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The rareK ! �� �� decays play a central role in testing the standard model and its extensions. Upcoming

experiments plan to measure the decay rates with high accuracy. Yet, unknown higher-order electroweak

corrections result in a sizeable theory error. We remove this uncertainty by computing the full two-loop

electroweak corrections to the top-quark contribution Xt to the rare decaysKL ! �0� ��,Kþ ! �þ� ��, and
B ! Xd;s� �� in the standard model. The remaining theoretical uncertainty related to electroweak effects is

now far below 1%. Finally we update the branching ratios to find BrðKL ! �0� ��Þ ¼ 2:43ð39Þð6Þ � 10�11

and BrðKþ ! �þ� ��Þ ¼ 7:81ð75Þð29Þ � 10�11. The first error summarizes the parametric, the second the

remaining theoretical uncertainties.
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I. INTRODUCTION

The branching ratios of the rare Kþ ! �þ� �� and KL !
�0� �� decays are dominated by contributions of internal
top quarks in the standard model. This short-distance sen-
sitivity results in a precise theory prediction, but also in a
proportionality to powers of V�

tsVtd. Accordingly, the
branching ratios are suppressed with respect to generic
new physics scenarios by the near diagonality of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. This leads
to a high sensitivity to new physics, and a precision mea-
surement of these modes could provide a decisive test of
the standard model and its extensions.

This potential will be exploited by a new generation of
experiments (NA62 at CERN, KOTO at JPARC, and the
proposed future experiment P996 at Fermilab), which aim
at measuring the branching ratios with unprecedented
precision.

In the standard model the K ! �� �� decays proceed
through Z penguin and electroweak box diagrams which
exhibit a powerlike Glashow-Iliopoulos-Maiani mecha-
nism. This implies a suppression of nonperturbative effects
and, related to this, that the low-energy effective
Hamiltonian [1,2]

H eff ¼ 4GFffiffiffi
2

p �

2�sin2�W

X
l¼e;�;�

ð�cX
l þ �tXtÞð�sL��dLÞ

� ð ��lL�
��lLÞ þ H:c: (1.1)

involves to an excellent approximation only a single effec-
tive operator. Here GF is the Fermi constant, � the elec-
tromagnetic coupling and �W the weak mixing angle. The
sum is over all lepton flavors, �i ¼ V�

isVid comprise the
CKM factors, and fL represents left-handed fermion fields.

The functions Xl constitute the charm-quark contribu-
tion toH eff and add 30% to the total branching ratio of the
Kþ ! �þ� �� decay, while they leave the CP-violating
KL ! �0� �� decay unaffected. The theoretical uncertainty

in Xl is 2.5% after next-to-next-to-leading order QCD
[3–5] and next-to-leading order (NLO) electroweak cor-
rections [6] are taken into account, and the resulting error
in the branching ratio is small.
The situation is different for the function Xt which

includes internal top-quark loops: it gives either the sole
or the dominant contribution to the neutral or the charged
decay modes, respectively. A two-loop electroweak calcu-
lation should cancel the sizeable scheme dependence of the
input parameters. Yet, only NLO QCD corrections [2,7,8]
and the leading term of the large-mt expansion of the two-
loop electroweak corrections are known. While unknown
higher-order QCD corrections result in a 1% uncertainty in
Xt, the uncertainty related to unknown subleading electro-
weak contributions is estimated to be�2% [9]. This can be
understood in the following way: the matching calculation
with internal top-quark loops is purely short distance, the
resulting operator renormalizes like a current, such that the
QCD perturbation theory converges well. Yet the on-shell
scheme counterterm of sin�W includes large higher terms
in the large-mt expansion. Hence the renormalization
scheme dependence of �=sin2�W in (1.1) cannot cancel
if only the leading term in the large-mt expansion is
taken into account. This was found in Ref. [9] where the
scheme difference between the on-shell scheme and the

MS scheme was only decreased from 5.6% to 3.4%
through the inclusion of the first order in the large-mt

expansion.
In this paper we will improve on the analysis of Ref. [9]

and compute the full electroweak two-loop corrections to
the top-quark contribution Xt. Only in such a way is it
possible to fix the definition of the electroweak input
parameters and reduce the uncertainty due to unknown
higher-order electroweak corrections from 2% to the per
mil level. Since a 2% uncertainty in Xt scales up to a 3% to
4% uncertainty in the branching ratios such a reduction of
the theoretical error is important, in particular, in light of
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the coming experiments. In addition, our results are
equally applicable for the B ! Xd;s� �� decays.

