryon flavor multiplet [usu-
ally an SUð2Þ doublet] equals the nucleon mass in our
world, M�

N ¼ 940 MeV.
This procedure defines our ‘‘slice’’ through the parame-

ter space of the SM. The other parameters of the SM
including the masses of heavy leptons and neutrinos, the
parameters of the Cabibbo-Kobayashi-Maskawa (CKM)
and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matri-
ces, the scale of weak symmetry breaking, etc., do not
impact nuclear physics significantly, so our analysis ap-
plies to wide families of worlds where those parameters
vary from their values in our world.

Because of this relatively clean separation into one set of
mass scales that influence nuclear physics significantly
ðfmqg; me;�QCDÞ and all the rest that do not, there is an

additional mass rescaling that enlarges the set of worlds to
which our analysis applies. Consider a point on our slice
through the SM, labeled by quark masses, �QCD, and me.

Now consider a world where all these mass scales are
multiplied by some factor �. Nuclear physics in this world
can be mapped back to ours by redefining 1 MeV !
1=� MeV. All the other mass parameters of the SM,
including for example m�, m�, MW;Z, and so forth, are

scaled by 1=�, but these have negligible effect on the
question of congeniality that interests us. In effect, by
fixing me we are ‘‘choosing a gauge’’ with respect to this
additional invariance.

We use �QCD to rescale the lightest baryon’s mass to

940 MeV. The masses of other hadrons, in particular, of the
pion, the �ð770Þ, and the f0ð600Þ (or the equivalent mesons
in worlds with different light quarks), which determine the
properties of nuclei, are affected by the choice of quark
masses and of �QCD. Changing these mesons’ masses

affects the binding of nuclei and introduces uncertainty
into our results. As a result there are some regions of quark
mass parameter space where we can make reliable quanti-
tative statements and others where only qualitative state-
ments are possible. This question is discussed in
considerably more detail in Sec. II D.

We have chosen a slice through the parameter space of
the SM along which it is relatively simple to examine
congeniality as the quark masses vary. This is only one
of many possible slices, and might not be the slice dictated
by a deeper understanding of the landscape of possible
universes. We choose our approach simply because the
resulting universes can be studied with some certainty.
So doing, we accomplish two things: first, we give an
example of what is required to analyze the environmental
impact of nontrivial variations in SM parameters; and
second, we find some of the limits of the domain of
congeniality in which we live, and also discover some
different (disconnected) domains of congeniality else-
where in light quark mass parameter space. As our knowl-
edge of QCD improves, in particular, as lattice QCD
matures, it may become possible to explore much larger

domains of parameter space by simulating hadrons and
nuclei on the lattice.

D. Plan of the paper and survey of results

In Sec. II we confront some of the (meta)physical issues
that arise when attempting an environmental analysis of
quark masses. First we define more carefully the difference
between environmental constraint and environmental se-
lection. We discuss what features the a priori distribution
of quark masses might have. Next we explain why we
ignore quarks with masses greater than the confinement
scale of QCD. This leads us to a parametrization of the
space of light quark masses and finally to some discussion
of baryon masses, nuclear forces, and stability.
In general, only members of the familiar flavor SUð3Þ

octet of spin-1=2 baryons can play a role in nuclear phys-
ics.4 In Sec. III we express the masses of the octet baryons
as functions of the three light quark masses. Most of the
information necessary to relate octet baryon masses to
quark masses can be obtained from a study of octet baryon
mass differences in our world, using first-order perturba-
tion theory in the quark masses. However, baryon mass
differences cannot tell us about the dependence of baryon
masses on the average quark mass. We take this informa-
tion from the � term in �N scattering (see [17] and
references therein). To get as accurate an estimate as
possible of the connection between baryon masses and
quark masses, we include estimates of the electromagnetic
contributions to baryon masses.
Except in the case where all three light quark masses are

nearly equal, only the two lightest baryons participate in
nuclear dynamics. The others, like hyperons in our world,
make only exotic, very short-lived nuclei (usually called
‘‘hypernuclei’’) [18]. When all three quark masses are
nearly equal, then all eight members of the baryon octet
may be involved in nuclear dynamics. In Sec. IV, we
estimate the masses of nuclei in our slice through the
landscape as functions of the baryon masses. For some
universes a given nuclear mass can be estimated very
accurately by considering its analog: a nucleus in our
world whose binding energy should be the same except
for easily calculable Coulomb corrections that occur if the
participating baryon charges differ from those in our own
world [19]. For other universes where direct analogs are
not available, we build a generalized Weizsäcker semi-
empirical mass formula (SEMF), with parameters more
or less closely related to those in our world. Kinematic
flavor-breaking contributions are obtained from a degen-
erate Fermi gas model [20], supplemented by a term pro-

4Two exceptions are mentioned: when all quark masses are
small one must consider the possibility that the dihyperon is the
most stable baryon [16] (see Sec. VE 1); and when only one
quark is light, the spin-3=2 decuplet must be considered (see
Sec. VA).

QUARK MASSES: AN ENVIRONMENTAL IMPACT STATEMENT PHYSICAL REVIEW D 79, 065014 (2009)

065014-5



portional to the quadratic Casimir of flavor SUð2Þ or
SUð3Þ, depending on whether there are two or three very
light quarks.

With these tools in hand, in Sec. V we explore the
congeniality of worlds along our slice through the SM.
Since nuclear masses can be estimated, it is possible to
check for the stability of various nuclei against fission, �
decay, and ‘‘weak nucleon emission’’ (i.e., the emission of
a nucleon and a lepton-antilepton pair, mediated by a weak
interaction). For universes with only two light quarks and
charges þ2=3 and �1=3, u and d, we find a band of
congeniality roughly 29 MeV wide in mu �md, with our
own world lying comfortably away from the edges. We
also find another region of congeniality with small md and
mu � ms (or equivalently, small ms and mu � md), whose
exact width in mu �ms is difficult to estimate because
nuclear forces in these worlds differ qualitatively from
ours. Worlds with two light quarks of the same charge,
eitherþ2=3 or�1=3, are not congenial since, regardless of
the quark masses, carbon is always unstable.

Finally, we identify the region in the space of quark
masses where nuclei would be made from three or more
baryon species. We discuss some issues relevant to nuclear
stability in such worlds, but a full characterization of them
as congenial or uncongenial is left for future study. We
point out several possible sources of uncongeniality for
these worlds: it is possible that in these worlds octet
baryons would decay into dihyperons, which are bosons
and would therefore behave very differently from nucleons
in our Universe. In worlds with one positively charged and
two negatively charged light quarks, nuclei with net elec-
tric charge would be very heavy, and might well be un-
stable to decay by emission of light uncharged nuclei
composed of a pair of each baryon species.

II. SETTING UP THE PROBLEM

In this section we delve more deeply into some of the
issues raised in Sec. I. We argue that a study of the
environmental constraints on quark masses is a well-posed
problem, and explain its relation to more ambitious an-
thropic inquiry. Also the slice through the SM parameter
space introduced qualitatively in Sec. I must be delineated
more quantitatively.

A. A priori distribution of quark masses

As explained in Sec. I, we focus on the relatively well-
defined problem of environmental constraints on quark
masses. Nevertheless we recognize that there is much
interest in the theoretical physics community in whether
physical parameters might be environmentally selected.
The jump from constraint to selection requires some theo-
retical input (or prejudice) about the a priori distribution of
quark masses. Also, a prejudice about the a priori quark
mass distribution can suggest where to focus our analysis
of environmental constraints. Therefore, we review here

the relation between environmental constraint and environ-
mental selection, and then summarize our thoughts about
possible a priori quark mass distributions.
Anthropic reasoning can be presented in the language of

contingent probabilities [21]. According to Bayes’s theo-
rem, the probability distribution for measuring some set of
values for the quark masses can be expressed as

pðfmigjobserverÞ / pðobserverjfmigÞ � pðfmigÞ; (2.1)

where pðfmigÞ is the a priori distribution of quark masses
over the landscape. The quantity pðfmigjobserverÞ is the
contingent probability distribution for the quark masses
over the subset of the landscape that contains intelligent
beings likes us, capable of measuring quark masses. In
simple terms, it is the probability that some set of quark
masses would be measured. The quantity pðobserverjfmigÞ,
the contingent probability for an observer existing, given a
choice of quark masses, is the stuff of environmental con-
straint and the primary subject of this paper.
The connection between environmental constraint and

environmental selection is provided by the a priori distri-
bution pðfmigÞ. Environmental selection requires the exis-
tence of an ensemble of universes over which pðfmigÞ is
defined. Anthropic reasoning is based on some prejudice
about the form of pðfmigÞ as (presumably) determined by
some fundamental theory, such as string theory in an
eternally inflating scenario. This should be contrasted
with a situation where one or more quark mass is dynami-
cally determined. Then pðmaÞ (for some a) would be a
delta function and ma would not be environmentally
selected.
In his analysis of the cosmological constant�, Weinberg

argued that the a priori probability distribution pð�Þ
should not vary significantly over the range where the
contingent probability pðobserverj�Þ is nonzero, in which
case the a priori distribution factors out of the expression
for pð�jobserverÞ. Similarly, if pðfmigÞ does not vary
significantly over the region where pðobserverjfmigÞ is
nonzero, then the probability that we observe some set of
quark masses, which is the object of fundamental interest
in an anthropic context, is simply proportional to
pðobserverjfmigÞ, which we analyze here.
We believe that if anthropic considerations have any

relevance at all, then there is reason to assume that the
logarithms of the quark masses are smoothly distributed
over a range of masses small compared to the Planck scale.
Note, first, that an environmental analysis is predicated on
the absence of any other underlying explanation for quark
masses. Therefore we assume that the probability of a
pattern of masses is the product of independent probabil-
ities,

pðfmigÞ ¼
Y6
i¼1

pðmiÞ: (2.2)

In this paper we will usually (i.e., unless otherwise speci-
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fied) label the positively charged quarks as u, c, and t, and
the negatively charged quarks as d, s, and b, in ascending
order of mass. (Therefore the identification of the label i ¼
1; . . . ; 6 in Eq. (2.2) with u, d, s, c, b, t varies according to
the values of the fmig.) In general, we shall care little about
the details of the flavor structure of the weak interactions,
but in Secs. IVand V we will assume that no element of the
CKM matrix is accidentally zero, so that no baryon that
would normally decay by weak interactions is accidentally
stable.

Taking an anthropic point of view, there is a hint that, at
least at masses below the scale of electroweak symmetry
violation, the a priori distribution of the quark masses
might be logarithmic. This hint comes from the observed
distribution of quark masses in our world, which is shown
in Fig. 2: the s, c, b, and t quarks are so heavy (on the scale
set by �QCD) and so short-lived that they seem to play no

role in nuclear and atomic physics (and consequently not
in chemistry or biology either). Therefore, referring to
Eq. (2.1), it is reasonable to take pðobserverjfmigÞ to be
essentially independent of ms, mc, mb, and mt. Then the
pattern of heavy quark masses that we see could well be a
measure of the a priori probability distribution pðmÞ.

Note, though, that the authors of [22] proposed that mt

might be anthropically selected to be near its measured
value,�170 GeV. This proposal was based on the assump-
tion (unmotivated by any dynamical consideration about
the landscape) that the a priori distribution for the Higgs
quartic self-coupling, �, strongly favors small values. The
environmental requirement that the SM have a stable or
metastable vacuum would then select mt through its effect
on the renormalization group running of �. If we relax the
assumption about the a priori value for �, however, there
would not seem to be a reason to expect strong anthropic
constraints on mt. In any event, such a constraint could
only apply to the heaviest quark, leaving the masses of s, c,
and b unconstrained.

Although we have only four (or three) data points, the
measured values of heavy quark masses range over more
than 2 orders of magnitude, which suggests that the a priori
cumulative distribution

PðmÞ �
Z m

dm0pðm0Þ (2.3)

might be a smooth function in the logarithm of the mass,

over some range that contains the six quark masses mea-
sured in our world [23]. The a priori distribution of quark
masses is determined by the landscape, which presumably
is generated by physics at the Planck scale. Therefore the
scale for variation in the quark mass probability distribu-
tion should be MPlanck and we expect

PðmÞ ¼ a log
m

MPlanck

þ � � � (2.4)

where the omitted terms vary more slowly with m than the
logarithm.
Keeping only the leading term in Eq. (2.4) implies that

quark masses in that range are a priori equally likely to fall
between any two consecutive orders of magnitude, and
corresponds to a scale-invariant distribution

pðmÞ / 1

m
: (2.5)

Approximately scale-invariant distributions are observed
in a variety of phenomena associated with complex under-
lying dynamics: e.g., the distribution by area of lakes in
Minnesota has such a form, with a lower cutoff given by
the conventional definition of a lake and the upper cutoff
given by the area of Minnesota.5 In the context of a
possible landscape of quark and lepton masses, a scale-
independent a priori distribution was investigated in [25].
Note that an a priori logarithmic distribution of quark

masses puts a much greater weight on masses that are very
small compared to �QCD than would a linear distribution.

Therefore it is very interesting to explore the congeniality
of worlds where all light quark masses are very small
compared to �QCD. We have been able to make some

progress in formulating the tools needed to explore this
region of parameter space, and we can make some quali-
tative statements about its congeniality. Nevertheless we
have not been able to explore this region as fully as we
would like.
Finally, we emphasize again that this excursion into a

discussion of a priori probabilities is independent of the
analysis of environmental constraints on quark masses
which will concern us in the rest of this paper. For a
more explicit model of a possible landscape of Yukawa
couplings, coming from the overlap of localized wave
functions randomly distributed over compact extra dimen-
sions, see [26].

B. Light and heavy quarks

The energy scale at which QCD becomes strongly
coupled, �QCD, provides us with a distinction between

1 GeV 10 GeV100 MeV10 MeV1 MeV0.1 MeV0.01 MeV 100 GeV

QCD

u d bs c t

v

FIG. 2 (color online). The quark masses and�QCD, shown on a
logarithmic scale.

5Scale invariance also explains the well-known phenome-
non—known as Benford’s law—that the first digits of numbers
from many different kinds of real-life data are logarithmically
distributed [24].
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light and heavy quarks. Heavy quarks are those with mj >

�QCD and light quarks have mj & �QCD. Even though the

strange quark mass in our world is heavy enough that it
decouples from nuclear physics and chemistry, it is never-
theless light compared with ��

QCD, so it falls among the

‘‘light’’ quarks in this discussion. If any quarks are lighter
than �QCD, then assuming no accidental zeros in the CKM

matrix, the heavy quarks will decay rapidly (on the time
scales of atomic physics or chemistry) into light quarks by
means of weak interactions. In this case only light quark
masses would be environmentally constrained by nuclear
physics, atomic physics, and chemistry—the constraints
explored in this paper.

If all quarks were heavy, then the emergence of an
observer would require a dynamical explanation, which
would be an interesting counterexample to anthropic rea-
soning: an observer who found himself or herself in a
world where all quark masses are large compared to
�QCD would have to dismiss an anthropic origin and

instead seek a dynamical explanation for the pattern of
quark masses.

To see why, suppose c were the lightest quark in a world
with all quark masses greater than �QCD. If no other quark

had mass close to mc then only the ccc baryon (analogous
to the �þþ for Qc ¼ 2=3 or to the �� for Qc ¼ �1=3)
would participate in building nuclei. It is easy to see that
Coulomb and symmetry effects would destabilize all sys-
tems with baryon number greater than one (remember, no
single species nucleus, starting with the diproton or dineu-
tron, is stable in our world), and there would be no con-
genial worlds.

Suppose, on the other hand, that two heavy quarks had
masses close enough to one another that both could par-
ticipate in nucleus building. The most favorable situation,
from the point of view of Coulomb interactions, occurs
when the quarks have different charges, so to make the
discussion concrete we can call these heavy, nearly degen-
erate quarks the c and b quarks. The two lightest baryons,
ccb and bbc, analogs of the proton and neutron, would
experience attractive forces with a range �1=�QCD.

