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Quantum gravity in the region very near the horizon of an extreme Kerr black hole (whose angular

momentum and mass are related by J ¼ GM2) is considered. It is shown that consistent boundary

conditions exist, for which the asymptotic symmetry generators form one copy of the Virasoro algebra

with central charge cL ¼ 12J
@
. This implies that the near-horizon quantum states can be identified with

those of (a chiral half of) a two-dimensional conformal field theory (CFT). Moreover, in the extreme limit,

the Frolov-Thorne vacuum state reduces to a thermal density matrix with dimensionless temperature TL ¼
1
2� and conjugate energy given by the zero mode generator, L0, of the Virasoro algebra. Assuming

unitarity, the Cardy formula then gives a microscopic entropy Smicro ¼ 2�J
@

for the CFT, which reproduces

the macroscopic Bekenstein-Hawking entropy Smacro ¼ Area
4@G . The results apply to any consistent unitary

quantum theory of gravity with a Kerr solution. We accordingly conjecture that extreme Kerr black holes

are holographically dual to a chiral two-dimensional conformal field theory with central charge cL ¼ 12J
@
,

and, in particular, that the near-extreme black hole GRS 1915+105 is approximately dual to a CFT with

cL � 2� 1079.

DOI: 10.1103/PhysRevD.80.124008 PACS numbers: 04.60.�m, 04.70.Dy

I. INTRODUCTION

One of the deepest discoveries in modern theoretical
physics is that of holographic dualities, which relate a
quantum theory of gravity to a quantum field theory with-
out gravity in fewer dimensions. These dualities become
especially powerful when combined with string theory [1].
It is an occasional misconception, however, that the exis-
tence of holographic dualities is contingent on the validity
of string theory. This is not the case. For example, the
demonstration [2] that any consistent theory of quantum
gravity on three-dimensional anti-de Sitter space (AdS3) is
holographically dual to a two-dimensional conformal field
theory (CFT) did not invoke string theory. When holo-
graphic duality was used to find the microscopic origin
of the Bekenstein-Hawking entropy for a class of black
holes, the construction at first appeared to depend heavily
on details of string theory [3]. However, it was later under-
stood [4] to apply to essentially any consistent, unitary
quantum theory of gravity containing the black holes as
classical solutions. In the last few years we are beginning
to see interesting applications of holographic duality out-
side of string theory in nuclear [5–7], condensed matter [8–
10], and atomic [11,12] physics.

Oddly, the rich ideas surrounding holographic dualities
so far have not been successfully applied to the enigmatic

objects which largely inspired their original discovery—
the Schwarzschild or Kerr black holes we actually observe
in the sky.1 In this paper we attempt to fill this gap by
arguing, in the spirit of [2,4], that extreme Kerr black holes
are holographically dual to a chiral CFT in two dimensions.
An extreme Kerr black hole is one for which the angular
momentum J saturates the bound J � GM2. More angular
momentum with the same mass M leads to a violation of
cosmic censorship. Nearly extreme black holes have been
seen in the sky. For example GRS 1915+105, with mass
M� 14Msun, has J=GM

2 > 0:98 [13], and corrections to
the dual CFT representation of GRS 1915+105 should be
correspondingly suppressed. In addition, at extremality the
ISCO (the innermost stable circular orbit on the accretion
disc) coincides with the event horizon, so near extremality
the ISCO is within the near-horizon region. Therefore the
observed emissions from the ISCO should be well-
described by the dual CFT.2 It is our hope that the rich
experimental [13,16] and theoretical [17] literature on Kerr
black holes can be illuminated by the dual CFT
description.

*On leave from the Institute of Theoretical Physics, Academia
Sinica, Beijing 100080, China.

1The successes so far have mainly concerned black holes with
large amounts of charge and in dimensions other than four.