Our paper is organized as follows. In Sec. II we discuss
the dependence of our result on different renormalization
schemes. In Sec. III we present some technical details of
our calculation. Our numerical results are contained in
Sec. IV. In the Appendices we provide the analytic form
of the electroweak correction to Xt in the limit of small
sin�W and compare our expansion for a large top-quark
mass with the literature.

II. Xt BEYOND LEADING ORDER

The truncation of the perturbation theory results in a
residual scale and scheme dependence of the matrix ele-
ments of the effective Hamiltonian in Eq. (1.1). For the top-
quark contribution, the matrix element of the operator

Q� ¼ X
l¼e;�;�

ð�sL��dLÞð ��lL�
��lLÞ (2.1)

factorizes and 4�GF=ð2
ffiffiffi
2

p
�sin2�WÞ�tXt will be indepen-

dent of the renormalization procedure after higher-order
corrections are included. Let us now discuss the depen-
dence on the electroweak renormalization scheme and how
to combine these schemes with the NLO QCD results,

which are known in the MS scheme.
Pure QCD corrections leave GF, �, and sin2�W unaf-

fected, such that Xt is a renormalization scheme invariant
quantity if electroweak effects are ignored. It is then cus-
tomary to expand

Xt ¼ Xð0Þ
t þ �s

4�
Xð1Þ
t þ �

4�
XðEWÞ
t (2.2)

in terms of the leading-order (LO) contribution [10]

Xð0Þ
t ¼ xt

8

�
xt þ 2

xt � 1
þ 3xt � 6

ðxt � 1Þ2 lnxt

�
; (2.3)

where xt ¼ m2
t =M

2
W . The schemes for mt and MW are

defined below. The NLO QCD correction [2,7,8]

Xð1Þ
t ¼�29xt�x2t �4x3t

3ð1�xtÞ2
�xtþ9x2t �x3t �x4t

ð1�xtÞ3
lnxt

þ8xtþ4x2t þx3t �x4t
2ð1�xtÞ3

ln2xt� 4xt�x3t
ð1�xtÞ2

Li2ð1�xtÞ

þ8xt
@Xð0Þ

t

@xt
ln
�2

t

M2
W

(2.4)

fixes the renormalization scheme of the parameters which
appear in the LO contribution: namely, the top-quark mass.
Here, the QCD part of the top-quark mass counterterm is

defined in the MS scheme.
The leading term in the large-mt expansion of the two-

loop electroweak corrections XðEWÞ
t can be found in

Ref. [9], while the hitherto unknown full two-loop result

is computed in this paper. The sum of Xð0Þ
t and XðEWÞ

t will

only be invariant under an electroweak scheme change if it
is multiplied by the normalization factor of the effective

Hamiltonian, 4�GF=ð2
ffiffiffi
2

p
�sin2�WÞ. Accordingly, the

electroweak renormalization scheme has to be fixed for
the parameters in the normalization factor.
Since in the electroweak theory not all parameters are

independent, we have to specify the physical input parame-
ters, and we choose the set

GF;�;MZ;Mt; and MH: (2.5)

HereGF is the experimental value of theWilson coefficient
relevant for muon decay, � the fine structure constant, and
MZ the Z-boson pole mass. Mt is the top-quark mass,

where QCD corrections are renormalized in the MS
scheme, while the on-shell scheme is used for the electro-
weak corrections. The Higgs mass MH is essentially a free
parameter—its value is assumed to be consistent with
electroweak precision data.
For fixed input parameters we can now study the re-

maining residual higher-order uncertainty by using differ-
ent renormalization schemes. In the following discussion
we will make use of three renormalization schemes:

(i) The MS scheme for all parameters,

(ii) the on-shell scheme for all masses and the MS
scheme for all coupling constants,

(iii) or the on-shell scheme for all masses and the weak
mixing angle—the QED coupling constant is

renormalized in the MS scheme.

The explicit result for XðEWÞ
t is different for each renormal-

ization scheme. In practice, we perform our calculation in

theMS scheme and transform our result into the respective
scheme by a finite renormalization.
In all three schemes we renormalize the CKM parame-

ters in theMS scheme and useGF as a normalization factor
for the effective Hamiltonian in Eq. (1.1). The parameter
GF plays a special role, because it is by itself defined as a
Wilson coefficient, of the operator Q� ¼ ð ���L�	�LÞ�
ð �eL�	�eLÞ which induces the muon decay in the effective
Fermi theory. To make this more explicit we introduce the
following notation: We denote the Wilson coefficient

for muon decay by G� ¼ Gð0Þ
� þGðEWÞ

� þ . . . , where the

superscript (0) denotes the tree-level contribution, ðEWÞ
the one-loop electroweak corrections, and the ellipses
stand for terms beyond second order in the electroweak
interactions. By GF we then denote the experimental value
of G� as extracted from muon lifetime experiments