6

Attractive forces between massive particles bind when
the range of the force is much greater than the particle’s
mass.7 So it is reasonable to expect stable nuclei when

mb � mc >�QCD. However the two heavy quarks’ masses

would have to be within a few tens of MeVof one another,
otherwise the nuclei would rapidly decay away by weak
nucleon emission. This process is discussed in Sec. IVB5
and the corresponding constraints on the baryon masses are
covered in Sec. VC. For now, it is sufficient to know that
the quark mass difference cannot be greater than of order
tens of MeV.
Thus there is a possible window of congeniality if

two heavy quarks are nearly degenerate. However, if the
a priori quark mass distributions pðmjÞ are independent,

then this is a subspace of very small measure in the
ensemble of universes. If pðmÞ is a smooth function of
logm up to the Planck scale, then this congenial domain has
essentially measure zero. Physicists who lived in that uni-
verse would be confronted by an ‘‘accidental’’ symmetry,
similar to (but even more exaggerated than) the one that
puzzled particle physicists in our Universe before the dis-
covery of QCD. Before circa 1970, it was thought that
isospin was a good symmetry because the u and d quarks,
both believed to have masses of order 300 MeV, had a mass
difference of only a few MeV. This approximate degener-
acy appeared mysterious, and physicists sought a dynami-
cal explanation. When QCD explained that the mass scale
of hadronic bound states was set by �QCD, not by u and d
quark masses, then the mysterious approximate equality
was replaced by the less mysterious inequality, mu, md 	
�QCD.

Analogously to the pre-1970 situation in our Universe,
physicists in the heavy quark world would seek a dynami-
cal reason for the approximate equality of heavy quark
masses. In environmental terms, they would have to ex-
plain why the a priori quark mass distribution should have
a (approximate) 	 function, 	ðmc �mbÞ, since a world
with only heavy quarks would necessarily be uncongenial,
unless there were a nearly perfect degeneracy between the
masses of the quarks, and such a degeneracy would not
admit a compelling environmental explanation.8

C. Parameterizing the masses of light quarks

As mentioned in Sec. I C, we will consider the variation
of three light quark masses over a slice through the space of
parameters of the SM in which the average mass of the two
lightest octet baryons is fixed with respect to the mass of
the electron.
To be definite we assume the charge assignments

ð2=3;�1=3;�1=3Þ. The extension to the other mixed

6Although there are no mesons with masses of order �QCD in
such a world—the lightest meson would be b �c, the analog of the
Bc—nevertheless the nucleons would have radii of order �QCD
(up to logarithms), and when they overlap, they would attract by
quark exchange processes. This apparent violation of the rules of
effective field theory (the longest range force is not associated
with the nearest threshold in the complex plane) was previously
encountered in heavy meson effective field theory and is ex-
plained in Ref. [27].

7The criterion is mV0R
2 * constant, where V0 and R are

characteristic of QCD and independent of m (up to logarithms),
while m is assumed to be large.

8Of course, just as we do not know how small quark masses
can be in the landscape, it is possible that physicists in a universe
with only heavy quarks would not realize that quark masses are
dynamically allowed to fall below �QCD. Until they had learned,
as we already know, that the a priori distribution allows quarks
to be lighter than �QCD, they might accept the anthropic argu-
ment that only nearly degenerate (heavy) quark masses lead to a
congenial world.
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charge possibility, ð2=3; 2=3;�1=3Þ, is mentioned as
needed. We denote the quarks ðmu;md;msÞ in the former
case and ðmu;mc;mdÞ in the latter case. The case where all
three light quarks have the same charge, either þ2=3 or
�1=3 does not yield a congenial world with one possible
exception: if all three quarks have charge �1=3 and all
quark masses are much lighter than �QCD, then it is pos-

sible that such a world would be congenial. We mention
this regime in Sec. V.

For a fixed value of mT ¼ mu þmd þms, we may
represent the landscape of light quark masses by the points
in the interior of an equilateral triangle with altitude ofmT ,
as shown in Fig. 3(a). The value of each quark mass is
given by the perpendicular distance from the point to the
corresponding side of the triangle. (Recall that the sum of
those perpendicular distances from any point inside an
equilateral triangle is always equal to the altitude of the
triangle.)

As we first discussed in Sec. II A, we shall not need to
make any assumptions about the structure of the CKM
matrix beyond it not having accidental zeros. This removes
any distinction between the worlds described by points in
the right and left halves (related by d $ s) of the triangle
of Fig. 3(a), so we will define the s quark to be the more
massive of the two charge �1=3 quarks and (when appro-
priate) restrict our attention to the reduced landscape
shown in Fig. 3(b). The triangular landscapes relevant for
quark charges ð2=3; 2=3;�1=3Þ can be obtained by the
replacementsms ! mc,md ! mu,mu ! md with the con-
vention that mc > mu.

The full space of light quarks is, of course, three-
dimensional, and may be represented as a triangular prism,
as in Fig. 4. The altitude of any triangular slice is mT , the
sum of the three light quark masses. Remember that the
�QCD has been adjusted so that the average mass of the

lightest flavor multiplet of baryons is held fixed at
940 MeV. In practice this multiplet is always a flavor
doublet. The prism shown in Fig. 4 summarizes the range
of universes explored in this paper.

The variation of baryon masses and nuclear forces over
the prism is influenced by the adjustments of �QCD. Those

adjustments are described in the following subsection, and
the resulting variation of baryon masses is discussed in
Sec. III.

D. Strength of the nuclear interaction

As described in Sec. I, our aim is to explore universes
with at least one and at most three light quarks, in which
nuclear physics resembles ours as closely as possible. In
this section we discuss more carefully the extent to which
this can be accomplished.
We find three regimes where long-lived nuclei can form:
(i) universes where all three quarks are very light com-

pared to ��
QCD;

(ii) universes where one quark is much lighter than the
other two, which are approximately degenerate; and

(iii) universes similar to ours where two quarks are
considerably lighter than the third.

The regions are sketched on the quark mass triangle in
Fig. 5. These regions are only well separated when quark
masses are large. When all quark masses are small com-

ms md

mu

(a)

ms md

mu

(b)

FIG. 3 (color online). (a) Graphical representation of the land-
scape of light quark masses for fixed mT ¼ mu þmd þms;
(b) reduced landscape, assuming ms > md.

mT

d ∝ mT

FIG. 4. Representation of the full three-dimensional space of
light quark masses as a triangular prism, with four different
slices of constant mT ¼ mu þmd þms ¼

ffiffiffi
6

p
m0 shown.

FIG. 5 (color online). (a) Three regions in quark mass parame-
ter space in which complex nuclei form. The sum of quark
masses here is large compared to the energy scale of nuclear
binding. The red shaded regions are not congenial because both
light baryon species have the same charge (see Sec. V). (b) In a
slice where the sum of quark masses is smaller, the peripheral
regions disappear, leaving only the central region where all
quark masses are small compared to nuclear binding energies.
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pared to the �10 MeV scale of nuclear binding, then only
case (i) can occur. This is shown in Fig. 5(b). Other uni-
verses outside of regions (i), (ii), or (iii), for example, those
with a hierarchy like m1 	 m2ð�10–20 MeVÞ 	 m3 <

��
QCD have no stable nuclei.

In universes of type (i) all eight pseudoscalar Goldstone
bosons (�, K, and 
) participate in nuclear interactions.
This makes it impossible to describe nuclei quantitatively
in those worlds based on information from ours. In uni-
verses of type (ii) there is an approximate flavor SUð2Þ
symmetry, but unlike our world, the lightest pseudoscalar
Goldstone boson is a flavor singlet and there is a complex
doublet analogous to the K= �K system that is not much
heavier. Again, nuclear physics in these worlds will differ
quantitatively from ours. It is still possible to make quali-
tative statements about nuclear physics in these regions
because the qualitative features of baryon-baryon forces
should not change: they are short-range, attractive at long
distances, and strongly repulsive at short distances.

In the last case, (iii), the lightest pseudoscalar bosons
form a triplet under the SUð2Þ symmetry associated with
the two lightest quarks. In this very important case, nuclear
physics is quantitatively similar to our world over a sig-
nificant range of quark masses. Without loss of generality,
we can call the two lightest quarks u and d and the heavier
one s. The rest of this subsection is given over to a
discussion of case (iii).

Nuclear forces depend on the masses and coupling con-
stants of the mesons that couple strongly to the light
baryons. In case (iii) this includes the pion, which gives
the long-range tail of the attractive nucleon-nucleon force,
the f0ð600Þ, also known as the �, which is a shorthand for
the correlated two-pion exchange forces that generate the
intermediate-range attraction in the nucleon-nucleon force
[28], and the �ð770Þ and!ð783Þ, which generate the short-
range repulsion. The same changes of parameters that keep
the mass of the nucleon fixed over regions (iii) of the quark
mass prism, tend also to keep the masses of hadrons that
scale linearly with quark masses fixed as well, thereby
reducing the effect of quark mass variations on the nature
of the nuclear force.

If it were not for the pion, we would argue that non-
strange meson masses and coupling constants are so in-
sensitive to the small variations in the u and d quark masses
that the variation of the nuclear force could be ignored over
the entirety of type (iii) regions. The pion mass, however,
varies like the square root of the average u- and d-quark
masses, m̂ ¼ ðmu þmdÞ=2, and therefore changes more
significantly over the prism. For example, as m̂ ! 0 the
pion masses get very small, although the �,!, and f0ð600Þ
masses hardly change at all (recall that we are adjusting
�QCD to keep MN fixed as we send m̂ ! 0).

Let us make this more precise: we are only interested in
quark masses that are small enough compared to �QCD so

that hadron masses, other than those of the pseudoscalar

Goldstone bosons, can be accurately estimated by first-
order perturbation theory,

M� � a��QCD þ b�m̂þ c�ms (2.6)

for hadron �. Here a�, b�, and c� are dynamically deter-
mined constants that are independent of quark masses. The
triplet of pseudoscalar bosons, which we will call pions,
are different. Their masses vary dramatically for small
quark masses, as dictated by the Gell-Mann–Oakes–
Renner relation [29],9

m� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂jh �qqijp
f�

; (2.7)

where the pion decay constant f� and the chiral-symmetry
breaking VEV of QCD h �qqi are believed to be nearly
independent of light quark masses. So schematically,

m� ¼ d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCDm̂

q
: (2.8)

It is convenient to express the hadron and quark masses
in terms of their values in our world,

yu;d;s � mu;d;s=m
�
u;d;s; ŷ� m̂=m̂�; yT � mT=m

�
T

yN �MN=M
�
N; y� � �QCD=�

�
QCD; y� � m�=m

�
�:

(2.9)

Then

m� ¼ ffiffiffiffiffiffiffiffi
y�ŷ

p
m�

�; (2.10)

MN ¼ ð783 MeVÞy� þ ð35 MeVÞŷþ ð124 MeVÞys;
(2.11)

m� ¼ m�
� y� þ m̂�ŷþms

�ys: (2.12)

The mass of the �ð770Þ, a representative light meson, is
decomposed in a similar way, with unknown coefficients.
We have borrowed the numerical coefficients in Eq. (2.11)
from the fit performed in Sec. III.
The numerical coefficients in Eq. (2.11) reflect the small

contribution to the nucleon mass from u and d quarks in
our world (35 MeV), the rather surprisingly large—though
very uncertain—contribution from the s quark (124 MeV),
and the dominant QCD contribution (783 MeV). We are
interested in how meson masses vary for values of m̂ and
ms that remain in region (iii), where m̂ 	 ms. As m̂moves
away from its value in our world,�QCD must be adjusted to

keep the nucleon’s mass constant at 940 MeV. The masses
of nonchiral mesons like the �ð770Þ and f0ð600Þ can be
expected to vary rather little as m̂ changes because their
proportional dependence on�QCD and m̂ should be similar

to the nucleons’.

9In this discussion we ignore electromagnetic mass
differences.
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The pion mass scales differently with m̂ and �QCD, and

it cannot be expected to remain nearly constant as m̂ varies.
So the extent to which nuclear physics changes over the
quark mass parameter space of interest [type (iii) regions in
the prism] can be examined in two stages: (a) how much
does the pion mass change? and (b) how important is the
mass of the pion in determining the parameters of nuclear
binding? The first question can be answered quantitatively,
but the second remains a matter of speculation.

To answer the first question it is helpful to combine
Eqs. (2.10) and (2.11),

MN ¼ ð783 MeVÞ y
2
�

ŷ
þ ð35 MeVÞŷþ ð124 MeVÞys:

(2.13)

It is clear from this equation that there is a subspace of the
quark mass parameter space on which both the nucleon and
the pion mass remain fixed as m̂ and mT vary. To display
this constraint more usefully, we set MN ¼ M�

N ¼
940 MeV, and substitute values of quark masses from
our world, where m̂� � 3:6 MeV and m�

s � 93 MeV10

into Eq. (2.13), and switch variables to m̂ and mT ,

940 MeV ¼ ð2820 MeV2Þy2�
m̂

þ 7:0m̂þ 1:3mT; (2.14)

where m̂ and mT are in MeV. We leave the y� dependence
in Eq. (2.14) explicit so we can study the constraint be-
tween m̂ and mT as m� varies.

Equation (2.14) constrains the quark masses to a two-
dimensional subspace of the prism.11 Since the pion mass
depends only on m̂, the constraint is independent of the
difference of the light quark masses, and defines a line
parallel to one side in a fixed mT triangle, as shown in
Fig. 6(a). The subspace is also constrained by the demand
that the third (in this case, the s) quark must be heavy
enough so that strange baryons decouple from nuclear
physics. In Fig. 6(b) we plot the average light quark
mass, m̂, that satisfies Eq. (2.14) as a function of mT . The
value of m̂ does not depart far from its value in our world
because a small variation in m̂ compensates for the varia-
tion in mT in Eq. (2.14). The shaded band in the figure
shows the range of m̂ over whichm� varies by a factor of 2.
The plot is truncated on the left by the constraint that the
mass of the strange quark must be greater than m̂ by
�5 MeV, to insure that the domain remains a type (iii)
region. [The choice of a 5 MeV splitting is justified by
Eq. (5.20), in Sec. VC 4.]

If nuclear binding were dominated by single-pion ex-
change, Eq. (2.7) would imply quite a strong dependence
of the nuclear interaction on the masses of the light quarks.
In particular, increasing the masses of the u and d quarks in
our Universe would be expected to significantly decrease
and eventually turn off nuclear binding [5,13]. It is be-
lieved, however, that the attractive forces responsible for
nuclear binding receive significant contributions from cor-
related two-pion exchange in the region of 400–600 MeV
invariant mass, an effect that is usually associated with the
f0ð600Þ meson [28]. The mass of the f0ð600Þ is not sin-
gular in the chiral limit, nor does it vary dramatically when
the pion mass is increased well above its value in our world
[30], so there is reason to believe that nuclear binding
depends less dramatically on light quark masses than the
single-pion exchange mechanism would lead one to
believe.
Most studies of the effect on the nuclear interaction of

changing the pion mass have focused on the S-wave
nucleon-nucleon scattering lengths and on the related prob-
lem of deuteron binding. Various attempts have been made
to compute these numerically, either by solving the
Schrödinger equation with approximate potentials [31,32]
or from lattice QCD calculations [33]. The exact depen-
dence of deuteron binding on the quark masses, however,
still remains uncertain.12

In our world, the deuteron plays an important role in
primordial nucleosynthesis, but it is unclear whether a
deuteron bound state is necessary in all worlds to ensure
that heavy elements eventually become abundant enough
to support intelligent life (as we have noted in Sec. 2,
tritium might serve as an acceptable form of hydrogen
and its binding is more robust than the deuteron’s). For
this reason, and in keeping with the philosophy of this
investigation as outlined in Sec. 2, we will not focus
specifically on the deuteron binding, but rather on the
stability of any isotopes of hydrogen, carbon, and oxygen.
Based on general considerations of dimensional analy-

sis, we expect that all of the mass scales Mi relevant to

10The errors on the quark masses are very large, but since this
analysis is only intended to yield qualitative conclusions we will
ignore them in this section.
11There are two solutions of Eq. (2.14) for m̂ as a function of y�
and mT . We can identify the relevant one by requiring m̂� ¼
3:6 MeV for m�

T ¼ 100 MeV.