2In [14,15] greybody scattering factors for various black holes
were computed using the dual CFT picture, and found to agree
with those computed by conventional methods. Computations of
this type may also be possible for Kerr, and generalized to the
context of accretion discs.
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Our argument that Kerr is dual to a CFT parallels the
general one given by Brown and Henneaux [2] for AdS3,
except that we replace AdS3 with the NHEK (near-horizon
extreme Kerr) geometry found by Bardeen and Horowitz
[18] via a near-horizon limiting procedure.3 Despite having
different dimensions, the spaces bear some resemblance: a
slice of NHEK at a particular fixed polar angle is a discrete
quotient of AdS3. We first carefully specify boundary
conditions at the asymptotic infinity of NHEK (which is
where, before taking the near-horizon limit, it is joined to
Minkowski space in the full Kerr solution) and demon-
strate their consistency. We then show that, given these
boundary conditions, the so-called asymptotic symmetry
group (ASG) is one copy of the conformal group and
furthermore has a central charge cL ¼ 12J

@
. Hence extreme

Kerr, with the given boundary conditions, is dual to a chiral
CFT.4

While this very general analysis gives the central charge
of the dual CFT, it tells us little else about the detailed
structure of the CFT. For that to be determined we would
need an ultraviolet completion (for example string theory)
of quantum gravity on the Kerr background. However the
information about the central charge, together with the
assumption of unitarity, turns out to be exactly enough to
compute the extreme Kerr entropy by counting quantum
microstates, as in [4]. An analysis of the extreme limit of
the Frolov-Thorne vacuum, which generalizes the Hartle-
Hawking vacuum for Schwarzschild to Kerr, shows that the
CFT must be at temperature TL ¼ 1

2� . We then apply the

thermodynamic Cardy formula relating the microscopic
entropy of a unitary CFT to its temperature and central
charge. The resulting entropy agrees exactly with the mac-
roscopic Bekenstein-Hawking area-entropy law, providing
corroboration for our proposal that extreme Kerr is dual to
a two-dimensional chiral CFT.

The fact that we encounter only a chiral half of a CFT
ultimately derives from the fact that at extremality the
rotational velocity of the Kerr horizon becomes the speed
of light. Hence both edges of the forward light cone
coincide as the horizon is approached and force all physical
excitations (such as the edge of the accretion disc), which
must lie between the edges of light cone, to spin around
chirally with the black hole. Away from extremality this is
no longer the case and we may expect to encounter a

nonchiral CFT. This very interesting but difficult problem
will not be considered herein.
We wish to stress that, while mere consistency imposes

very strong constraints, we have not analyzed all possibil-
ities and have not shown that our near-horizon boundary
conditions are the unique consistent choice for studying
extreme Kerr. While we did not find any other consistent
and nontrivial choices, our search was not exhaustive, and
there may well be others with different consequences.
Ultimately, the appropriate boundary conditions should
be determined from the physical question. We do suspect
that weaker or different boundary conditions will be
needed for the just-mentioned problem of near-extremal
excitations. These issues remain for future work.
Section II reviews the Kerr geometry and Sec. III its

near-horizon limit. In Sec. IV we review the notion of an
ASG. Our boundary conditions are specified in Sec. V, and
the generators Ln of the corresponding ASG are shown to
form a Virasoro algebra in Sec. VI. The central charge is
computed in Sec. VII. In Sec. VIII we take the limit of the
Frolov-Thorne vacuum for Kerr, and show that it yields a
thermal state with temperature 1

2� . In the concluding sec-

tion we microscopically compute the entropy for extreme
Kerr from the Cardy formula and find that it reproduces the
macroscopic Bekenstein-Hawking area law. Some techni-
cal points are relegated to two appendices.
Previous work on a dual description of Kerr, some in the

context of string theory, includes [14,19–27].

II. KERR REVIEW

The Kerr metric [28,29] is the general rotating black
hole solution of the four-dimensional vacuum Einstein
equations. In Boyer-Lindquist coordinates it is

ds2 ¼ � �

�2
ðdt̂� asin2�d�̂Þ2

þ sin2�

�2
ððr̂2 þ a2Þd�̂� adt̂Þ2 þ �2

�
dr̂2 þ �2d�2

(2.1)

� � r̂2 � 2Mr̂þ a2; �2 � r̂2 þ a2cos2�; (2.2)

a � GJ

M
; M � GMADM: (2.3)

It is labeled by two parameters: the angular momentum J
and the geometric mass M. In order to simplify the for-
mulas, but at the risk of some confusion, in the above and
hereafter we have rescaled M by a factor of G relative to
the abstract and introduction. The solution has naked sin-
gularities unless J lies in the parameter range

�M2

G
� J � M2

G
: (2.4)

Of course, quantum mechanically J is quantized

3In this procedure the asymptotically flat region, whose ex-
citations we do not regard as part of the black hole itself, is
excised and one is left only with the portion of the spacetime
neighboring the black hole horizon.