[11,12]. If we now write the effective Hamiltonian (1.1)
in the general form

H eff ¼ 4ffiffiffi
2

p �

2�sin2�W
C�Q� ¼ 4GFffiffiffi

2
p �

2�sin2�W
XtQ�;

(2.6)

we find
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Xð0Þ
t ¼ Cð0Þ

Gð0Þ
�

; XðEWÞ
t ¼ CðEWÞ

Gð0Þ
�

� Cð0ÞGðEWÞ
�

ðGð0Þ
� Þ2 : (2.7)

A. The MS scheme

In the MS scheme we use

g1; g2; v; �; and yt (2.8)

as fundamental parameters. Here g1 and g2 are the cou-
plings of the SUð2Þ and Uð1Þ gauge group, respectively, v
is the vacuum expectation value of the Higgs field, � the
quartic Higgs self-coupling, and yt the Yukawa coupling of
the top quark. All these parameters are running parameters,
depending on the renormalization scale �. We fix the
initial conditions of these parameters by expressing the
physical parameter set (2.5) through (2.8) using one-loop
accuracy1 and fitting the values of (2.8) to yield the experi-
mental values of (2.5).

We choose to cancel all tadpole diagrams with a finite
counterterm. This results in an additional finite renormal-
ization of all massive quantities—a sample diagram is
shown in Fig. 1. In this way we ensure that intermediate
results are gauge parameter independent.

B. Masses in the on-shell scheme

As a more well-behaved alternative, we use the on-shell
definition of the W-boson and the top-quark mass. Since

we performed our calculation in the MS scheme, we have
to perform a finite mass renormalization. The necessary
renormalization constants consistent with our treatment of
tadpole diagrams can be found in [13,14].

In addition, we have to specify the renormalization
scheme for the weak mixing angle. We will use the follow-
ing two schemes:

(i) In the on-shell scheme the weak mixing angle is
defined by s2W � sin2�on-shellW ¼ 1�M2

W=M
2
Z. Here

the W-boson mass is calculated including radiative
corrections from the input parameter set (2.5), which
introduces a Higgs-mass dependence. In addition,
the use of the on-shell value for sin2�W implies a

finite renormalization of ourMS results by including
a finite counterterm for sin2�W . It is given in terms of
the on-shell renormalization constants for MW and
MZ by


sW ¼ c2W
2sW

�

M2

Z

M2
Z

� 
M2
W

M2
W

����������¼0
; (2.9)

where the subscript � ¼ 0 implies setting the pole
part including the finite subtraction, � ¼
1=�� �E þ log4�, to zero. The expressions for

M2

Z and 
M2
W can again be found in [13,14].

(ii) The MS definition of the weak mixing angle, de-
noted by ŝND, leads to numerically tiny NLO cor-
rections. It is given in terms of s2W by [15]

ŝ 2
ND � sin2�MS

W ¼ s2W

�
1þ c2W

s2W

4��̂ðMZÞ
ŝ2ND

�	̂

�
;

(2.10)

where �̂ ¼ �MS, and c2W ¼ 1� s2W . The explicit
expression for �	̂ can also be found in [15].

The numerical discussion of the three different schemes is
given in Sec. IV.

III. CALCULATION

We determine the effective Hamiltonian by computing

the relevant standard model Green’s functions in the MS
scheme and matching them to the five-flavor effective
theory. To this end we have to calculate two-loop box
and penguin diagrams, samples of which are shown in
Fig. 1. All diagrams reduce to two-loop vacuum diagrams
after setting external momenta and light masses to zero.
The resulting loop integrals are computed using standard
methods [16,17]. All this is done in two independent
setups: one is using the FEYNARTS [18] package to generate
the diagrams and a self written MATHEMATICA program, the
other method uses a self written Form [19] program. The
Feynman gauge � ¼ 1 is used in both setups.
The integrals in the effective theory correspond to mass-

less diagrams with vanishing external momenta and are
exactly zero in dimensional regularization. The only re-
maining contributions are then products of renormalization
constants and tree-level matrix elements of the operators
Q�, defined in Eq. (2.1), and

E� ¼ X
l¼e;�;�

ð �sL��1
��2

��3
dLÞð ��lL�

�1��2��3�lLÞ

� ð16� 4�ÞQ�: (3.1)

The evanescent operator E� arises in the context of dimen-
sional regularization and vanishes algebraically in four
space-time dimensions. It leads to a nonvanishing finite
contribution to the Wilson coefficient, proportional to the
finite mixing of E� into Q�. The infinite operator renor-
malization constants are determined from the ultraviolet

FIG. 1. Sample penguin, box, and counterterm diagrams. Our
tadpole renormalization results in an explicit finite renormaliza-
tion of all massive quantities. The right-hand side diagram shows
a resulting counterterm diagram.