12Another approach to studying the dependence of nuclear
binding on the pion mass is to consider the analytic structure
of nucleon-nucleon scattering amplitudes and to study the ef-
fects—on the corresponding dispersion integrals—of varying the
pion mass [34,35]. This approach might be subtle because, as
was explored in [27] in a different context, the expectation from
effective field theory—that low-energy scattering is controlled
by the nearest singularity in the amplitude (and therefore, in this
case, by the pion mass)—can fail. For the S-wave channels, the
effective nucleon-nucleon contact interactions at low energies
are not of order 1=m2

�, as naive effective field theory might
suggest, but instead are significantly larger (as can be seen from
the size of the absolute values of the corresponding scattering
lengths). The presence (or absence) of a spin-1 nucleon-nucleon
bound state (the deuteron) could, through Regge pole theory,
alter the asymptotic behavior of the dispersion integrals that
connect the low-energy scattering amplitude to the poles and
branch points set by the pion mass [36].
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nuclear physics—including the masses of the baryons as
well as the masses of the f0ð600Þ, �ð770Þ, and !ð783Þ
resonances—should vary roughly as

�Mi

M�
i

� �mq

��
QCD

; (2.15)

where�mq is the quark mass variation being considered.13

The impact of the baryon mass variations on nuclear
structure, however, will be much enhanced compared to
the effect of the variation of other mass scales. In fact, if it
were not for the sensitivity of nuclear structure to the
baryon masses, the breaking of SUð2Þ and SUð3Þ flavor
symmetries by the strong interaction would be largely
irrelevant to a nuclear physicist.

As an illustration of the exquisite sensitivity of nuclear
structure to the baryon masses, consider the fact that (as we
shall work out in detail in Sec. VC 4) the � baryon could
be as little as 20 MeV heavier than the proton and the
neutron and still not participate in stable nuclei. Thus, a
breaking of flavor SUð3Þ by a mere 2% in the baryon
masses would leave almost no trace of that symmetry in
the composition of stable nuclei. It is therefore lucky that
baryon masses can be reliably estimated as functions of the
light quark masses using first-order perturbation theory in
flavor SUð3Þ breaking (as we shall work out in Sec. III) and
that the sensitivity of nuclear structure to baryon masses
can be qualitatively understood by modeling the nucleus as
a free Fermi gas subject to a confining pressure (as we shall
explain in Sec. IVB2). Thus, in this paper we shall retain

the effect of quark mass variations on the baryon masses,
but we shall mostly assume that we can ignore the variation
in the strength of the nuclear interactions due to the rela-
tively small changes to the quark masses that we consider.

III. OCTET BARYON MASSES

In this section we use flavor and chiral symmetry viola-
tion among the baryons in our world to find the masses of
the light baryons as functions of the quark masses. These
are used as inputs in Sec. IV to determine the spectrum of
nuclear masses, which in turn allow us to study the con-
geniality of worlds with different quark masses.
In our world the lightest baryons are in the octet repre-

sentation of the flavor SUð3Þ symmetry group associated
with the u, d, and s quarks. These are the nucleons (proton
and neutron), the �’s, the �’s, and the �. Quark mass
effects [which break flavor SUð3Þ] and the electromagnetic
interaction give rise to mass differences within the octet.
Electromagnetic contributions to the masses are small and
calculable [39]. They can be subtracted from the total
baryon mass to leave only the contributions from QCD
and from quark mass differences.
To first order, the quark mass contributions are propor-

tional to the reduced matrix elements of SUð3Þ tensor
operators. These matrix elements can be extracted from
the measured mass differences in our world. These can
then be used to compute the masses of the octet baryons in
worlds with quark masses that differ from those in our
world. One complication is that the analysis of baryon
mass differences does not enable us to estimate the matrix
element of the flavor singlet operator. This, however, can
be extracted from the analysis of chiral symmetry violation
in the baryon sector, through the well-known �-term
analysis.

mT = 40 MeV

mπ = 140 MeV

mu

ms

md

(a)

m^

ms

0 20 40 60 80 100

5
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15

20

25

30

M
eV

m   (MeV)T

(b)

FIG. 6 (color online). (a) The quark mass triangle for mT ¼ 40 MeV showing the line along which m� ¼ m�
� ¼ 140 MeV with

shading corresponding to pion mass variation by a factor of 2 above and below its value in our world. Note that the entire region
satisfies ms 
 m̂. (b) The constraint on m̂ and ms as functions of mT , generated by fixing m� and MN to their values in our world. As
before, the shading corresponds to varying m� by a factor of 2. The shaded regions are truncated when ms � m̂ < 5 MeV, because the
corresponding worlds would have nuclei containing strange baryons.

13In fact, investigations by [37,38] suggest that, while nonline-
arities in �mu;d on the mass of the �ð770Þ might be relevant near
the mu ¼ md ¼ 0 chiral symmetry point, these nonlinearities
actually make the quark mass dependence of M� milder than
Eq. (2.15) would predict.
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As we pointed out in Sec. I B, SUð3Þ flavor symmetry
will be only very mildly broken in most of the worlds
studied in this paper, and first-order perturbation theory
will therefore be an excellent approximation. Higher-order
corrections principally affect the extraction of the SUð3Þ
reduced matrix elements from the measured baryon
masses. However, we shall neglect such corrections in light
of the level of accuracy that is called for in this kind of
investigation.

A. Flavor SUð3Þ and baryon masses

The mass of a baryon is given by the eigenvalue of a
Hamiltonian H, which we may decompose as

H ¼ HQCD þHflavor þHEM; (3.1)

where HQCD corresponds to QCD interactions and is inde-

pendent of quark masses and electric charges, Hflavor is the
quark mass dependent piece

Hflavor ¼
X
i

mi �qiqi; (3.2)

and HEM gives the electromagnetic contribution to mass of
the baryon. HEM is the only part of H that depends on the
electric charges of the component quarks. Using the re-
normalized Cottingham formula [40,41], it is possible to
relate baryon matrix elements of HEM to experimental data
for electron-baryon scattering. Data is only available for
electron-nucleon scattering, but there is evidence that
hHEMi is dominated by the Born terms which in turn are
dominated by the charge and magnetic moment contribu-
tions, which are known. Here we use the values as quoted
in Gasser and Leutwyler in [17].14 They are tabulated in
Table I.

The quark mass dependent term in H can be decom-
posed in terms of irreducible tensor operators,

Hflavor ¼ m0�
1
0 þm3�

8
3 þm8�

8
8; (3.3)

with

�1
0 ¼

ffiffiffi
2

3

s
ð �uuþ �ddþ �ssÞ; �8

3 ¼ �uu� �dd;

�8
8 ¼

ffiffiffi
1

3

s
ð �uuþ �dd� 2�ssÞ m0 ¼ 1ffiffiffi

6
p ðmu þmd þmsÞ;

m3 ¼ 1

2
ðmu �mdÞ; m8 ¼ 1

2
ffiffiffi
3

p ðmu þmd � 2msÞ:

(3.4)

The Hamiltonian, Eq. (3.3) violates SUð3Þ symmetry but
commutes with the generators Q3 and Q8.

15 Therefore, no

matter how light quark masses vary, we may label octet
baryons by the eigenvalues of the third component of
isospin, I3, and of the hypercharge, Y (which is the sum
of baryon number plus strangeness). Total isospin is ap-
proximately conserved when mu ¼ md (and electromag-
netic effects are ignored) and can be used to label baryon
states in our world. However, when light quark masses
differ arbitrarily, there is no conserved SUð2Þ subgroup
of SUð3Þ, and total isospin loses its utility. All of the
baryons at the periphery of the SUð3Þ weight diagram in
Fig. 7 have different I3 and Y and therefore do not mix with
one another for any quark masses. However, the two states
at the center of the octet weight diagram have the same I3
and Y, and can mix. In our world, the resulting eigen-
states—the �0 and the �—are approximate eigenstates
of total isospin. In other worlds they will not be close to
eigenstates of any SUð2Þ subgroup of SUð3Þ unless two
light quarks have approximately equal masses. In general
we label the mass eigenstates at the center of the weight
diagram Chigh and Clow.

It is a straightforward exercise in first-order perturbation
theory to compute the effect of the Hamiltonian, Eq. (3.3)
on the spectrum of octet baryons. For completeness, the
analysis is presented in Appendix A and its results are
summarized in Table I. The key point is that the Wigner
reduced matrix elements (WRME’s), conventionally
labeled F and D, can be extracted from octet baryon
mass differences in our world and provide the necessary
dynamical information for computing octet baryon mass
differences in any of the other worlds we study.

B. Fitting parameters to the baryon mass spectrum

In order to extract the values of the parameters F and D,
we fit the matrix elements of Hflavor to the measured octet
baryon masses after subtracting the electromagnetic mass

contributions. In our Universe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

8 þm2
3

q
¼ 1:0002m8 �

m8, so the quark masses m3 and m8 always appear in
combination with the WRME’s F and D. We choose

Fm8; Dm8;
m3

m8

; and A0 � hHQCDi þm0h�1
0i

(3.5)

as our fit parameters.
There are eight baryon masses to be fit in terms of our

four parameters. One linear combination of baryon masses
is the Gell-Mann–Okubo relation and is independent of our
parameters. A0 is simply the average octet baryon mass.
This leaves six mass differences to be fit by three parame-
ters, m8F, m8D, and m3=m8. To keep a strong connection
to chiral dynamics we take the ratio m3=m8 from the
analysis of pseudoscalar meson masses rather than from
our fit to baryon mass differences. According to the
Particle Data Group (PDG),

14Reference [17] does not list an electromagnetic contribution
to the � mass. We have computed it using their methods.
15The subscripts for the generators follow the usual convention
for the Gell-Mann matrices.
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mu

md
¼ 0:56� 0:15;

ms

md

¼ 20:1� 2:5; (3.6)

from which the PDG extracts m3=m8 ¼ 0:0197�
0:0071 MeV [15]. If we fit m3=m8, we obtain m3=m8 ¼
0:0181 MeV, which is quite close to the value quoted by
the PDG. Note that we have not attempted to do a careful
error analysis since the uncertainties in our theoretical
modeling assumptions exceed the uncertainties in the pa-
rameters that we have extracted from data in our world.
The values of the parameters of Eq. (3.5) that we use in our
analysis are given in Table II.

C. The matrix element of m0h�1
0i and the pion-nucleon

� term

Analysis of flavor SUð3Þ symmetry breaking cannot give
us information about either the average quark mass or the
matrix element of the SUð3Þ invariant operator �1

0.

However, SUð2Þ � SUð2Þ chiral symmetry violation can.
It is well-known that a measure of chiral symmetry viola-
tion in the baryon sector known as the pion-nucleon sigma

term, ��N , can be extracted (with considerable theoretical
input) from experiment, and can be related to the matrix
element of m0�

1
0. This is not the place for a critical review

of the (still somewhat controversial) analysis of the chiral
dynamics and pion-nucleon scattering that leads to a value
for ��N [42]. Instead we briefly quote the results of the
standard analysis of Gasser and Leutwyler in [17] and refer
the reader to their review for further details. The extraction
of the � term from low-energy �N scattering remains
controversial. For more recent evaluations, see [43,44].
The ��N term is defined as the matrix element of the

SUð2Þ � SUð2Þ violating scalar density,

��N ¼ mu þmd

2
hNj �uuþ �ddjNi

¼ hNjmu �uuþmd
�ddjNi

� 1

2
ðmu �mdÞhNj �uu� �ddjNi

� hNjmu �uuþmd
�ddjNi; (3.7)

where jNi is shorthand for the average of proton and
neutron matrix elements. In going from the second to the
third line, we have dropped a term that is second order in
SUð2Þ violation, and therefore is negligible in our world.
The combination mu �uuþmd

�dd can be written as a linear
combination of the operators m0�

1
0 and m8�

8
8. Since the

matrix elements of the latter are determined by baryon
mass differences, knowledge of the � term fixes the matrix
element of m0�

1
0.

TABLE I. Contributions to the octet baryon masses in our world. The flavor-independent contribution is A0 � hHQCDi þm0h�1
0i.

The quark mass parameters m0;3;8 are defined in Eq. (3.4).

Baryon

species

Flavor-dependent

contribution

Electromagnetic correction

(MeV)

Experimental

(MeV)

Fitted

(MeV)

Residual

(MeV)

p ð3F�Dffiffi
3

p Þm8 þ ðFþDÞm3 þ0:63 938.27 939.87 1.60

n ð3F�Dffiffi
3

p Þm8 � ðFþDÞm3 �0:13 939.57 942.02 2.45

�0 �ð3FþDffiffi
3

p Þm8 þ ðF�DÞm3 �0:07 1314.83 1316.81 1.98

�� �ð3FþDffiffi
3

p Þm8 � ðF�DÞm3 þ0:79 1321.31 1323.38 2.07

�þ ð2Dffiffi
3

p Þm8 þ 2Fm3 þ0:70 1189.37 1188.42 �0:96

�� ð2Dffiffi
3

p Þm8 � 2Fm3 þ0:87 1197.45 1197.21 �0:24

Chigh ð2Dffiffi
3

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

8 þm2
3

q
�0:21 1192.64 1191.82 �0:82

Clow �ð2Dffiffi
3

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

8 þm2
3

q
þ0:21 1115.68 1109.61 �6:07

1-1

1

-1

n p

Σ- Σ+

Ξ - Ξ 0

I

Y

3

Chigh

Clow

FIG. 7. The SUð3Þ weight diagram for the octet baryons show-
ing their conventional names and their assignment of hyper-
charge Y and the third component of isospin I3. The two central
states, denoted Chigh and Clow, mix at lowest order in SUð3Þ
perturbation theory.

TABLE II. SUð3Þ linear perturbation theory parameters.

Parameter Fitted value

A0 1150.8 MeV

Fm8 �109:4 MeV
Dm8 35.7 MeV

m3=m8 0.0197
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Rewriting ��N in terms of irreducible tensor operators,
we have,

��N ¼
ffiffiffi
2

p
m0 þm8

3
hNj ffiffiffi

2
p

�1
0 þ�8

8jNi: (3.8)

Using the known matrix elements of �8
8 we obtain

��N ¼
�
1þ ffiffiffi

2
p m0

m8

�

�
� ffiffiffi

2
p
3

m8

m0

hNjm0�
1
0jNi þ m8ffiffiffi

3
p

�
F�D

3

��
: (3.9)

Given a value for ��N , we can use the Fm8 and Dm8 fit
values andm0=m8 derived from the PDG quark mass ratios
to solve for the singlet flavor mass term hNjm0�

1
0jNi,

thereby providing the needed separation of the average
mass of the octet baryons, A0, into a QCD component
that does not scale with quark masses and this flavor singlet
component that scales with the sum of quark masses m0.

Gasser and Leutwyler conclude that the value of ��N to
be used in Eq. (3.9) is ��N ¼ 35� 5 MeV. Substituting
into Eq. (3.9) and keeping track of the experimental un-
certainties, we obtain

m�
0 h�1

0i ¼ 368� 101 MeV: (3.10)

Using the values of the matrix elements of the other
scalar densities, we can separate the contributions of the
average u and d quark masses and the s quark mass,

hNjm̂�ð �uuþ �ddÞjNi ¼ 35� 5 MeVhNjm�
s �ssjNi

¼ 124� 94 MeV; (3.11)

which were the values quoted in Eq. (2.13).
Having determined m0h�1

0i, albeit with large errors, we

can separate the QCD dynamical mass out of the flavor-
independent term in hHi,

hHQCDi � C0 ¼ A0 �m0h�1
0i ¼ 783� 101 MeV

(3.12)

as quoted in Eq. (2.13). Although the uncertainties in
hNjm0�

1
0jNi, and especially in hNjm�

s �ssjNi are large, the

fact that hHQCDi and hm0�
1
0i always appear in the combi-

nation A0 makes the analysis relatively insensitive to these
uncertainties.