4We do not have an argument for modular invariance and are
not distinguishing here between the chiral sector of a nonchiral
CFT and a CFT with only a chiral sector. It is interesting to note
however that a necessary condition for the partition function of
the latter to be modular invariant up to a sign, accounting for the
presence of fermions, given c ¼ 12J=@ is precisely that J=@ is
half-integral.

GUICA et al. PHYSICAL REVIEW D 80, 124008 (2009)

124008-2



J ¼ @j (2.5)

for some half integer j. There is an event horizon at

rþ ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
: (2.6)

The Hawking temperature, surface gravity and angular
velocity of the horizon are

TH ¼ @�

2�
¼ @ðrþ �MÞ

4�Mrþ
; (2.7)

�H ¼ a

2Mrþ
: (2.8)

These are related by the first law to the Bekenstein-
Hawking entropy [30,31]

SBH ¼ Area

4@G
¼ 2�Mrþ

@G
: (2.9)

We are primarily interested in the so-called extreme
Kerr, which carries the maximum allowed angular momen-
tum

J ¼ M2

G
: (2.10)

Extreme Kerr has zero Hawking temperature but a nonzero
entropy

SBH ¼ 2�J

@
(2.11)

Our goal is to explain this number as the logarithm of the
number of quantum microstates of Kerr.

III. THE NHEK GEOMETRY

We wish to study the region very near the extreme Kerr
horizon at r̂ ¼ M. In order to do so, following Bardeen and
Horowitz [18] we define new (dimensionless) coordinates

t ¼ �t̂

2M
; y ¼ �M

r̂�M
; � ¼ �̂� t̂

2M
(3.1)

and take � ! 0 keeping ðt; y; �; �Þ fixed. The result is the
near-horizon extreme Kerr or ‘‘NHEK’’ geometry in
Poincaré-type coordinates

ds2 ¼ 2GJ�2

��dt2 þ dy2

y2
þ d�2 þ�2

�
d�þ dt

y

�
2
�

(3.2)

where

�2 � 1þ cos2�

2
; � � 2 sin�

1þ cos2�
; (3.3)

���þ 2� and 0 � � � �. The NHEK geometry is not
asymptotically flat. Note that the angular momentum af-
fects only the overall scale of the geometry.

The coordinates (3.2) cover only part of the NHEK
geometry. Global coordinates ðr; �; ’Þ are given by (for a
discussion of global properties see [18])

y ¼ ðcos�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
þ rÞ�1; (3.4)

t ¼ y sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
; (3.5)

� ¼ ’þ ln

�
cos�þ r sin�

1þ sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
�
: (3.6)

The metric (3.2) is then

d�s2 ¼ 2GJ�2

�
�ð1þ r2Þd�2 þ dr2

1þ r2
þ d�2

þ�2ðd’þ rd�Þ2
�
: (3.7)

The NHEK geometry has an enhanced SLð2;RÞ �Uð1Þ
isometry group [18]. The rotational Uð1Þ isometry is gen-
erated by the Killing vector

�0 ¼ �@’: (3.8)

Time translations become part of an enhanced SLð2;RÞ
isometry group generated by the Killing vectors

~J 1 ¼ 2 sin�
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
p @� � 2 cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
@r

þ 2 sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p @’ (3.9)

~J 2 ¼ �2 cos�
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2
p @� � 2 sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
@r

� 2 cos�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p @’ (3.10)

~J 0 ¼ 2@�: (3.11)

Note that all of these isometries act within a three-
dimensional slice of fixed polar angle �. The geometry of
these slices is a quotient of warped AdS3 (the AdS3 analog
of the squashed S3), with the quotient arising from the ’
identification [32,33]. Such quotients are (warped) black
holes, much as AdS3 quotients are BTZ (Banados-
Teitelboim-Zanelli) black holes [34]. The �, r plane de-
scribes AdS2, while the ’ circle is an S1 bundle over the
AdS2. At the special value of � where�2 ¼ sin�, the slice
is locally an ordinary AdS3, and acquires a local
SLð2;RÞR � SLð2;RÞL isometry. At all other values of �,
the SLð2;RÞL is broken to Uð1Þ. Near the equator we have
a ‘‘stretched’’ AdS3 quotient (as the S

1 fiber is stretched),
while near the poles we have a ‘‘squashed’’ AdS3 quotient.
Properties of these three-dimensional spacetimes in a con-
text relevant to the present one were recently described in
[34].