1For the Higgs-boson mass we use the tree-level relation.
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poles of the matrix elements of the operators between
external fermion states. They multiply the tree-level and
one-loop Wilson coefficients of the operators (2.1) and
(3.1) and cancel exactly the corresponding spurious infra-
red divergences of the standard model amplitude, thus
rendering the matching condition finite.

The use of dimensional regularization is in general in-
consistent with a fully anticommuting �5 matrix in d
dimensions, and we use the ’t Hooft-Veltman scheme in
our calculation. However, problems only arise when com-
puting traces containing at least three �5 matrices, appear-
ing in the anomalous fermion triangles (see for instance the
first diagram in Fig. 1). In all other cases we can use a naive
anticommuting �5 (NDR scheme), which avoids spurious
finite renormalizations required in the ’t Hooft-Veltman
scheme [20].

We have performed our calculation in theMS scheme as
described in Sec. II. The renormalization of masses and
couplings is performed in the usual way.

In order to ensure the canonical form of the kinetic term
for the down-type quarks, i �dL;k 6DdL;j, in the effective the-

ory, we perform a finite off-diagonal field renormalization.
The exchange of W bosons induces transitions between
quarks of different generations (cf. Figure 2). We rediagon-
alize the kinetic term by including a suitable finite part in

the (matrix-) field renormalization Z1=2
L;ij:

dbareL;i ¼ Z1=2
L;ijdL;j; (3.2)

where i denotes the generation of the down-type fermion
(i ¼ 1, 2, 3).

The renormalization leads to a finite result for XðEWÞ
t . As

an additional check we also verified that the full result is
analytically independent of the renormalization scale �.

IV. NUMERICS

In this section we present our numerical results and
discuss the theoretical uncertainty of the branching ratios
of the rare Kaon decays. For our numerical analysis we use
the central values and errors of the input parameters given
in Table I. As discussed in detail in Sec. II, we use �, GF,
and MZ as the basic input parameters for the electroweak
theory. The mass of theW boson is then not an independent
quantity; we calculate its mass using the approximate
formula given in Ref. [27], which includes the state-of-
the-art higher-order corrections.

Converting the on-shell top-quark massMTEV
t , measured

at Tevatron, to the MS scheme using three-loop

QCD accuracy, we find Mt � mMS;QCD
t ðmtÞ ¼ 163:7 GeV.

For this conversion as well as for the QCD running of Mt

and �s we use the MATHEMATICA package RUNDEC [28].

The electroweak correction term XðEWÞ
t cancels the

scheme and scale dependence of the prefactor �=sin2�W
up to higher orders in the electroweak interaction. The
remaining scheme and scale dependence will serve as an
estimate of the theoretical uncertainty of our result. To
facilitate the discussion, we define the scale and scheme
independent quantity

~Xt ¼ �ð�;MHÞ
�ð� ¼ MZ;MH ¼ 155 GeVÞ
� sin2�Wð� ¼ MZ;MH ¼ 155 GeVÞ

sin2�Wð�;MHÞ
Xtð�Þ: (4.1)

It is formally independent of� and coincides with Xtð�Þ at
� ¼ MZ and MH ¼ 155 GeV. We normalize ~Xt to our
central value for the Higgs-boson mass, MH ¼ 155 GeV;
as we will see below, the dependence on MH is very weak
for 115 GeV<MH < 200 GeV. The function ~Xt is plotted
in Fig. 3 for MH ¼ 155 GeV. Here the dashed line shows
the LO result. As is clearly visible, the inclusion of the two-
loop electroweak corrections (solid line) cancels the scale
dependence of the electroweak input parameters almost
completely, up to negligible corrections of 0.02%.
Next we discuss the dependence of our result on the

choice of the renormalization scheme. The difference be-

tween the MS and on-shell definition of the parameters
sin2�W andm2

t , appearing in the LO effective Hamiltonian,
amounts to roughly 4% and 7%, respectively, leading to a

FIG. 2. Sample diagrams which imply an off-diagonal field renormalization.

TABLE I. Input parameters used in our numerical analysis.