It is well-known that higher-order corrections in ms are
important to the baryon mass spectrum in our world. Such
nonlinearities mostly affect the flavor-singlet contribution
to the baryon masses—as evidenced by the fact that the
Gell-Mann–Okubo formula is accurate to within 1%—and
are therefore primarily relevant to the issue of extracting of
the ��N term [42,45]. Since we have set up the problem for
this investigation in such a way that we are largely insen-
sitive to the uncertainty in the value of ��N, nonlinearities
in ms will not affect our results significantly. Notice also

that the central values for the quantities in Eqs. (3.11) and
(3.12) agree with those given by Borosoy and Meissner
[43], who take nonlinearities in ms into account.

D. Coordinates in the space of light quark masses

Let us introduce dimensionless coordinates xT , x3, and
x8 to describe the space of quark masses as pictured
in Fig. 4. To sidestep the problem that quark masses are
not very accurately measured (and that they are
renormalization-scale dependent), we will always work
with quark masses and quark mass combinations as ratios
to m�

T (the sum of the values of the light quark masses in
our Universe). With respect to the m0, m3, and m8 defined
in Eq. (3.4):

xT � mT � 100

m�
T

¼ ffiffiffi
6

p
m0 � 100

m�
T

¼ 100ðmu þmd þmsÞ
m�

T

;

x3 � 2m3ffiffiffi
3

p � 100

m�
T

¼ 100ðmu �mdÞffiffiffi
3

p
m�

T

;

x8 � 2m8ffiffiffi
3

p � 100

m�
T

¼ 100ðmu þmd � 2msÞ
3m�

T

:

(3.13)

For a given xT (i.e., for a fixed sum of the light quark
masses) the resulting two-dimensional space of quark
masses may be pictured as the interior of an equilateral
triangle with altitude xT . Choices of quark masses may be
described by the orthogonal coordinates x3;8 as shown in

Fig. 8, with ranges

� 2xT
3

� x8 � xT
3
;

� 2xT=3þ x8ffiffiffi
3

p � x3 � 2xT=3þ x8ffiffiffi
3

p :

(3.14)

For our world, x�T � 100, x�3 ¼ �1:17� 0:43, and x�8 ¼
�59:5� 1:1.

x3

x8

-100/ 3

 100/3

100/ 3

0

us  -200/3

FIG. 8. A slice through the quark mass prism at fixed xT ¼
x�T � 100. The axes x3 and x8, as well as xT , are defined in
Eq. (3.13). Our Universe corresponds to the point marked ‘‘us’’
near the lower right-hand corner.
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In order to express the baryon masses as functions of the
scaled variables, xT , x3, and x8, we must separate the flavor
SUð3Þ invariant contribution to the baryon masses, �MðxTÞ,
into the piece independent of quark masses, C0, and the
term proportional to hm0�

1
0i, as defined in Eq. (3.12):

�MðxTÞ ¼ A0 ¼ C0 þ xT
100

hNjm�
0 �

1
0jNi � C0 þ cTxT:

(3.15)

We can now express the mass of an octet baryon B as the
sum of five terms:

MB ¼ C0 þ cTxT þ c8x8 þ c3x3 þ hBjHEMjBi: (3.16)

The coefficients cT , c3, and c8 and hHEMi are given in
Table III. Although both C0 and cTxT have large uncer-
tainties, the fact that C0 (via its dependence on �QCD) is

adjusted throughout the parameter space to keep the aver-
age mass of the lightest flavor multiplet fixed removes the
uncertainty from the parametrization of hadron masses.
Therefore the errors for C0 and hm0�

1
0i are not quoted in

the table.

E. Baryon and meson spectra for a fixed sum of quark
masses

As we discussed in Sec. II D, a triangular slice through
the mu;d;s mass prism corresponding to a fixed value of xT
will have a central region of type (i), where flavor SUð3Þ is
a good symmetry and all of the octet baryons can appear in
nuclei. If xT is large enough, then along the perimeter of
the triangle (i.e., where the quark mass differences are
greatest) there will be regions of type (ii) and (iii), where

only the lightest pair of baryons can participate in nuclear
physics.
To understand the rescaling that defines our slice

through the SM and some of the physical phenomena we
have identified, it is useful to examine the way that baryon
masses vary over a triangular slice. First we track the
baryon spectrum as we move along the perimeter of the
triangle corresponding to xT ¼ x�T ¼ 100. Figure 9 shows
how we define the coordinate P to indicate where along the
perimeter we are. Figures 10 and 11 show the octet baryon
masses computed from Eq. (3.16) (without the electromag-
netic corrections), as functions of P.
The baryon masses in Fig. 10 are computed with a fixed

value of�QCD ¼ ��
QCD. However, as explained in Sec. I C,

we adjust �QCD to keep the average mass of the lightest

pair of baryons fixed at 940 MeV everywhere along our
slice through the parameter space of the SM. Figure 11
shows the mass distribution after the rescaling of �QCD.

Candidates for congenial worlds occur when the two light-
est baryons have nearly equal mass. As the figure shows,
this occurs in two characteristic circumstances, first at P ¼
0, 1=3, and 2=3 [type (iii) regions in Fig. 5], and second at
P ¼ 1=6, 1=2, and 5=6 [type (ii) regions in Fig. 5]. We will
discuss these areas in detail in Sec. V.

TABLE III. Values of the parameters in the baryon mass
equation MB ¼ C0 þ cTxT þ c8x8 þ c3x3 þ hBjHEMjBi, for
the quark mass coordinates xT , x3, and x8 as defined in
Eq. (3.13). As xT;3;8 vary, the QCD contribution, C0, is adjusted

to keep the mass of the lightest baryon flavor multiplet fixed at
940 MeV. Note that C�

0 ¼ 783� 101 MeV.

Baryon

cT
(MeV)

c8
(MeV)

c3
(MeV)

hHEMi
(MeV)

p 3.68 3.53 1.24 0.63

n 3.68 3.53 �1:24 �0:13
�0 3.68 �2:84 2.44 �0:07
�� 3.68 �2:84 �2:44 0.79

�þ 3.68 �0:69 3.68 0.70

�� 3.68 �0:69 �3:68 0.87

Chigh 3.68 0:69
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x28 þ x23

q
�0:21

Clow 3.68 �0:69
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x28 þ x23

q
0.21

P=0; P=1

P=1/3

P=2/3
P

FIG. 9 (color online). The definition of the perimeter coordi-
nate used in Figs. 10 through 13 is shown graphically. Regardless
of the value of xT , the coordinate P is defined to run from zero to
unity around the triangle.

FIG. 10 (color online). Baryon masses (without electromag-
netic corrections) at points along the perimeter of the quark mass
triangle with xT ¼ x�T � 100 (i.e., for the sum of the three light
quark masses equal to what it is in our world) and with fixed
�QCD ¼ ��

QCD. See Fig. 9 for a definition of the P axis.
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The formulas for the baryon masses are linear in x3 and

x8 (or in the radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x28 þ x23

q
), so considering a smaller

triangle would yield similar but rescaled plots, with the
curves in Figs. 10 and 11 squeezed together. This is true of
both the perimeter of a triangle that corresponds to a
smaller value of xT , as well as of a triangular trajectory
interior to the original triangle. Two such triangles with the
same baryon spectrum are shown in red in Fig. 12.

The adjustment of�QCD to keep the average mass of the

two lightest baryons fixed at 940 MeV eliminates the
dependence of the baryon spectrum on xT , but even though
the two triangles in red in Fig. 12 give the same baryon
masses as one goes around their perimeter, their physics is
not equivalent because the meson spectrum is not the same

in the two cases. To see this, consider the masses of the
light [flavor SUð3Þ octet] pseudoscalar mesons. From chi-
ral perturbation theory:

m2
� ¼ B0ðmu þmdÞ; m2

K� ¼ B0ðmu þmsÞ;
m2

K0 ¼ B0ðmd þmsÞ;
(3.17)

where B0 is proportional to �QCD. These vary as functions

of xT;3;8 because of the change in the quark masses and also

because of the change in�QCD required to keep the lightest

pair of octet baryons at an average mass of 940 MeV.
Notice, though, that the two central states of the meson
octet, �0 and 
, mix. We label the corresponding mass
eigenstates as �high and �low, with masses

m2
�high=low

¼ 2B0

3
ðmT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

u þm2
d þm2

s �mumd �mums �mdms

q
Þ: (3.18)

Figure 13(a) shows the spectra of baryons and mesons,
as a function of 0 � P � 1=6, for the perimeter of the
xT ¼ 100 triangle. The other sectors in P are obtained by
symmetries. For clarity only the three lightest baryons are
plotted. Figures 13(a) and 13(b) show, respectively, these
spectra for the perimeter of the xT ¼ 40 triangle, and for a
trajectory inside the xT ¼ 100 triangle that corresponds to
the projection of the xT ¼ 40 triangle. The baryon spectra
are identical in these last two cases (because of the way we
have defined our slice through the parameter space of the
SM), but the meson spectra are somewhat different. As
previously mentioned nuclear binding may depend more
strongly on the mass of the f0ð600Þ, which is likely to be
less affected by changing quark masses (especially when
�QCD is readjusted as we have described), than on the
masses of pseudoscalar bosons. So we are optimistic that
our analysis can be applied over a relatively wide range in
xT as long as low-energy nuclear physics does not change

qualitatively, as it does when more than two baryons
appear in stable nuclei.
In Fig. 13, a vertical line identifies the value of P for

which the mass of the pion is the same as in our world. This
corresponds to the position where them� ¼ 140 MeV line
shown in Fig. 6(a) cuts the perimeter of the corresponding
triangle. Around that value of P, the nuclear interaction
between the two lightest baryons (the proton and the
neutron) would be very similar to what it is in our world.
For P ¼ 1=6 the meson spectrum is qualitatively quite
different. The lightest meson is a mixture of an isosinglet
(
) and the I3 ¼ 0 component of an isovector (�0).
Furthermore, the neutral kaons and the charged pions
have become degenerate in mass and are only slightly
heavier than the lightest meson. It would be very difficult
to describe precisely the features of the nuclear interaction
between the lightest baryons (the neutron and the ��) in
such a world.

FIG. 12 (color online). The perimeter of a triangle of small
constant xT is shown projected onto a central region within a
triangle corresponding to a larger value of xT . The two triangular
trajectories, drawn in red, give the same spectrum of octet
baryon masses, but different meson spectra.

FIG. 11 (color online). The same baryon masses plotted in
Fig. 10 are shown again, but now adjusted by an appropriate
rescaling of �QCD so that the average mass of the lightest pair of

baryons is held fixed at 940 MeV. For the baryon masses shown
in this plot, �QCD varies between 1:03��

QCD and 0:85��
QCD.
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IV. MODELING NUCLEAR INTERACTIONS IN
OTHER WORLDS

In order to explore the congeniality of worlds with
different quark masses we need to at best compute or at
least estimate the binding energy of nuclei in those alter-
native worlds. In worlds where nuclear forces are the same
as ours but the masses and charges of participating nucle-
ons are different, we can compute nuclear binding energies
of low atomic mass nuclei accurately by comparing with
analog nuclei in our world [19]. This method enables us to
judge the congeniality of all the worlds where two light
quarks participate in building nuclei. To study higher
atomic mass nuclei in these worlds and to estimate the
properties of nuclei in worlds with more than two partic-
ipating baryons, we turn to a generalization of the
Weizsäcker semiempirical mass formula (SEMF). As
noted in Sec. 2, we have only succeeded in making quali-
tative statements about worlds with three very light quarks.
Nevertheless the generalization of the SEMF to these

worlds is interesting in itself and appears to be new, so
we include it here.

A. Analog nuclei

As explained in Sec. II, we can explore a wide class of
interesting worlds while keeping the dynamics that deter-
mine nuclear interactions approximately fixed. Nuclei in
these worlds differ from ours in two important ways: first,
the charges of the two participating baryons may differ
from ours. If the s and d quarks are lightest then the�� and
�� replace the proton and neutron. If the c and u are
lightest, then the �þþ

c (uuc) and the �þþ
cc (ccu) are the

constituents of nuclei. Second, the masses may differ.
However, the average mass of the nuclear constituents
has been kept at 940 MeV and the mass difference ranges
only over �20–30 MeV. Altering the charges affects only
the nuclear Coulomb energy, a change that is easily
made in the framework of the semiclassical estimate of

the Coulomb energy, Ec ¼ ð0:7 MeVÞZðZ� 1Þ=A1=3.

(a)

(b) (c)

FIG. 13 (color online). The masses of the three lightest octet baryons and of the light pseudoscalar mesons are shown as functions of
the perimeter coordinate P, for 0 � P � 1=6. The vertical line identifies the point where the pion mass is the same as in our world. The
spectra are shown for: (a) the perimeter of the xT ¼ 100 triangle, (b) the perimeter of the xT ¼ 40 triangle, and (c) a trajectory within
the xT ¼ 100 triangle that corresponds to the projection of the perimeter of the xT ¼ 40 triangle.
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Altering the masses does not affect the nuclear binding
energy. It does, however, affect nuclear decay patterns
since it determines the thresholds for � decays and for
weak nucleon emission.

It remains only to determine the appropriate analog
nucleus for the case of interest and make the necessary
mass and charge adjustments. As a simple (but important)
example, consider the stability of ‘‘oxygen’’ in a world
where the s and d quarks are lightest. In that world the
nucleus with the chemistry of oxygen has the baryon
content ð��Þ4ð��Þ4. It is helpful to introduce a new nota-
tion to describe the nuclear and chemical properties of
atoms in worlds where the constituents of nuclei have
different charges than in our world. If we limit ourselves
to worlds with two participating baryons, then an atom can
be labeled by the number of nucleons of each type, N1 and
N2, the baryon number, A ¼ N1 þ N2, and the electric
charge, Z, which we denote by the chemical element
symbol independent of whether the charge is positive or
negative (e.g. Z ¼ �4 ) Be). For convenience, we will
represent the form of element El with N1 baryons of type 1
and N2 baryons of type 2 by the symbol A

N1
ElN2

. Thus

chemical oxygen in a d-sworld would be 8
4O4. This oxygen

has the nuclear binding of 8
4Be4 in our world, plus some

additional Coulomb energy. Since 8
4Be4 is unbound in our

world, and the additional Coulomb energy in a d-s world
only unbinds it further relative to its decay products (42Be2,
the (��, ��) analog of the tightly bound � particle), we
conclude that chemical oxygen is not stable in s-d worlds,
regardless of the s-d mass difference.

In worlds that differ from ours only in the values of the
u-d quark mass difference, the analog method works some-
what differently. The binding energies of nuclei are the
same as in our world, however the systematics of weak
decays change. It is straightforward to determine the limits
of nuclear stability. The deuteron provides a simple ex-
ample. It is bound by Bð21H1Þ ¼ 2:22 MeV in our world.
Changing the mass of the proton and neutron does not
alter this. However when Mp �Mn > Bð21H1Þ �me ¼
1:71 MeV, the deuteron can decay to two neutrons by
electron capture (2He� ! nn�e). Alternatively, when
Mn �Mp > Bð21H1Þ þme ¼ 2:73 MeV, the deuteron

�-decays to two protons (2H ! ppe� ��e). These are the
simplest examples of weak nucleon emission, which fig-
ures importantly in determining the limits of congenial
worlds.

B. Generalizing the Weizsäcker semiempirical mass
formula

Weizsäcker’s semiempirical mass formula (SEMF) pro-
vides an excellent effective Hamiltonian for the nuclear
ground state, when the number of each participating
baryon species is conserved. It is usually written as a
formula for the nuclear binding energy, but with a change
in sign and addition of the nucleon rest masses, it describes

the total energy, which is better suited to our purposes. In
our world,

HðfNigÞ ¼
X
i

NiMi � �vAþ �s A2=3 þ �c
ZðZ� 1Þ
A1=3

þ �a
I23
A
þ 


��

A1=2
; (4.1)

where A ¼ P
Ni ¼ Zþ N, I3 ¼ ðZ� NÞ=2, and as be-

fore, the superscript � denotes parameter values in our
world. The volume, surface, Coulomb, and asymmetry
terms are self-explanatory. The last term is the pairing
energy. 
 is þ for odd-odd, � for even-even, and 0 for
odd-even and even-odd nuclei. We take the values of the
coefficients, �j , from [46]. They are listed in Table IV.