IV. THE ASYMPTOTIC SYMMETRY GROUP

We now turn to the study of excitations around near-
horizon extreme Kerr. This requires imposing boundary
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conditions at the S2 � R boundary y ¼ 0. Since we lost the
asymptotically flat region in taking the near-horizon limit,
this boundary is not flat and it is not a priori obvious what
boundary conditions we should use. Indeed, different
boundary conditions may be relevant in different physical
contexts. For every consistent set of boundary conditions
there is an associated asymptotic symmetry group (ASG).
This is defined as the set of allowed symmetry transforma-
tions modulo the set of trivial symmetry transformations

ASG ¼ Allowed Symmetry Transformations

Trivial Symmetry Transformations
: (4.1)

Here ‘‘allowed’’ means that the transformation is consis-
tent with the specified boundary conditions, while ‘‘triv-
ial’’ means that the generator of the transformation
vanishes after we have implemented the constraints and
reduced it to a boundary integral.

Consistency requires that the generators of the ASG be
well defined and not diverge at the boundary. If the bound-
ary conditions are too strong, all interesting excitations are
ruled out. If they are too weak, the generators of the ASG
are ill-defined. In general, there is a narrow window of
consistent boundary conditions. For example, in asymp-
totically flat space, one usually requires that excitations of
the metric fall off like 1

r or faster at infinity. The ASG is

then simply the Poincaré group. One might try to demand
that the metric fall off spatially as 1

r2
. This would allow

only zero energy configurations and hence the theory
would be trivial. On the other hand, one might try to
demand that it fall off as 1ffiffi

r
p . Then the energy and other

symmetry generators would be in general divergent, and it
is unlikely any sense could be made of the theory. So the
general idea is to make the falloff weak enough to include
the physics of interest, while still maintaining finiteness of
the generators.

V. BOUNDARY CONDITIONS

We choose the boundary conditions

h�� ¼Oðr2Þ h�’ ¼Oð1Þ h�� ¼Oð1rÞ h�r ¼Oð 1
r2
Þ

h’� ¼ h�’ h’’ ¼Oð1Þ h’� ¼Oð1rÞ h’r ¼Oð1rÞ
h�� ¼ h�� h�’ ¼ h’� h�� ¼Oð1rÞ h�r ¼Oð 1

r2
Þ

hr� ¼ h�r hr’ ¼ h’r hr� ¼ h�r hrr ¼Oð 1
r3
Þ

0
BBBB@

1
CCCCA;

(5.1)

where h	
 is the deviation of the full metric from the

background NHEK metric �g in (3.7). We note that the
allowed deviations h�� and h’’

5 are of the same order as

the leading terms in (3.7). In this regard, these boundary
conditions differ, for example, from the usual AdS3 bound-

ary conditions [2], where all deviations are subleading. An
analysis with a number of similarities to the present one
(with nonsubleading deviations ) for the BMS group at Iþ
can be found in [35,36]. The most general diffeomor-
phisms which preserve the boundary conditions (5.1) are
of the form

� ¼ ½�r�0ð’Þ þOð1Þ�@r þ
�
CþO

�
1

r3

��
@�

þ
�
�ð’Þ þO

�
1

r2

��
@’ þO

�
1

r

�
@� (5.2)

where �ð’Þ is an arbitrary smooth function of the boundary
coordinate ’, and C is an arbitrary constant. The sublead-
ing terms indicated above can be seen, after computing the
generators, to correspond to trivial diffeomorphisms.
Therefore the asymptotic symmetry group contains one
copy of the conformal group of the circle generated by6

�� ¼ �ð’Þ@’ � r�0ð’Þ@r: (5.3)

This Virasoro algebra here has only a Uð1Þ, not an
SLð2;RÞ, isometry subgroup.7 The NHEK metric (3.2)
transforms under (5.3) as

�d�s
2 ¼ 4JG�2

�
r2ð1��2Þ@’�d�2 �

r@2’�

1þ r2
d’dr

þ�2@’�d’
2 � @’�

ð1þ r2Þ2 dr
2

�
: (5.4)

Since ’� ’þ 2� (because ���þ 2� ), it is conve-
nient to define �nð’Þ ¼ �e�in’ and �n ¼ �ð�nÞ. Under Lie
brackets, these symmetry generators obey the Virasoro
algebra

i½�m; �n�L:B: ¼ ðm� nÞ�mþn: (5.5)

Note that �0 generates the Uð1Þ rotational isometry.
The allowed symmetry transformations (5.2) also in-

clude � translations generated by @�. The conjugate con-
served quantity, which we denoted ER, measures the

deviation M2

G � J of the black hole from extremality. Here

we wish to study only the extremal black holes, which
entails a restriction to the subspace in which ER vanishes.
This restriction should be compatible with (5.3) because @�
commutes with the Virasoro generators. It can be imple-
mented with an additional boundary condition, given in
Sec. VI below, which makes the generator of � translations
trivial.
The reader may wonder how we came up with the

boundary conditions (5.1). We began by assuming (a) the

5The asymptotic constraints force a linear combination of
these, the trace of h	
, to vanish at linear order, as described
in Appendix A.

6�� is discontinuous at the north and south poles � ¼ ð0; �Þ.
This can be regulated by taking for example ~�� ¼ r2 sin�

1þr2 sin�
�

½�ð’Þ@’ � r�0ð’Þ@r�. Expanding in 1
r we see that

~�� and �� differ

by trivial diffeomorphisms, while ~�� is smooth for any finite r.
7This suggests that the CFT state dual to the Kerr vacuum is

not SLð2;RÞ invariant.
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existence of a nontrivial Virasoro whose zero mode is
proportional to @’ in the allowed diffeomorphisms, and

(b) the boundary conditions can be linearly described in
terms of power law falloff of the individual components of
the metric fluctuations. We found only one self-consistent
set of boundary conditions with these properties, up to
possible further constraints on subleading terms which do
not affect the ASG or its central charge. In studies of the
Gödel black hole [37] and warped AdS3 [38], consistent
boundary conditions were imposed in which the SLð2;RÞ
isometry is enhanced to a Virasoro algebra, and the Uð1Þ
isometry is enhanced to a current algebra. That is quite
different than the situation here (as well as in [39]) in
which the SLð2;RÞ becomes trivial and the Uð1Þ is en-
hanced to a Virasoro and therefore do not meet requirement
(a) above. We expect that consistent boundary conditions
analogous to those described in [37,38] do exist for Kerr. If
so, they are likely relevant to an understanding of the
entropy of near-extremal fluctuations [since the �L0 of the
SLð2;RÞ measures the deviation from extremality] rather
than the ground state entropy of extreme Kerr.

VI. GENERATORS

Now we need to construct the surface integrals which
generate the diffeomorphisms of (5.3) via Dirac brackets,
and see if they are finite. When the deviations h of the
metric are not subleading, the charges can have nonlinear
corrections, which must be carefully considered. For this
purpose the covariant formalism of Barnich, Brandt, and
Compère [40,41], based on [42–47] and further developed
in [48,49], is the most complete and will be adopted in the
following. An example, mathematically quite similar to the
present one, are the Gödel black holes analyzed in [37].

The generator of a diffeomorphism � is a conserved
charge Q� ½g�.8 Under Dirac brackets, the charges associ-

ated with asymptotic symmetries obey the same algebra as
the symmetries themselves, up to a possible central term.
Infinitesimal charge differences between neighboring ge-
ometries g	
 and g	
 þ h	
 are given by

Q� ½g� ¼ 1

8�G

Z
@�

k� ½h; g� (6.1)

where the integral is over the boundary of a spatial slice
and

k� ½h; g� ¼ �1
4���	


�
�
D	h� �
D�h

	�

þ ��D

h	� þ 1

2hD

�	 � h
�D��

	

þ 1
2h

�
ðD	�� þD��
	Þ
�
dx� ^ dx�: (6.2)

Covariant derivatives and raised indices are computed us-

ing g	
. In asymptotically AdS spacetimes, the formula

(6.1) for the charge is true even for finite h, and it agrees
with the charges obtained in the classic Hamiltonian
[2,50,51] or quasilocal [52,53] formalisms. However, in
certain cases such as 5d Gödel spacetimes [54,55], non-
linear contributions are important near the boundary, and
only infinitesimal h is allowed. In those cases, finite charge
differences are computed by integrating Q over a path in
the configuration space,

Q� ½g� �Q� ½ �g� ¼
Z
�
Q� ½gð�Þ� (6.3)

where � connects �g to g and hð�Þ in (6.1) is taken tangent
to the path. Path independence holds provided certain
integrability conditions are satisfied [41,49]. We show
that these conditions are obeyed around NHEK in
Appendix B.
The charges that generate @� and �� are