To consider different nuclear constituents, we must gen-
eralize the SEMF in two ways. First we must allow for
different symmetry groups. As we shall see the SEMF
assumes isospin symmetry, and if we are to consider worlds
with three light quarks we must generalize to SUð3Þ flavor
symmetry. Second, although isospin or SUð3Þ may be an
excellent symmetry of the strong interactions if quark
masses are small enough, the symmetry may be dramati-
cally broken by kinematic effects when a baryon becomes
so massive as to drop out of nuclear dynamics. This effect
requires some explanation. Consider a sequence of uni-
verses where the u and d quark masses are fixed at the
values in our world, and the s quark mass is slowly in-
creased from a few MeV. For the smallest s quark mass, all
eight octet baryons would be expected to participate in
nuclear physics and SUð3Þ flavor symmetry rules. When
the s quark mass increases to the point that the lightest
strange baryon mass exceeds the proton and neutron Fermi
energy in the nucleus, strange baryons disappear from
nuclear dynamics. This occurs when the hyperon masses
are only a few tens of MeV heavier than the nucleon mass,
in a regime where the SUð3Þ symmetry of the strong
interactions is still quite a good symmetry. We believe
that this essentially kinematic, but massive, violation of

TABLE IV. Parameters in the SEMF, as quoted in [46]. The
first five are the standard parameters as defined in Eq. (4.1). The
last three are the parameters that enter the Fermi gas modified
SEMF developed in Sec. IVB 2. Note that the superscript � is a
reminder that these parameters are fit to nuclear masses in our
world.

Parameter Value (MeV)

�v 15.56

�s 17.23

�c 0.7

�a 93.12

�� 12

�0 32.0

��v � �v þ �
0

22=5
39.8

��a � �a � 28=5�
0

3 60.8
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flavor symmetry can be incorporated into the SEMF by
modeling part of the volume and asymmetry energies by a
degenerate Fermi gas.

1. Restoring flavor symmetry to the SEMF

Imagine that the proton and neutron masses were exactly
the same, so the strong interactions were exactly SUð2Þ
invariant. Two terms in our world’s SEMF, the Coulomb
and asymmetry terms, appear to violate SUð2Þ flavor sym-
metry. The Coulomb term violates SUð2Þ because it origi-
nates in electromagnetic interactions which, of course, are
not SUð2Þ invariant. However, what are we to make of the
appearance of the explicitly SUð2Þ symmetry violating
operator / I23 in the asymmetry term of Eq. (4.1)? The

asymmetry energy is a strong interaction effect and must
depend only on SUð2Þ flavor invariant operators.

The solution to this puzzle is that I23 should be replaced

by the quadratic Casimir operator of SUð2Þ, IðI þ 1Þ, and
that electromagnetic violations of SUð2Þ allow I to adjust
to its minimum value, which is I ¼ I3. In the exact SUð2Þ
limit and without electromagnetism, nuclei with a given A
would form degenerate multiplets labeled by the total
isospin I. The lightest multiplet would have the lowest
value of I. Since I � I3 and I3 is conserved in the absence
of the weak interactions, this occurs when I ¼ I3.

Thus, electromagnetism allows the states with I > I3 to
decay quickly to the ground state, so for all intents and
purposes the SUð2Þ-symmetric asymmetry term, IðI þ
1ÞjI¼Imin

can be replaced by I3ðI3 þ 1Þ. Switching between

this and the usual form, I23 , produces a negligible shift in

the computed values of the binding energy BðAÞ and the
charge ZðAÞ of the lightest nucleus with given A. That is,
the two forms of the SEMF have nearly the same valley of
stability. Therefore, a more illuminating way to write the
SEMF, close to the SUð2Þ flavor symmetry limit, is

Hð2ÞðN1; N2Þ ¼ N1M1 þ N2M2 � �vAþ �s A2=3

þ �c
ZðZ� 1Þ
A1=3

þ �a
IðI þ 1Þ

A

��������I¼I3

þ 

��

A1=2
; (4.2)

where the superscript on Hð2Þ reminds us that this effective
Hamiltonian applies near the SUð2Þ limit (regardless of
which two quark species are light).

The same analysis must be performed near the SUð3Þ
symmetry limit. The parameters in the SEMF are no longer
the same as in our world (so we replace �i and �� by
unknown i and �), the variable 
 must be redefined to
count the number of unpaired baryons, and the operator
that appears in the asymmetry term must be the quadratic
Casimir operator of SUð3Þ, which we denote by G2. The
value of G2 depends on the representation of SUð3Þ to
which the nucleus belongs. SUð3Þ representations can be
labeled by two parameters, � ¼ n1 � n2 and� ¼ n2 � n3,

where n1, n2, n3 are the number of boxes in the rows of the
Young tableau that defines the representation. The expres-
sion for G2ð�;�Þ is

G2ð�;�Þ ¼ 1

3
ð�2 þ ��þ�2Þ þ �þ� (4.3)

and the SUð3Þ-SEMF can be written as

Hð3ÞðfNjgÞ ¼
X8
j¼1

NjMj � vAþ sA
2=3 þ c

ZðZ� 1Þ
A1=3

þ a
G2ð�;�Þ

A

���������min
�min

þ

�

A1=2
: (4.4)

In the SUð3Þ case, the electromagnetic and strong inter-
actions will quickly adjust the flavor content of the nucleus
to minimize the asymmetry energy. In contrast to the SUð2Þ
case, strong interactions play an essential role here. In the
two-flavor case the two conserved quantities, A and I3,
uniquely fix the number of both types of baryons, which
therefore remain fixed as I adjusts to its minimum. With
three flavors there are as many as eight participating bary-
ons, but only three conserved quantities, A, I3, and the
hypercharge, Y. So the strong and electromagnetic inter-
actions together will adjust the abundance of the eight
species to minimize the ground state energy with fixed A,
I3, and Y.16

We need, therefore, to compute the minimum value of
G2ð�;�Þ at fixed values of I3 and Y. Fixing I3 and Y fixes a
point in the SUð3Þweight diagram (labeled as usual with I3
along the horizontal and Y along the vertical axis). A
representation is specified by a hexagon (or when � or �
vanishes, a triangle). The values of � and � give the
lengths in I3 of the topmost and bottommost horizontal
lines in the diagram. It is easy to see that the value of G2 at
fixed I3 and Y is minimized when the point ðI3; YÞ appears
on the boundary and at a corner of the polygon. The
G2ð�min; �minÞ resulting from this procedure can be explic-
itly computed:

G2ð�;�Þj�min
�min

¼ I23 þ
3

4
Y2 þ 1

2
ðjNu � Ndj þ jNd � Nsj

þ jNs � NujÞ: (4.5)

Here Nu;d;s are the coordinates of the point in question

along axes that count the number of u, d, and s quarks.
These terms can be written as piecewise continuous func-
tions of I3 and Y. Whether or not they can be ignored
depends on how close the system is to the symmetry point
I3 ¼ Y ¼ 0. In Sec. 20, where we use this formula, we
keep these terms. Although they make a significant quan-

16The reader will notice that the appearance of the baryon
numbers fNig in Eq. (4.4) is problematic since they are dynami-
cally determined (though constrained by the values of A, I3, and
Y). Below we shall explain how they are fixed in a Fermi gas
model.
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titative difference, they do not affect the physical conclu-
sions in that section. Equation (4.4) and (4.5) together
provide the SUð3Þ flavor generalization of the SEMF that
we seek.

2. Kinematic flavor symmetry violation in a Fermi gas
model

All of the qualitative features of the SEMF except for
the pairing energy can be accounted for by treating the
nucleus as a noninteracting Fermi gas of baryons under
constant pressure. Furthermore the Fermi gas model in-
cludes, in a physically intuitive way, the symmetry break-
ing effects that are essential for our analysis of worlds with
different quark masses. In particular, if the mass of a given
baryon species exceeds the Fermi energy, then the species
disappears from the nucleus. This wholesale flavor sym-
metry violation must be taken into account even when the
dynamical breaking of flavor symmetries is small.

The noninteracting, degenerate Fermi gas under con-
stant pressure gives a one parameter model for nuclear
energies. If the pressure is chosen to reproduce the mea-
sured Fermi energy in heavy nuclei, then the surface,
Coulomb, and asymmetry energies are predicted. The sur-
face energy arises from the depletion of the density of
states near the surface of the nucleus. The Coulomb energy
is that of a uniformly charged sphere whose volume is fixed
by the pressure and the atomic mass. The asymmetry
energy arises because the kinetic energy is at a minimum
when the proton and neutron Fermi momenta are equal and
grows when they differ. However, the degenerate Fermi gas
model accounts for only a fraction of the actual effects as
parametrized in the SEMF. This is not surprising: some of
the nuclear surface energy comes from the different inter-
actions of nucleons on the surface relative to the interior of
the nucleus, and some of the asymmetry energy comes
from the dependence of the nuclear forces on isospin [the
simplest example being the difference in the I ¼ 0 (deu-
teron) and I ¼ 1 channels of proton-neutron scattering].

In order to model flavor symmetry violation in worlds
where two baryons participate in nuclear physics we con-
struct a degenerate Fermi gas model with the following
ingredients. (We address the three-flavor case later.)

(i) We seek an effective Hamiltonian as a function of the
masses and numbers of each of the baryon species.
When we wish, we can find the most stable species at
each A by minimizing over Ni at fixed A.

(ii) The kinetic energies of the baryons are given by a
degenerate Fermi gas under constant pressure, with
the pressure chosen to reproduce the Fermi momen-
tum in heavy nuclei in our world.

(iii) We take the surface and Coulomb energies directly
from the SEMF, ignoring possible flavor symmetry
violating effects in these terms because they are
higher order.

(iv) We compute the Fermi gas contribution to the
asymmetry energy and subtract it from the phe-

nomenological asymmetry energy term in the
SEMF. The remainder we ascribe to interactions,
which we assume to be flavor independent because
we work in worlds where SUð2Þ symmetry viola-
tion is small.

(v) The important, dramatic flavor symmetry violation
is thus contained in the Fermi gas kinetic energy.

Let Ni be the number of baryons of the ith species in the
nucleus and ki be its Fermi momentum. Ni and ki are
related by

ki ¼
�
3�2Ni

V

�
1=3

; (4.6)

where the volume V is yet to be determined. The total
internal energy, including the baryons’ rest mass contribu-
tion, is

UðfNigÞ ¼
X
i

UiðNi; VÞ ¼
X
i

�
k5i

10M�2
V þMiNi

�
: (4.7)

The ith chemical potential is

�i � @U

@Ni

��������V
¼ Mi þ k2i

2M
(4.8)

and the pressure is

P � � @U

@V

��������Ni

¼ X
i

k5i
15M�2

: (4.9)

Note that we consistently keep baryon mass differences in
the rest energy, where they drive large symmetry violating
effects, but ignore them in the kinetic energy, since they
enter as �Mi=M

2 � 10�2=M, which is negligible. We use
M to stand for the average mass of the (two) participating
baryons.
It is convenient to use the grand canonical ensemble to

describe a gas under constant pressure. The grand potential
is defined as a function of f�ig and V,

�ðf�ig; VÞ ¼
X
i

�ið�i; VÞ ¼
X
i

UiðNi; VÞ ��iNi;

(4.10)

and its intensive counterpart is

!ið�iÞ � �ið�i; VÞ
V

¼ � 1

15M�2
½2Mð�i �MiÞ5=2:

(4.11)

The quantity � is constructed so that

@�

@�i

��������V
¼ �Ni: (4.12)

The total energy is the internal energy of the Fermi gas
together with the work it does against the confining pres-
sure P0:
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EðfNig; VÞ ¼ UðfNig; VÞ þ P0V

¼ X
i

ð!ið�iÞV þ�iNiÞ þ P0V: (4.13)

Dynamical equilibrium is achieved by minimizing E with
respect to V at fixed Ni,

@E

@V

��������Ni

¼ X
i

�
!ið�iÞ þ V

d!i

d�i

@�i

@V

��������Ni

þ @�i

@V

��������Ni

Ni

�

þ P0 ¼ 0: (4.14)

But from Eq. (4.12),

V
d!i

d�i

¼ �Ni; (4.15)

so X
i

!ið�iÞ þ P0 ¼ 0; (4.16)

and, substituting back into Eq. (4.13)

EðfNigÞ ¼
X
i

�iNi: (4.17)

Equations (4.16) and (4.17) are the fundamental dynami-
cal principles for the system. Using them it is possible to
solve for all of the dynamical properties of the system
(energy, volume, compressibility, etc.) in terms of P0 and
the baryon numbers, fNig. Of course, we are interested in
the total energy, which is

EðfNigÞ ¼
X
i

NiMi þ 0

�X
i

N5=3
i

�
3=5

; (4.18)

with

0 ¼ 1

2M3=5
ð15�2P0Þ2=5: (4.19)

We fix the value of P0 based on the Fermi momentum of
nucleons in heavy nuclei in our Universe. Quasielastic
electron scattering on heavy nuclei yields values of k�P ¼
k�N ¼ 245 MeV [47], which yield a pressure P�

0 ¼
0:827 MeV=fm3 and �0 ¼ 32:0 MeV.

3. Modified SEMF in the two-flavor case

In this section we consider the two-flavor case with two
participating baryons with A ¼ N1 þ N2 and I3 ¼ ðN1 �
N2Þ=2. Equation (4.18) contains the kinetic contribution to
the asymmetry energy which we seek. In the usual SEMF,
however, this contribution is inseparable from the dynamic
contribution which has been fit to the form aI

2
3=A for

small asymmetries. To determine the dynamical contribu-
tion, we must expand EðN1; N2Þ around N1 ¼ N2, identify
the term with the form of the asymmetry energy, and
subtract it from the phenomenological fit, leaving the
dynamical term in the asymmetry. Expanding E as a power
series in I3, we obtain

EðN1; N2Þ ¼ N1M1 þ N2M2 þ 1

22=5
0Aþ 28=5

3
0

I23
A

þOðI43=A3Þ: (4.20)

When we explicitly include the Fermi gas kinetic energy
we must compensate by removing the term proportional to
A in Eq. (4.20) from the volume energy and the term
proportional to I23=A � I3ðI3 þ 1Þ=A from the asymmetry

energy. Putting this together we obtain a SEMF

Hð2ÞðN1; N2Þ ¼ N1M1 þ N2M2 þ 0ðN5=3
1 þ N5=3

2 Þ3=5

�
�
v þ 0

22=5

�
Aþ sA

2=3 þ
�
a � 28=50

3

�

� I3ðI3 þ 1Þ
A

þ c
ZðZ� 1Þ
A1=3

þ 

�

A1=2
;

(4.21)

which incorporates the flavor symmetry violating effects
that come from the Fermi gas kinetic energy. As long as the
low-energy nuclear interactions are similar enough to those
in our world, the i’s in Eq. (4.21) can be replaced with
�i ’s and � can be replaced with ��.
It is convenient to define modified coefficients of the

volume and asymmetry terms,

� �
v ¼ �v þ �0

22=5
; ��a � �a � 28=5�0

3
: (4.22)

These parameters—along with �0—are listed in Table IV.

In the context of the Fermi gas model, the barred pa-
rameters represent the dynamical contributions to the vol-
ume and asymmetry energy in contrast to the kinematic
contributions that are contained in the term proportional to
�0 . In terms of these parameters the modified SEMF

becomes

Hð2ÞðN1; N2Þ ¼ N1M1 þ N2M2 þ �0 ðN5=3
1 þ N5=3

2 Þ3=5

� ��vAþ �s A2=3 þ ��a
I3ðI3 þ 1Þ

A

þ �c
ZðZ� 1Þ
A1=3

þ 

��

A1=2
: (4.23)

4. Modified SEMF in the three-flavor case

The analysis of the previous section can be generalized
to the three-flavor case by replacing the operator in the
asymmetry term by the operator we derived in Sec. IVB1,

Hð3ÞðfNigÞ ¼
X8
i¼1

NiMi þ 0

�X8
i¼1

N5=3
i

�
3=5 � �vAþ sA

2=3

þ �a
I23 þ 3

4Y
2

A
þ c

ZðZ� 1Þ
A1=3

þ 

�

A1=2
;

(4.24)

where, for simplicity we have dropped the small correc-

ROBERT L. JAFFE, ALEJANDRO JENKINS, AND ITAMAR KIMCHI PHYSICAL REVIEW D 79, 065014 (2009)

065014-22



tions to the quadratic Casimir operator that are linear in the
quark number differences. These terms can be included
with little increase in complexity. Note, also, that we have
removed the superscript � on the parameters as a reminder
that we do not know the values of the SEMF parameters in
the SUð3Þ limit because the physics of nuclear binding is
qualitatively different than in the two-flavor case. For the
same reason, there is no point in trying to separate �a into
the dynamical and Fermi gas kinetic pieces since neither is
separately known.

Equation (4.24) neglects an important piece of the dy-
namics that appears when we try to generalize the SEMF
from two to three flavors. In the two-flavor case the two
quantum numbers conserved by the strong and electromag-
netic interactions, A and I3, are sufficient to fix the numbers
of both nuclear species. In the three-flavor case, fixing A,
I3, and Y does not fix the number of all eight baryon
species. Strong interaction processes like

�0 þ� $ pþ�� (4.25)

will establish ‘‘chemical’’ equilibrium among the various
baryon species in order to minimize the energy of the

system. This is equivalent to minimizing Hð3ÞðfNigÞ with
respect to the Ni at fixed A, I3, and Y. In general this
minimum cannot be found analytically even in the simple
Fermi gas model. However in Sec. V we will argue that the
case when the baryon mass differences are small compared
to the scales of nuclear physics (0, v, etc.) is of particular
interest. In this case the minimization problem can be
solved analytically to first order in the mass differences,
giving an effective Hamiltonian [still ignoring the linear
terms in the SUð3Þ Casimir operator],

Hð3ÞðA; I3; YÞ ¼ Hð3ÞðfNigÞjNi¼N0
i ðA;I3;YÞ

¼ �MAþ 0

82=5
Aþ 40

9
ffiffiffi
25

p I23 þ 3
4Y

2

A

þ 1

3
I3�MI þ 1

4
Y�MY � �vAþ sA

2=3

þ �a
I23 þ 3

4Y
2

A
þ c

ZðZ� 1Þ
A1=3

þ 

�

A1=2
:

(4.26)

Here �M is the average (over the octet) baryon mass, and
�MI and �MY are the isospin and hypercharge weighted
baryon mass differences,

�MI ¼
X8
i¼1

MiI3i and �MY ¼ X8
i¼1

MiYi: (4.27)

As expected, if the baryon mass differences vanish, the

minimum in Hð3ÞðA; I3; YÞ is at I3 ¼ Y ¼ 0 and the expan-
sion of the Fermi gas kinetic energy to second order in I3
and Y yields terms of the same form as the volume and
asymmetry terms. Collecting terms with the same func-
tional dependence, effectively reversing the logic after

Eq. (4.21), we can write the SEMF expanded to leading
order in baryon mass differences about the SUð3Þ limit,

Hð3ÞðA; I3; YÞ ¼ �MAþ 1

3
I3�MI þ 1

4
Y�MY � vA

þ sA
2=3 þ a

I23 þ 3
4Y

2

A
þ c

ZðZ� 1Þ
A1=3

þ 

�

A1=2
; (4.28)

where v and a are defined in terms of �v, �a, and 0 by
relations of the form of Eq. (4.22). Equation (4.28) will
allow us to explore the charge versus mass relationship of
nuclei in worlds with very small quark mass differences.

5. Nuclear stability

For completeness we review the conditions for the vari-
ous decay mechanisms that figure into our studies of con-
geniality. In our world weak interactions—various forms
of � decay—act to minimize the energy at fixed baryon
number and strong interactions, notably � emission, lead
to baryon number changing decays. In the worlds we
consider, these processes are augmented by weak baryon
emission.
The criteria for fixed baryon number weak decays are

elementary. For �� decay,Mi >Mf þme and for electron

capture, Mi þme >Mf, where i is the initial state and f

the final one. If nuclei are made of baryons of equal charge,
e.g. the (��, ��) world mentioned in Sec. IVA, weak
decays are somewhat suppressed because they would cor-
respond to strangeness-changing neutral currents. This
suppression will be discussed further in Sec. VB when it
arises.
The criterion for strong particle emission (e.g. � decay)

is that the final state be more bound than the initial state.
We need only consider the most stable nucleus, denoted
[A], for a given value of A since we are only interested in
absolute stability. Let bmaxðAÞ be the binding energy per
baryon of this nucleus, and let ½a denote the nuclear
fragment (e.g. the � particle) that it might emit and bðaÞ
its binding energy per baryon. When the baryon number is
large enough that the binding energy can be regarded as a
smooth function of A, the decay ½A ! ½A� a þ ½a is
energetically allowed if

bmaxðAÞ þ A
dbmaxðAÞ

dA
< bðaÞ: (4.29)

The other decay process important for determining
boundaries of stability is weak nucleon emission, which
does not occur naturally in our world, but becomes impor-
tant at large baryon mass differences. In weak nucleon
emission, a heavier baryon weakly decays into a lighter
baryon while it is emitted (with an accompanying lepton
pair as appropriate). The nucleus gains the energy from the
mass difference between the baryons. Exactly such a pro-
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cess is responsible for the semileptonic decays of hyper-
nuclei in our Universe.

Next, we compute the threshold for weak nucleon emis-
sion. For concreteness we imagine that the relevant bary-
ons are the proton and neutron. There are two possibilities:
first, ifMp >Mn then the proton in the nucleus can capture

an atomic electron to give a neutron, which is emitted from
the nucleus, and a neutrino,

weak neutron emission ½A½Z þ e� ! ½A�1½Z� 1
þ nþ �e;

½A½Z ! ½A�1½Z� 1 þ nþ eþ

þ �e: (4.30)

Positron emission is also possible, as described in the
second line of Eq. (4.30), but the threshold is higher, so
we limit our attention to electron capture. Second, ifMn >

Mp then the neutron in the nucleus decays to pe� ��e and

the proton is ejected,

weak proton emission ½A½Z ! ½A�1½Z þ pþ e� þ ��e:

(4.31)

For definiteness we consider the first case, weak neutron
emission, and quote the result for weak proton emission at
the end. Weak neutron emission is energetically allowed
when

MðN; ZÞ þme >MðN; Z� 1Þ þMn: (4.32)

Let BðA; I3Þ be the nuclear binding energy in terms of
A ¼ N þ Z and I3 ¼ 1

2 ðZ� NÞ. Let �M ¼ Mn �Mp.

Equation (4.32) can be rewritten in terms of binding en-
ergies,

BðA; I3Þ � B

�
A� 1; I3 � 1

2

�
<me � �M: (4.33)

For very light nuclei this condition would have to be
considered on a case by case basis. For larger A we can
approximate the discrete difference as a derivative,

@B

@A

��������I3

þ 1

2

@B

@I3

��������A
<me ��M: (4.34)

We are interested in nuclei already at the minimum of the
valley of stability set by the weak interactions, so I3 ¼
I3ðAÞ is set by

@MðA; I3Þ
@I3

��������A
¼ 0: (4.35)

Since MðA; I3Þ ¼ 1
2AðMn þMpÞ � I3�M� BðA; I3Þ, a

nucleus at the weak interaction valley’s minimum satisfies

@B

@I3

��������A
¼ ��M: (4.36)

Substituting this back into Eq. (4.34), we find that the
nucleus at the bottom of the valley of stability is unstable
to weak neutron emission when

@B

@A

��������I3

<me � 1

2
�M: (4.37)

Finally we relate @B=@AjI3 to the derivative of the

binding energy along the valley of stability, which is
defined by

BmaxðAÞ ¼ BðA; I3ðAÞÞ; (4.38)

where I3ðAÞ is determined by Eq. (4.35). Differentiating
BmaxðAÞ, we obtain

dBmaxðAÞ
dA

¼ @B

@A

��������I3

þ @B

@I3

��������A

dI3ðAÞ
dA

¼ @B

@A

��������I3

��M
dI3ðAÞ
dA

; (4.39)

from which we can substitute into Eq. (4.37), to obtain a
condition for instability in terms of the familiar function
BmaxðAÞ,

weak neutron emission:
dBmaxðAÞ

dA
<me

� �M

�
1

2
þ dI3ðAÞ

dA

�
: (4.40)

The nuclear asymmetry energy keeps dI3=dA small
throughout the regime of stable nuclei. In our Universe it
is zero for nuclei at the bottom of the valley of stability up
to A� 40, and increases only slowly thereafter. It is of
order 0.1 for heavy nuclei. Therefore to a good approxi-
mation (ignoring also the small mass of the electron) the
criterion for instability by weak neutron emission reduces
to

weak neutron emission:
dBmaxðAÞ

dA
& � 1

2
�M: (4.41)

The instability for weak proton emission, which occurs
when the neutron is considerably heavier than the proton,
are

weak neutron emission:
dBmaxðAÞ

dA
<�me

þ �M

�
1

2
� dI3ðAÞ

dA

�
dBmaxðAÞ

dA

&
1

2
�M: (4.42)
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In worlds with two light quarks and two baryons partic-
ipating in nuclear physics, the binding energy per nucleon
in medium to heavy nuclei is approximately 8 MeV.
Therefore weak nucleon emission instability sets in
throughout a broad region of A when j�Mj * 16 MeV.

Our result in Eq. (4.42) differs by approximately a factor
of 2 from the result claimed in Sec. 4.3 of [48]. There the
authors compute the constraint on the proton-neutron mass
difference from the condition that complex nuclei be stable
against � decay. Their Eq. (27), which reads mn �mp �
me & Ebin, should read mn �mp �me � �@B=@I3jA,
since the process they are considering takes place at fixed
A. In any event, this is not a condition for the stability of
complex nuclei, but rather the condition that sets the iso-
spin (or, equivalently, the N=Z ratio) at the bottom of the
valley of stability, as a function of �M. The process that
limits the stability of complex nuclei is weak nucleon
emission, and it is a coincidence that our own result differs
from the result of [48] by a factor of �2.

V. CONGENIAL AND UNCONGENIALWORLDS

Using the tools developed in Secs. III and IV, we now
proceed to investigate which values of the quark masses
(along our choice of a slice through the parameter space of
the SM as defined in Sec. II) would correspond to con-
genial worlds. We shall consider in turn the case of

(a) one light quark leading to a single light baryon,
(b) two light quarks with equal electric charge,
(c) two light quarks with different charge,
(d) one light quark leading to two light baryons,
(e) three light quarks.

A complete characterization of (e) is left for future
investigation.

A. One light quark leading to a single light baryon

A universe where only one baryon is light enough to
have a chance of participating in nuclear physics would be
uncongenial. For instance, if the d and s were so much
heavier than the u that the decuplet uuu state (i.e., the
�þþ) were lighter than all the octet states, then no complex
nuclei would exist [13]. A possible bound state of two
�þþ’s would have as its analog the dineutron, which is
unbound due to its high asymmetry energy penalty. The
electromagnetic repulsion would further obstruct binding
between �þþ’s. The only chemical element would be
helium (if the light quark has charge 2=3) or hydrogen (if
it has charge �1=3).

For the lightest decuplet baryon to be lighter than all the
octet baryons somewhere in the space of quark masses
corresponding to a fixed mT � mu þmd þms, the value
of mT would have to exceed some lower bound, which can
be estimated as follows: consider the extreme casemu ¼ 0,
md;s ¼ mT=2, where the possibility of a light �þþ is

greatest. The lightest octet baryons would be the proton
and the �þ, both with mass fixed to 940 MeVon our slice
through SM parameter space. From Eq. (3.16) and Table III
(ignoring the electromagnetic correction) we then have

Mp ¼ 940 MeV

¼ ð783� 101 MeVÞ�QCD

��
QCD

þ ð2:71 MeVÞxT; (5.1)

where the factor 2.71 MeV comes from evaluating the

coefficients in Eq. (3.16) when x8 ¼ �xT=6 and x3 ¼
�xT=2

ffiffiffi
3

p
, which follow when mu ¼ 0 and ms ¼ md.

To accurately estimate the mass of the �þþ in a world
with mu ¼ 0 and md ¼ ms, we would need the decuplet
analog of the � term [49]. For our purposes, however, it
will suffice to make the quark model motivated assumption
that the mass of the �þþ is independent of md and ms and
that its dependence on mu is the same as the proton’s
(which, incidentally, agrees with the estimate of [49]).
This gives

h�þþjmu �uuj�þþi � m�
u

m̂� � 35� 5 MeV � 25� 4 MeV;

(5.2)

sowe estimate the mass of the�þþ to be� 1210 MeV in a
world with �QCD equal to its value in our world, but with

the u quark mass set to zero. In other words,

M� ¼ 1; 210 MeV
�QCD

��
QCD

: (5.3)

Then the maximum value of xT such that the �þþ remains
heavier than the proton for mu ¼ 0 is

xmax
T ¼ 940

2:71

�
1� 783� 101

1; 210

�
¼ 122� 29: (5.4)

Let us summarize the situation at fixed xT : for worlds
with xT well below xmax

T , octet baryons are the lightest
stable baryons throughout the mass triangle, and decuplet
states can be ignored. As xT grows beyond xmax

T ¼ 122�
29 MeV, a decuplet state is less massive than the lightest
octet baryon state in three regions at the perimeter of the
triangle near the midpoint of each side (P ¼ 1=6, 1=2, and
5=6). These regions are uncongenial. This is an important
effect because these regions [type (ii) in the classification
of Fig. 5] may otherwise have been congenial. We return to
this point in Sec. VD below.

B. Two light quarks of the same charge

Consider first the case of two light quarks with charge
�1=3. We shall see that these worlds are uncongenial
because it is impossible to make stable nuclei with charge
greater than 4. To establish this it is sufficient to consider
the case in which the light quarks are degenerate in mass.
Otherwise, the nuclei at the bottom of the valley of stability
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(defined by the condition @M=@N2jA¼N1þN2
¼ 0, where

N1;2 are the numbers of each of the participating baryons)

would be less bound than in the degenerate case, due to the
asymmetry energy penalty.

In these worlds the participating baryons are the �� and
the��. Because both baryons have charge�1, the charge
of a nucleus, Z ¼ �A. With no mass or charge difference
between the baryons, the valley of stability lies on the line
N�� ¼ N�� .17

Our Universe does have a small Mn �Mp quark mass

difference, but it is much smaller than the Fermi energy
and thus is negligible in determining the valley of stability.
Hence in our Universe (before the Coulomb energy be-
comes significant) we can find analog nuclei that lie on the
corresponding line Z ¼ A=2.

Returning to the world with two light �1=3 charge
quarks, we begin by considering very light nuclei for which
the SEMF cannot be used. Using the notation introduced in
Sec. IVAwe denote the first nucleus, with A ¼ 2 and Z ¼
�2, as 2

1He1. Its analog in our world is deuterium. We may

estimate its Coulomb energy by modeling the deuteron
nuclear potential as a finite spherical well with depth V0

and radius a. To determine V0 and a we impose the
condition that the nuclear binding energy match its mea-
sured value for the deuteron, B ¼ 2:22 MeV, and the rms
radius correspond to the observed deuteron diameter,
4.28 fm. The potential giving the correct wave function
has V0 ¼ �19:54 MeV and a ¼ 2:96 fm. Treating the
Coulomb interaction as a first-order perturbation about
that finite spherical well interaction, we estimate the
Coulomb energy to be he2=ri ¼ 0:57 MeV.