Q@� ¼
1

8�G

Z
@�

k@� ; Q�� ¼
1

8�G

Z
@�

k�� : (6.4)

Choosing g	
 to be the NHEK background, the integrands

simplify to

k@� ¼ �
�
1

4�
r

�
ð�4 þ�2 � 2Þh’’ þ�4

r2
h��

�

� 1

4�
½r3�4hrr þ 2r2�@�ð�hr�Þ

þ 2�2r@�hr’ þ 2ð�2 � 1Þr2@rh’’ þ 2�4h�’

��2rð�2 � 2þ 2r@rÞh���
�
d� ^ d�þ � � � (6.5)

k�� ¼
1

4�

�
2�2�0rhr’ � ��2

�
�2 h��

r2
þ ð�2 þ 1Þh’’

þ 2r@’hr’

��
d� ^ d’þ � � � : (6.6)

We have assumed the boundary conditions (5.1) and dis-
carded total ’ derivatives. Theþ� � � includes terms which
vanish for r ! 1 or are not tangent to @�, and so do not
contribute to the integral. From the boundary conditions
(5.1) we see immediately that k�� , and therefore Q�� , are

finite around NHEK. For a general background g	
, a

straightforward counting of powers of r term by term in
(6.2) reveals that Q�� remains finite.

In addition, we must show that Q@� , which measures the

deviation from extremality, is well defined. This does not
follow immediately from the boundary conditions (5.1).9 In
fact, as we are studying extreme Kerr, we want this charge
not only to be finite, but to vanish altogether, i.e. to be
trivial. We therefore impose the supplementary boundary

8We choose the arbitrary additive constants appearing in
[40,41] so that Q� ½ �g� ¼ 0 for �g the NHEK metric.

9A similar structure was encountered in [37], which similarly
imposes a supplementary boundary condition.
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condition

ER � Q@�½g� ¼ 0: (6.7)

This is equivalent to requiring that the pullback of k@� to

the boundary obeys k@� j@� ¼ dXj@� for some oneform X

globally defined on @�. Under the constraint (6.7), only
perturbations h which preserve (6.7) and only background
metrics g which can be reached from the NHEK geometry
via a path of such perturbations are considered. This
is presumably a complicated nonlinear submanifold of
the geometries allowed by the linear boundary conditions
(5.1). It can be shown that the ER ¼ 0 submanifold con-
tains, in particular, finite generalizations of the infinitesmal
�� diffeomorphisms acting on the NHEK geometry.10

These carry nonzero Q�� charges. The inclusion of such

spaces is expected because the �� and @� commute. We do
not know if there are other types of spaces with ER ¼ 0.
The answer likely depends on the matter content of the
theory, about which so far we have assumed only that it
does not affect the boundary behavior.

It remains to be seen that, with the supplementary
boundary condition (6.7), the transformations �� are still
allowed. Formally this follows from the fact that �� and @�
commute, but we must be careful about divergences. It is
easy to check directly that the perturbation (5.4), which
results from the action of �� on the NHEK geometry,
indeed yields a k@� obeying (6.7). For the more general

background consistent with (6.7), we use the fact that the
generators Q�� are well defined on the bigger space of

geometries obeying only (5.1). Therefore, they properly
generate the local action of a �� diffeomorphism. This will
preserve the local expression k@� j@� ¼ dXj@� of k@� as an

exact form on @� up to a c number corresponding to a
possible central term. The central term is [40]

1

8�G

Z
@�

k��½L� �g; �g� (6.8)

where L� is the Lie derivative along �. As there is no
possible central term between the generators of Virasoro
and � translations, this must vanish, in agreement with
explicit computation. Therefore we can consistently re-
strict to extremal configurations by imposing (6.7).