The binding energies we find for the nuclei with the
chemical properties of helium (21He1), beryllium (42Be2),
and carbon (63C3) by considering the analog nuclei and

correcting for the Coulomb term are, respectively,
1.7 MeV, 23.9 MeV, and 22.7 MeV. Thus, in the universe
of light d and s quarks, the decay of carbon by fission into
beryllium and helium is exothermic by 2.9 MeV. Since
4
2Be2 has the same nuclear shell structure as the � particle

in our Universe (42He2), this fission reaction is the equiva-

lent of � decay, which now occurs for nuclei as light as
A ¼ 6. The underlying physical reason for this instability
can be understood in our world: the relatively weak nuclear

binding energy of 6
3Li3 compared with 4

2He2 is almost

enough to make it unstable to decay into deuterium
and an � particle. The additional Coulomb energy in the
(� 1=3, �1=3) world is enough to generate instability.
Through the SEMF and consideration of some specific

analog nuclei, we find that heavier nuclei also undergo �
decay, a process which is exothermic by about 8 MeV. In
our Universe � decay may be impeded for heavy nuclei by
the Coulomb barrier through which the � particle must
tunnel. In this case, however, the Gamowmodel of � decay
[50] shows that chemical carbon would have a very short
lifetime—of the order of 10�18 s.
Universes in which the two light quarks both have

charge�1=3 do not have stable carbon (or, for that matter,
any nuclei with charge greater than four) and are therefore
uncongenial. For universes with two light quarks of charge
2=3, such as the u and c quarks, even more instabilities
occur. Both participating baryons have a charge of 2, so the
charge goes as 2A. The two single baryons now correspond
to isotopes of chemical helium (11He0 and 1

0He1), and the

stable � particle is chemical oxygen. The lack of hydrogen
necessarily makes this an uncongenial world. As for car-
bon, there are two isotopes, 32C1 and

3
1C2 (analog to

3
2He and

3
1H in our world), but the additional Coulomb energy in this

world destabilizes them.

C. Two light quarks of different charges

1. Calculations with analog nuclei

Our Universe has two quarks that are light enough to
participate in nuclear physics, u and d, with charge þ2=3
and �1=3 respectively. For all such worlds we will revert
back to the usual notation of N as the number of neutrons
and Z as the number of protons in a nucleus, denoted by
AEl.
Let us consider first the case of Mp >Mn: examination

of the various isotopes of carbon in our world indicates that
14C is the last to remain stable as Mp �Mn increases. The
14C nucleus in our world has a binding energy of
105.3 MeV. It is stable against � emission (which is
endothermic by 8.35 MeV) and other fission processes. It
would undergo electron capture to form 14B ifMp �Mn >

19:34 MeV, and decay by weak neutron emission [see
Eq. (4.30)] into 13B if Mp �Mn > 20:32 MeV.

The cutoff for congeniality, however, is not set by the
requirement of stable carbon, but rather by stable hydro-
gen: when Mn <Mp þme, free protons may decay into

neutrons by electron capture. Deuterium could serve as a
hydrogen isotope, but it is only weakly bound (by
2.22 MeV) and easily undergoes weak neutron emission
if Mp �Mn > 1:71 MeV.

In our Universe, the � decay of tritium (3H) into 3He is
exothermic by about 0.02 MeV because, even though
tritium is bound more strongly than 3He by 0.76 MeV,
the neutron is heavier than the proton by 1.29 MeV. With

17Since d and s have the same charge, one might worry that
weak transitions between the two participating baryons are
flavor-changing neutral processes, and is therefore suppressed
by the Glashow-Iliopoulos-Maiani (GIM) mechanism. In our
world, however, the heavier �� decays into a �� and a photon
with a partial lifetime �10�14 s [15], primarily via a ‘‘long-
distance penguin’’ diagram. This can be (very roughly) thought
of as the tree-level process �� ! �þ ��, followed by the
strong recombination of the �� and �, to form a �� (with a
photon emitted). Here we will assume that, when energetically
favorable, the conversion between �� and �� can always occur
over time scales short compared to those needed for the evolu-
tion of intelligent life.
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a proton-neutron mass difference large enough for free
protons to decay, tritium would not undergo � decay.
Instead, it could only decay through weak neutron emis-
sion and subsequent dissociation into three free neutrons
and a neutrino,

3Hþ e� ! 3ðnÞ þ �e: (5.5)

The congeniality cutoff set by requiring some stable hydro-
gen isotope is therefore

Mp �Mn < Bð3HÞ �me ¼ 7:97 MeV: (5.6)

This is the main result for the limit of congeniality for the
case Mp >Mn.

18

Let us now consider the case Mn >Mp. In this case,

congeniality is determined by the stability of chemical
carbon against all possible decay pathways. Whether or
not � decay and fission would be exothermic depends only
on the binding energies of the nuclei involved and not on
quark mass differences. In our world, 12C has a binding
energy of 92 MeV and is stable even against fission into
three � particles. 10C has a binding energy of 60.34 MeV,
making it stable against fission into two� particles and two
free protons by 3.7 MeV, and thus even more stable against
simple � decay (which would leave an unstable 6Be
behind).

Weak proton emission changes a given carbon nucleus
into a lighter isotope. 12C decays by weak proton emission
into 11C if Mn �Mp > 19:24 MeV; 11C decays if Mn �
Mp > 13:64 MeV; 10C decays ifMn �Mp > 21:80 MeV,

and 9C decays if Mn �Mp > 14:77 MeV.

Finally, � decay occurs spontaneously if

MðZ;NÞ>MðZþ 1; N � 1Þ þme: (5.7)

The various carbon isotopes�-decay into nitrogen ifMn �
Mp is greater than the following cutoffs: 18.64 MeV for
12C, 15.25 MeV for 11C, and 24.40 MeV for 10C. Thus, 12C
is stable against all decays ifMn �Mp < 18:64 MeV. 10C

becomes stable against �þ decay already if Mn �Mp is

greater than a few MeV, and remains stable until it weak-
proton-emits into 9C for Mn �Mp � 21:80 MeV. For

such large neutron-proton mass difference, the 9C nucleus
also weakly emits into 8C, which then would �-decay
away. Thus, the congeniality cutoff for the case of Mn >

Mp is set by the stability of 10C against weak proton

emission:

Mn �Mp < 21:80 MeV: (5.8)

Even though we have not included the requirement of
stable oxygen in our definition of congeniality, as men-
tioned in Sec. 2 most worlds with stable carbon and hydro-
gen contain also stable oxygen, and therefore the worlds
we identify as congenial would usually allow the formation
of water. This world is no exception.

2. Estimation of dB=dA from the SEMF

In analyzing the boundaries of congeniality for worlds
with two light baryons, we have been able to use the analog
nucleus method to determine the stability of carbon, with-
out ever referring to the generalized SEMF constructed in
Sec. IVB. However, it is instructive to study the SEMF
predictions about stability boundaries against weak proton
emission for different nuclei. These are shown in Fig. 14,
together with the predictions of the analog nucleus analy-
sis. The bounds on Mn �Mp are qualitatively similar to

the bounds we obtained from study of carbon and oxygen
by the analog method. However, given the accuracy of the
SEMF’s predictions for bmaxðAÞ, it is at first surprising that
the SEMF’s predictions of dB=dA � 	M=2 are off by as
much as �2 MeV.
To understand why the SEMF does poorly in this case,

one must bear in mind that the parameters of the SEMF—
as quoted in Table IV—are chosen so that the formula
provides the best fit to the binding energy per nucleon
B=A. We may write

B

A
� WðAÞ þWerrorðAÞ: (5.9)

Note that the Weizsäcker formula provides an excellent fit
for A � 10, with jWerrorðAÞj< 0:2 MeV. However,

A

M  - Mn p

(a)
M  - Mn p

A

(b)

FIG. 14 (color online). Upper limits on Mn �Mp from stabil-
ity against weak proton emission of nuclei at the bottom of the
valley of stability, (a) for decay transitions involving a pairing
term penalty, and (b) for decay transitions in which the nuclear
binding energy gains a pairing bonus. The black curve is the
prediction of the generalized SEMF, while the blue and red data
points are obtained by considering analog nuclei.

18Even though we have chosen not to deal with issues of
nucleosynthesis in this paper, it is worth repeating the observa-
tion made in Sec. 2 that stellar burning might be very different in
this world, since the two tritium nuclei can make 4He plus two
free neutrons by a strong interaction.
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dB

dA
¼ WðAÞ þ A

dWðAÞ
dA

þWerrorðAÞ þ A
d

dA
ðWerrorðAÞÞ:

(5.10)

Since the magnitude of the variation in Werror from A to
Aþ 1 is generically of order of WerrorðAÞ, the last term in
Eq. (5.10) can be quite large. If we were to use the SEMF to
estimate the boundaries of stability against weak nucleon
emission, it might be necessary to refit the parameters to
optimize the estimate of dB=dA, rather than B=A.

3. Congeniality bounds on u, d masses

The condition for congeniality we found above for uni-
verses with light u, d quarks is

� 7:97 MeV � Mn �Mp � 21:80 MeV: (5.11)

To translate this into a condition on quark masses, we could
use the results from SUð3Þ perturbation theory presented in
Sec. III. However, note that the best fit to the parameters of
the model gave us an error of about 2 MeV in the masses of
the proton and the neutron. For most of our purposes this is
negligible, but in the case of worlds with only light u and d
quarks we can improve on that accuracy by considering
isospin symmetry. Taking into account electromagnetic
corrections, the p-n mass difference is then

Mp �Mn ¼ ð1:75x3 þ 0:63þ 0:13Þ MeV: (5.12)

Therefore Eq. (5.11) translates to

� 12:9 � x3 � 4:1: (5.13)

Referring back to Eq. (3.13), and taking m�
T ¼

100 MeV, this translates into limits

� 22:3 MeV � mu �md � 7:1 MeV: (5.14)

Our Universe with Mp �Mn ¼ �1:29 MeV is at x3 ¼
�1:17, comfortably away from the edges of the congenial-
ity band.

4. Nuclei with more than two baryon species

If the s quark becomes light enough, a third baryon, the
Clow (which in our world is the�) will start to participate in
nuclei. This marks the boundary along the x8 direction of
the congeniality region for two light u, d quarks: while
universes beyond this boundary may still be congenial, the
analysis in Sec. VC3 no longer applies.

Consider the case x3 ¼ 0, so that Mn ¼ Mp. Our

Universe is almost indistinguishable from this one in terms
of nuclear composition. In the following analysis we will
refer to the Clow simply as �, both for the sake of the
reader’s intuition and because if x3 ¼ 0, the Hamiltonian
commutes with total isospin, so Clow ¼ �.

Inside a nucleus composed of Z protons and N neutrons,
a regular nucleon (which without loss of generality we will
take to be a neutron) will spontaneously turn into a �

particle if

MðZ;N;N� ¼ 0Þ>MðZ;N � 1; N� ¼ 1Þ: (5.15)

From now on when the mass M or the binding energy B is
given as a function of three particle number variables, the
last entry will be N� (the number of �’s).
Hypernuclei have been experimentally investigated in

our world [18]. For a hypernucleus that contains only one
� particle, the binding energy of the � as a function of Z
and N can be expressed as

B�ðZ;NÞ � BðZ;N; 1Þ � BðZ;N; 0Þ: (5.16)

Thus the mass of a hypernucleus is

MðZ;N � 1; 1Þ ¼ M� þMðZ;N � 1; 0Þ � B�ðZ;N � 1Þ:
(5.17)

Figure 2 of [51] provides experimental values of
B�ðZ;NÞ for various hypernuclei. For large nuclei around
A ¼ 120, the � binding energy roughly saturates to B� ¼
23 MeV. For normal nuclei in our Universe, B=A saturates
to around 8 MeV, so

MðZ;N � 1; 0Þ ¼ MðZ;N; 0Þ �Mn þ 8 MeV: (5.18)

Combining this equation with Eq. (5.15) and (5.17) we find
that the � participates in nuclear physics if

M� �Mn & 15 MeV: (5.19)

A theoretical calculation using only the kinetic Fermi

gas model energy yields a cutoff of M� �Mn <

2�2=50 ¼ 24 MeV. The discrepancy between this result
and the value of 15 MeV deduced from real hypernuclei
must arise from �-nucleon interactions, which are not
included in the two-flavor SEMF. These interactions dis-
courage the � from participating in nuclei until the �� N
mass difference decreases to �15 MeV. Also note that
performing the previous analysis for carbon, we find that
the � will not participate in carbon nuclei unless M� �
Mn < 8 MeV. Therefore, we do expect universes to remain
congenial a little bit beyond the boundary defined by
Eq. (5.19).
This analysis applies rigorously only around x3 ¼ 0. In

that case the constraint on x8 for the � not to participate in
nuclear physics is

x8 � �3:5: (5.20)

For jx3j> 0, the boundary between the worlds with nuclei
containing only two baryons and worlds with nuclei con-
taining three or more baryons would lie at x8 <�3:5. The
reason for this is that, due to the asymmetry energy penalty
for nuclei composed of the two lightest baryons when these
are not degenerate, it can be energetically favorable for a
nucleus to capture a heavier �.
Figure 15 shows the quark mass triangle for xT ¼ 100,

with the areas corresponding to congenial worlds colored
in green and the areas corresponding to uncongenial worlds
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colored in red. Our world corresponds to the point in the
lower right-hand corner labeled ‘‘us.’’ The central region—
where more than two baryons participate in nuclear phys-
ics—is shown in white, with a red dot in the middle to
indicate that worlds where all three quark masses are
identical are very probably uncongenial, as we shall argue
in Sec. 20. The rationale for the two upper, narrow green
bands shall be discussed in Sec. VD.

D. One light quark with two participating baryons

If one quark is much lighter than the other two, then the
two lightest octet baryons may participate in nuclei, lead-
ing to congenial domains different in character from the
one in which we live. These are the type (ii) regions shown
in Fig. 5. They lie close to the midpoint of an edge of the
quark mass triangle. To be definite, we consider the case
where md 	 ms � mu. The other charge possibilities are
considered later. Formd small enough andmu andms close
enough, there is reason to expect nuclei composed of
neutrons and �� to form and to have qualitatively similar
systematics to nuclei in our world. This region corresponds
to P � 1=6 in the perimeter plots shown in Figs. 10 and 11.