VII. CENTRAL CHARGE

The Dirac bracket algebra of the asymptotic symmetry
group is computed by varying the charges

fQ�m;Q�ngD:B: ¼ Q½�m;�n� þ
1

8�G

Z
@�

k�m½L�n
�g; �g�: (7.1)

For the NHEK geometry the Lie derivative gives

L �n
�g�� ¼ 4GJ�2ð1��2Þr2ine�in’ (7.2)

L �n �gr’ ¼ � 2GJ�2r

1þ r2
n2e�in’ (7.3)

L �n
�g’’ ¼ 4GJ�2�2ine�in’ (7.4)

L �n
�grr ¼ � 4GJ�2

ð1þ r2Þ2 ine
�in’: (7.5)

It follows that

1

8�G

Z
@�

k�m½L�n
�g; �g� ¼ �iðm3 þ 2mÞmþnJ: (7.6)

Let us now define dimensionless quantum versions of the
Q’s by

@Ln � Q�n þ
3J

2
n; (7.7)

plus the usual rule of Dirac brackets to commutators as
f:; :gD:B: ! � i

@
½:; :�. The quantum charge algebra is then

½Lm; Ln� ¼ ðm� nÞLmþn þ J

@
mðm2 � 1Þmþn;0: (7.8)

From this we can read off the central charge for extreme
Kerr

cL ¼ 12J

@
: (7.9)

For GRS 1915+105, this gives cL ¼ ð2� 1Þ � 1079, with
the uncertainty coming from the uncertainty in the mea-
sured mass.
We note that (7.9) does not depend on the details of the

boundary conditions (5.1) in that it holds for any boundary
conditions as long as the diffeomorphisms (5.3) are
allowed.

VIII. TEMPERATURE

In this section we derive the relation TL ¼ 1
2� for the

generalized temperature of the near-horizon region in units
of its inverse radius.
First, we must define the quantum vacuum for extreme

Kerr. This problem is subtle because Kerr has no every-
where timelike Killing vector, so in fact, globally, there is
no quantum state with all the desired properties of a
vacuum. There is an extensive literature on this subject
for the generic Kerr black hole, references to which can be
found in [56]. Frolov and Thorne [57] define a vacuum by
using a Killing vector field which is timelike from the
horizon out to the speed of light surface, which is the
surface at which an observer must move at the speed of
light in order to corotate with the black hole. The Frolov-
Thorne vacuum has some pathologies outside of this sur-

10Verifying this by explicit computation is a bit tricky because
of subtleties at the north and south pole, and uses the fact that
dk@� ¼ 0 on shell [40]. To make the computation well defined,
one must use a regulated form of �� as e.g. given in footnote 6.
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face [58], but is well behaved in the near-horizon region
[56], where it is an analog of the Hartle-Hawking vacuum
for Schwarzschild and is therefore ideal for our purposes.

Construction of the Frolov-Thorne vacuum for generic
Kerr begins by expanding the quantum fields in eigen-
modes of the asymptotic energy! and angular momentum
m. For example, for a scalar field � we may write

� ¼ X
!;m;l

�!mle
�i!t̂þim�̂flðr; �Þ: (8.1)

After tracing over the region inside the horizon, the vac-
uum is a diagonal density matrix in the energy-angular
momentum eigenbasis with a Boltzmann weighting factor

e�@ð!��HmÞ=TH : (8.2)

This reduces to the Hartle-Hawking vacuum in the non-
rotating �H ¼ 0 case.

In order to transform this to near-horizon quantities and
take the extremal limit (in which TH ! 0) we note that in
the near-horizon coordinates

e�i!t̂þim�̂ ¼ e�ði=�Þð2M!�mÞtþim� ¼ e�inRtþinL�; (8.3)

where

nL � m; nR � 1
�ð2M!�mÞ (8.4)

are the left and right charges associated to @� and @t in the

near-horizon region. In terms of these variables the
Boltzmann factor (8.2) is

e�@ð!��HmÞ=TH ¼ e�ðnL=TLÞ�ðnR=TRÞ; (8.5)

where the dimensionless left and right temperatures are

TL ¼ rþ �M

2�ðrþ � aÞ ; TR ¼ rþ �M

2��rþ
: (8.6)

In the extremal limit M2 ! GJ these reduce to

TL ¼ 1

2�
; TR ¼ 0: (8.7)

The left-movers are then thermally populated with the
Boltzmann distribution at temperature 1=2�11

e�2�nL: (8.8)

Note that even though extreme Kerr has zero Hawking
temperature, the quantum fields outside the horizon are
not in a pure state.

IX. MICROSCOPIC ORIGIN OF THE
BEKENSTEIN-HAWKING-KERR ENTROPY

In the previous section we saw that the quantum theory
in the Frolov-Thorne vacuum restricted to extreme Kerr
has the left-moving temperature

TL ¼ 1

2�
: (9.1)

Since the states of quantum gravity on NHEK, with the
boundary conditions (5.1), are identified under the holo-
graphic duality with those of the left-moving part of the
CFT, the CFT dual of the Frolov-Thorne vacuum must also
have temperature (9.1). The central charge of the CFTwas
shown to be

cL ¼ 12J

@
: (9.2)

According to the Cardy formula the entropy for a unitary
CFT at large TL obeys12

S ¼ �2

3
cLTL: (9.3)

Using (9.1) and (9.2), we find the microscopic entropy for
the dual to extreme Kerr

Smicro ¼ 2�J

@
¼ SBH: (9.4)

This exactly reproduces the macroscopic Bekenstein-
Hawking entropy (2.11) of the extreme Kerr black hole.
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APPENDIX A: ASYMPTOTIC CONSTRAINTS

In this appendix we work out the asymptotic form of the
constraint equations, which relate the leading order fluctu-
ations of the metric. In a Dirac bracket formalism, the
constraints, by construction, commute with everything.
Therefore the generators of the ASG are ambiguous up to
the additions of integrals proportional to the constraints.

11A fast but less rigorous way to derive this result is to note that
at every fixed polar angle �, the geometry is a quotient of warped
AdS3. The temperature for such quotients is the length of the
shift determining the quotient divided by 4�2 [34,59]. This gives
TL ¼ 1

2� for every �.

12A sufficient but not necessary condition for validity of the
Cardy formula is T 	 c. This condition is not obeyed here, as in
many black hole applications [3]. In many such cases the
formula is nevertheless valid because of the small gap arising
from highly twisted sectors [60]. For example we might expect a
twisted sector of order J, which is effectively described by a
universal cL ¼ 12 ‘‘long string’’ CFT at temperature TL ¼ J

2� . A
small gap is generic for black holes [61] so we hope that the
same mechanism is operative here.
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The constraint equations are G0
	 ¼ 0. Using the bound-

ary conditions (5.1), linearizing in h	
 and expanding to

leading order in 1=r, we can solve the asymptotic con-
straint equations as follows.

First consider G0
’ ¼ 0. At leading order this is a second

order differential equation for h’’ in �, and does not

involve the other metric components. The solution which
leads to a metric regular at the poles is

h’’ ¼ �2�2fð�;’Þ þOð1=rÞ: (A1)

Now consider G0
0 ¼ 0. This involves only �, h��, h’’, and

their first and second � derivatives. Plugging in the solution
for h’’, all the derivatives drop out and the solution is

h�� ¼ r2ð1��2Þ�2fð�; ’Þ þOðrÞ: (A2)

Now consider G0
� ¼ 0. This is proportional to

2�2ð�@����@��Þhr’ ��3�@�hr’ ��@��@’h’’:

(A3)

Plugging in the solution above for the � dependence of
h’’, we find

hr’ ¼ � 1

r

�
�2

2
@’fð�; ’Þ þ 16�2

�2
gð�; ’Þ

�
þO

�
1

r2

�
:

(A4)

Now consider G0
r ¼ 0. This involves �, hr’, @�ht’,

@2�hr’ @’h’’, and @’h��. Plugging in the solutions for

h	
 from above, the final condition is gð�; ’Þ ¼ 0. Note

that the constraints imply h � �g	
h	
 ¼ 0.

APPENDIX B: CHARGE INTEGRABILITY

In this appendix we show that to quadratic order around
the NHEK background, the charges (6.3) do not depend on
the path of integration over metrics, �. Since ER ¼ 0, only
Q��½g� needs to be checked. The integrability condition is

Z
@�
ðk��½h; gþ ~h� � k��½~h; gþ h� � k��½h� ~h; g�Þ ¼ 0

(B1)

keeping terms up to order h~h. The integrand is

� 1
8���	


�
~h

�
�
D	h� �
D�h

	�þ 1
2h

�
ðD	��þD��
	Þ
�

þ �
h�	D�
~h� �
ð2D�

~h
	
� �D	 ~h��Þh��

þ ��h�
D�
~h	� �ðh�� ~h
�D	��þh
� ~h

	�D��
�Þ

� ðh$ ~hÞ
�
dx�^dx�: (B2)

Using the boundary conditions (5.1) and the constraints

h ¼ ~h ¼ 0 derived in Appendix A, the component tangent
to @� vanishes on the NHEK background �g	
 for � ¼ ��.
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