On the other hand, there are important differences that
distinguish this congenial region from type (iii) regions
like the one in which our world lies. Type (ii) regions are
smaller in extent, and harder to characterize quantitatively.
First, as discussed in Sec. VA, if mu and ms are too large,
the decuplet state (in this case�� or ddd) may undercut all
octet baryons, leading to an uncongenial world. If this
happens for a given xT , it excludes a region close to the
boundary of the quark mass triangle near P ¼ 1=6. For
example, in the case treated at the beginning of this section
(mu ¼ 0) we found that the �þþ became the lightest
baryon if xT � 122� 29 MeV. Note that at the lower limit

of the uncertainty this would occur at the perimeter of the
quark mass triangle with xT ¼ 100, in which our world sits
(see Fig. 15).
As the light quark mass increases (moving into the

interior of the quark mass triangle), this problem dimin-
ishes, but another one appears. Notice (see Fig. 11) that for
the same xT , other baryons are much closer in mass to the
lightest nearly degenerate pair in this region than in
type (iii) regions. In the case of a light d quark near P ¼
1=6, the proton, ��, and Clow have masses less than
75 MeV heavier than the neutron and ��. In contrast in
the type (iii) congenial domain near P ¼ 0, the � is more
than 170 MeV heavier than the p-n doublet. As a result,
other baryons begin to participate in nuclear physics sooner
(asmd and ms are increased) than in our world. We make a
rough guess of how far from the center of the mass triangle
this congeniality band ends, by supposing that, as in the
case of the light u and d worlds, the third lightest baryon
must be less that 15 MeV heavier than the two lightest
baryons for it to participate in nuclear physics. Translating
this into quark masses we obtain the boundaries shown in
Fig. 15.
Any attempt make quantitative estimates of nuclear

binding in type (ii) worlds is obstructed by the fact that
the pseudoscalar meson spectrum is qualitatively different
from our world. This can be seen in Fig. 13. Near P ¼ 1=6
the hadron spectrum has an SUð2Þ symmetry similar to
isospin. However the lightest pseudoscalar meson is an
isosinglet similar to the 
 in our world. Not much heavier
is a complex doublet similar to the kaons in our world. We
suspect that the dominant contribution to the nuclear force
still comes from exchange of a scalar isoscalar meson
analogous to the f0ð600Þ, but we have no tools to analyze
the problem quantitatively.
It is possible to say something about the width of the

congeniality band for type (ii) congenial regions. The
strength of nuclear binding sets a limit on the n� ��
mass difference similar to the limit we derived from con-
siderations of weak nucleon emission in the previous sec-
tion. This translates into a limit on the s-u quark mass
difference. However the neutron-�� mass difference
grows twice as fast with mu �ms than the proton-neutron
mass difference grows withmu �md. All else being equal,
therefore, the congeniality band has half the width of the
one described by Eq. (5.13) in which our world sits. This is
shown in Fig. 15.
Finally we mention the extension of these ideas to other

quark charges. First consider worlds where the three light
quarks have charges 2=3,�1=3, and�1=3 (uds). We have
discussed the case where the d quark is very light. A light s
quark yields identical results. In worlds where the u quark
is light, the proton (uud) and �þ (uus) are the possible
constituents of nuclei. However since both have positive
charge, we do not expect congeniality, for the same reason
that we failed to find a congenial region when the �� and

us

FIG. 15 (color online). Congeniality results on the triangle
slice of xT ¼ x�T ¼ 100. Our Universe is the point by the bottom
right corner marked ‘‘us.’’ The green bands are congenial, the red
background is uncongenial, and the central white region corre-
sponds to worlds with more than two baryons participating in
nuclear physics, worlds which we cannot at the moment fully
characterize as congenial or uncongenial. Fuzzy borders imply
uncertainty in determining boundaries.
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�� were the light doublet. Finally, if the light quarks have
charges 2=3, 2=3, and �1=3 (cud), the candidate worlds
with one light quark have either two neutral baryons, when
the d quark is lightest, or baryons of charge þ1 and þ2,
when the c or u quark is lightest. Neither can be congenial.

For the uds worlds, the regions of congeniality are
shown in Fig. 16 for the quark mass triangles with xT ¼
50 and with xT ¼ 200. Notice that the width of the bands of
congeniality, and the size of the central region where more
than two baryons participate in nuclear physics, are inde-
pendent of xT . For large xT , however, the narrow upper
bands of congeniality (corresponding to neutron-��
worlds) end before reaching the perimeter, for the reasons
discussed in Sec. VA.

E. Three light quarks

There are two distinct ways in which more than two
nucleons could participate in nuclear physics. First, more
than two quarks could have nearly degenerate masses. For
three light quarks, this would correspond to area very near
the center of the quark mass triangle, for any value of xT .
However, like the accidental degeneracy discussed in
Sec. II B, this would be quite unlikely if the a priori quark
mass distributions are independent of one another. The
second and more relevant case is that in which three (or
more) quarks are light even though their mass differences
might be of the same order as the masses themselves. Both
cases can be treated simultaneously because the essential
issue is flavor SUð3Þ breaking.

If quark masses are logarithmically distributed (as we
have argued they might well be) then the landscape would
be dominated by worlds in which many of the quark

masses are very light compared to �QCD. If we add leptons

to the discussion, we already have evidence from the
neutrino sector of the possibility of very small masses.
Unfortunately, the analysis of worlds with more than two
baryons participating in nuclear physics requires better
methods than those currently available.
It is possible, nonetheless, to make some qualitative

statements about worlds with more than two very light
quarks. To simplify matters we consider the case where
the quark masses are negligible and the only contributions
to the baryon mass differences are electromagnetic. Since
we are limited to considering at most three light quarks,
there are four charge assignments of interest: (a) 2=3,
�1=3, �1=3 (which we label uds for convenience);
(b) 2=3, 2=3, �1=3 (cud); (c) �1=3, �1=3, �1=3 (dsb);
and (d) 2=3, 2=3, 2=3 (uct).

1. A possible dihyperon instability

The first relevant question about the domain of three
light quarks is whether octet baryons are stable. It is
possible that in this limit the dihyperon H—composed of
two quarks of each flavor—could be less massive than two
octet baryons [16]. If this were the case, then regular nuclei
would decay into a state made of A=2 dihyperons. Since
the H is a boson and therefore not subject to the Pauli
exclusion principle, this would lead to worlds radically
different from ours. Because no state made of dihyperons
has unit charge, organic chemistry as we know it would not
be possible.
The various unsuccessful searches for a stable H

suggest that, in our world, H is close to or heavier
than twice the mass of�, 2231MeV, which is the threshold
for its strong decay. For MH � 2M�, the dihyperon
would still not be perfectly stable, since it could decay
slowly by strangeness-changing weak interactions, unless
it were also lighter than twice the nucleon mass
( � 1; 880 MeV). Thus 2MN sets the absolute threshold
for the stability of H.
The quark content of the H (uuddss) matches that of

two �’s, two �’s, or N�. Flavor SUð3Þ violation lowers
the mass of two �’s relative to �� or N�. The H, on the
other hand, is an SUð3Þ singlet and its mass is independent
of SUð3Þ breaking. Since SUð3Þ becomes exact when all
three quarks are massless, a measure of the stability of the
H in that limit can be obtained by comparing its mass in
our world with twice �M (the average octet baryon mass) or
2� ð1; 151Þ ¼ 2; 302 MeV. Thus, in the absence of SUð3Þ
violation, the threshold for H stability with respect to
strong decay would rise from 2M� ¼ 2; 231 MeV to
2 �M ¼ 2; 302 MeV. The threshold for absolute stability is
even more dramatically affected: it is� 1; 880 MeV in our
world, but would be 2302 MeV without SUð3Þ symmetry
violation.
This argument is far from rigorous, but it does suggest

that the H might be more stable in a world of massless

(a) (b)

FIG. 16 (color online). Congeniality results on the triangle
slice of (a) xT ¼ 50 and (b) xT ¼ 200. The coloring conventions
are the same as for Fig. 15. Both (a) and (b) are drawn on the
same x3;8 scale, but not on the same scale as the triangle in

Fig. 15.
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quarks than it is in our world. This is an important point on
which a lattice calculation might shed light. Determining
the stability of H in a world of massless quarks would be
interesting from an environmental perspective, especially
if the qualitative features of nuclei built of dihyperons
could be established. One might speculate, for example,
that an instability to forming dihyperons puts an environ-
mental lower bound on the number of very light quarks in a
congenial world, in which case we might owe our existence
to (among other things) the relatively large mass of the
strange quark in our world. For the rest of this section, we
assume that the dihyperon is not stable when three quarks
are very light.

2. Worlds with massless u, d, and s quarks

Of the four charge assignments listed at the beginning of
this section, the first, 2=3, �1=3, �1=3 is special because
the sum of the charges is zero. It is also the one of most
immediate interest to us, because it is closest to our world
and occupies the apex of the quark mass prism we have
been exploring.

If all octet baryon masses were exactly equal, then the
minimum of the valley of stability would occur at electric
charge neutrality, i.e., at equal numbers of each quark
species. At low A, charged nuclei would quickly �-decay
or electron-capture until they reached the stable, electri-
cally neutral nucleus with baryon number A. The only
possibility of a stable, charged nucleus would develop at
very large A, where the asymmetry term in the SEMF
becomes less important. Thus, even small electromagnetic
mass differences make a big difference in worlds where u,
d, and s quarks are all massless. To estimate the effect, we
used the electromagnetic mass shifts given in Table III,
together with the three-flavor SEMF of Eq. (4.28) (in which
baryon species abundances have already been adjusted to
maximize binding at fixed Y and I3). The parameter that
drives the appearance of stable charged nuclei for zero
quark masses is �MI ¼ �0:15 MeV. We then compute
the lowest value of A at which carbon (Z ¼ 6) is a stable
against � decay and/or electron capture. First we minimize
the nuclear mass with respect to Y since weak nonleptonic
interactions will effectively adjust the d and s quark abun-
dances to maximize binding.19 This yields Ymin as a func-
tion of A, I3, and the SEMF parameters. Then we reexpress
the nuclear mass in terms of Z ¼ I3 þ 1

2Y. We focus on

Z ¼ 6. For small values of A, the state with Z ¼ 6 decays
to lower charge by electron capture. The criterion for it to
be stable is therefore

MðZ ¼ 6; AÞ þme >MðZ ¼ 5; AÞ: (5.21)

The value of A at which this is satisfied depends most
sensitively on the strength of the asymmetry term in the

SEMF, a.
20 For a ¼ �a we find that carbon becomes

stable only for A * 2� 105. Even if such nuclei were
stable against particle emission, the likelihood of these
gargantuan atoms coming together to form life forms
seems very remote.
The existence of very light, strongly bound nuclei analo-

gous to the � particle in our world, would very likely
prevent the formation of large A nuclei in worlds with
massless u, d, and s quarks. Shell effects and the pairing
term both favor the binding of nuclei made of two baryons
of each species, starting at A ¼ 4 (in direct analogy to the
� particle) and continuing up to A ¼ 16, a particle we call
the ‘‘arkon,’’ after its Biblical analog which carried every
species two-by-two. These s-state nuclei would have their
own complicated stability pattern, but there is every reason
to expect one or more of these species to be very tightly
bound relative to generic heavy nuclei (as is the � particle
in our world), as well as electrically neutral. Heavy nuclei
like the A � 105 carbon which we have just considered
might then very well be unstable against emitting such
light, neutral objects.
We conclude that there is good reason to believe that a

world with very light u, d, and s quarks would be uncon-
genial. Quantitative bounds on the quark masses, however,
await better theoretical tools.

3. Other light quark charge assignments

The three other charge assignments listed at the begin-
ning of this section, cud, dsb, and uct, are intriguing. In
the last case, uct, all octet baryons have charge Z ¼ þ2, so
there is no hydrogen and these worlds are uncongenial. The
minimum of the nuclear asymmetry energy occurs at Z ¼
þA for cud worlds and Z ¼ �A for dsb worlds. This
implies a greater mismatch between the Coulomb and
asymmetry energy minima than in our world (where the
asymmetry energy minimum occurs at Z ¼ A=2). Since
the conflict between asymmetry and Coulomb energies
destabilizes large A nuclei, we expect that, given similar
SEMF parameters, the nuclear mass table in these worlds
would likely terminate at smaller values of A than in our
world. On the other hand, the very light nuclei that are
important to us, hydrogen, carbon, and oxygen, might well
be stable. For example, in the cud world the baryons with
the quark content ccu and uuc have Z ¼ þ2, so a baryon
number four nucleus with the structure of the � particle
would have the chemistry of oxygen. Intriguing though
these worlds may be, we leave them for future study,
hopefully with more powerful analytic tools.

F. Final congeniality results in a light u, d, s world

We can now complete the description of the congeniality
triangle introduced at the beginning of this section. The

19Weak scattering processes like �n $ nn are mediated by
us $ du at the quark level.

20It also depends on the Coulomb interaction, but we do not see
any reason to change c from its value in our world.
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results are summarized in Figs. 15 and 16. The green
congeniality bands beginning in the corners at P ¼ 0 and
P ¼ 2=3 are the type (iii) congeniality domains discussed
extensively in Sec. VC. The bands beginning at the centers
of edges, at P ¼ 1=6 and P ¼ 1=2, are the type (ii) con-
geniality bands discussed in Sec. VD. The center of the
triangle is red because the neutral worlds discussed in this
subsection are very likely to be uncongenial. The domains
shown in white are regions where three or more baryons
participate in nucleus building, but the quark mass differ-
ences are too large to apply the symmetry arguments of
Sec. 20. Note that the type (iii) congeniality domains
extend further into the triangle than the type (ii) domains
because the next lightest baryon is split further from the
lightest doublet in that case.
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APPENDIX: FIRST-ORDER PERTURBATION
THEORY FOR BARYON MASS DIFFERENCES

Even though it is a textbook exercise, for the sake of
completeness we present here the first-order perturbation
analysis relating octet baryon mass differences to quark
mass differences. We label states in the baryon octet by
j8; I3; Y; �i � j8;�i, where � is the label that distin-
guished states of the same I3 and Y that mix due to
SUð3Þ flavor violation. The mass of an octet baryon iden-
tified by � is h8;�jHj8;�i. Using the Wigner-Eckart
theorem, we may express the expectation value of the
last two terms in Hflavor in Eq. (3.3) as

h8;�j�8
�j8;�i ¼ X2

�¼1

8 8 8ð�Þ
� � �

� �
h8k�8k8i�: (A1)

The double-barred term is the Wigner reduced invariant
matrix element (WRME) and the term in parenthesis is the
SUð3Þ Clebsch-Gordan coefficient. The sum over the index
� reflects the fact that there are two irreducible eight-

dimensional representations in the decomposition of 8 �
8 ¼ 27 � 10 � 10 � 81 � 82 � 1. The SUð3Þ Clebsch-
Gordan coefficient can be decomposed as

8 8 8ð�Þ
� � �

� �
¼ C

I�I�I�
I�3I�3I�3

8 8 8ð�Þ
I�Y� I�Y� I�Y�

� �
;

(A2)

where theC symbol is the SUð2Þ coefficient and the term in

parenthesis on the right-hand side of Eq. (A2) is the iso-
scalar coefficient. Their values are quoted, for instance, in
[52] (whose notation we have adopted).
We may therefore express the masses of the octet bary-

ons in terms of five parameters: a term A0 � HQCD þ
m0h�1

0i common to all the baryons, the two WRME’s,

m3, and m8. For example, the mass of the proton can be
expressed as

Mp ¼ A0 þ m3ffiffiffi
3

p
�
3

ffiffiffi
5

p
10

h8k�8k8i1 þ 1

2
h8k�8k8i2

�

þm8

�
�

ffiffiffi
5

p
10

h8k�8k8i1 þ 1

2
h8k�8k8i2

�
; (A3)

where the SUð2Þ Clebsch-Gordan coefficients are shown in
front of the terms in square brackets.
Following the notation of [53], we define two new

parameters proportional to the WRME’s,

D �
ffiffiffiffiffiffi
15

p
10

h8k�8k8i1; F �
ffiffiffi
3

p
6

h8k�8k8i2; (A4)

so that Eq. (A3) becomes

Mp ¼ A0 þ
�
3F�Dffiffiffi

3
p

�
m8 þ ðFþDÞm3: (A5)

Analogous results for the other baryons on the periphery of
the octet weight diagram are summarized in the first six
entries in Table I.
The Hamiltonian of Eq. (3.1) is not diagonal in the (I3,

Y) basis. In other words, not all of the basis states in the
octet representation are mass eigenstates. If we label the
eigenstates of I2 the � (I ¼ 0) and the �0 (I ¼ 1), then in
that basis ð�;�0Þ and in the I3 ¼ Y ¼ 0 subspace,

H ¼ A0 þ 2Dffiffiffi
3

p m8 m3

m3 �m8

� �
þHEM: (A6)

Defining � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

8 þm2
3

q
, the mass eigenstates in the

ð�;�0Þ basis are

Chigh ¼ 1ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þm8

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��m8

p
0
@

1
A and

Clow ¼ 1ffiffiffiffiffiffiffi
2�

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��m8

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þm8

p
0
@

1
A: (A7)

This mixing is negligible (for most purposes) in our world,
sincem3=m8 ¼ 0:02,� ¼ 1:0002, and� � m8. Therefore
to a few percent, Clow � �, and Chigh � �0. However, this

mixing is significant in worlds where m3 and m8 are
comparable. In those cases total isospin no longer approxi-
mately commutes with the Hamiltonian, and the states
Chigh or Clow cannot be identified with total isospin

eigenstates.
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