Parameter Value Reference

MZ 91.1876(21) GeV [21]

MH 155(40) GeV

MTEV
t 173.3(1.1) GeV [22]

mcðmcÞ 1.279(13) GeV [23]

ŝ2NDðMZÞ 0.2315(13) [21]

þ 0:5173ð25Þ � 10�10 [24]

L 2:231ð13Þ � 10�10 [24]

j�Kj 2:228ð11Þ � 10�3 [21]

�sðMZÞ 0.1184(7) [21]

�̂�1ðMZÞ 127.925(16) [21]

GF 1:166367ð5Þ � 10�5 GeV�2 [21]

� 0.2255(7) [25]

jVcbj 4:06ð13Þ � 10�2 [21]

�	 0:141þ0:029
�0:017 [26]

�� 0.343(16) [26]
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large dependence of the branching ratios on the renormal-
ization scheme, if the two-loop electroweak corrections are

not included. In turn, we will see that the inclusion of XðEWÞ
t

cancels this ambiguity almost completely. To get a quanti-
tative estimate, we evaluate the function Xt numerically in
the three renormalization schemes described in Sec. II.

In Fig. 4 we show ~Xt in dependence on the Higgs-boson

mass MH, where all couplings are defined in the MS
scheme and all masses in the on-shell scheme. In this
scheme the NLO electroweak corrections are tiny, of the
order of 1 per mil, even for very large Higgs masses.

In Fig. 5 we compare the results in two other schemes. In
the left panel we show ~Xt, where all parameters are defined

in the MS scheme. In the right panel, all parameters are
defined in the on-shell scheme, apart from �, which is

defined in the MS scheme. As expected, we observe that
for the on-shell definition of sin2�W (right panel) the
related ambiguity is cancelled by a sizeable (� 4%)

two-loop correction, whereas for the full MS definition
(left panel) the electroweak corrections amount to 1%.
We thus conclude that the on-shell definition of the

masses together with the MS definition of sin2�W is the
best choice of the renormalization scheme. We can read off
the maximal difference of the three renormalization
schemes from the two NLO curves in Fig. 5, right panel
– it amounts to 0.27%. For our numerics below, we will
take the average of the two curves and assign an error of
�0:134% to Xt, as resulting from the remaining uncer-
tainty of the electroweak correction. In total, using the
central values from Table I, we have

Xt ¼ 1:469� 0:017� 0:002; (4.2)

where the first error quantifies the remaining scale un-
certainty of the QCD corrections, and the second error
corresponds to the uncertainty of the electroweak correc-
tions. Here and below, we determine the QCD error on
Xt by varying the scale �c between 80 GeV and
320 GeV. Accordingly, our central value of Xt is the
average of max�Xtð�Þ and min�Xtð�Þ, where � 2
½60 GeV; 320 GeV�.
Next, let us comment on the validity of the large-mt

expansion of the full result, which can be gleaned from
Fig. 5: It is now evident that it is always a bad approxima-
tion to the full result, as has actually been expected before
[9,29].
For convenience we provide an approximate, yet very

accurate formula for the NLO electroweak correction

factor rX ¼ 1þ XðEWÞ
t =Xð0Þ

t :

rX ¼ 1� Aþ B � CðMt=165 GeVÞ �D

�
Mt

165 GeV

�
; (4.3)

where

A ¼ 1:115 08; B ¼ 1:123 16; C ¼ 1:153 38;

D ¼ 0:179 454: (4.4)

It approximates the full result within the limits 160 GeV 	
Mt 	 170 GeV to an accuracy of better than �0:05%.
Finally, we update the theoretical prediction of the

branching ratios, including the effect of the full two-loop
electroweak corrections. After summation over the
three neutrino flavors the resulting branching ratio for
Kþ ! �þ� �� can be written as2 [1,2,30]

FIG. 3. ~Xt (see text) as a function of �, for MH ¼ 155 GeV.
The LO result is represented by the dashed line, the solid line
includes the full two-loop electroweak corrections, which cancel
the �t dependence of the LO result almost completely.

FIG. 4. ~Xt as a function ofMH. The LO result is represented by
the dashed line, the solid line shows the result including the full
two-loop electroweak corrections. The NLO corrections in the
limit of large top-quark mass are represented by the dashed-
dotted line.

2We have omitted a term which arises from the implicit sum
over lepton flavors in Pc because it amounts to only 0.2% of the
branching ratio.
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BrðKþ ! �þ� ��ð�ÞÞ
¼ þð1þ �EMÞ

��
Im�t

�5
Xt

�
2

þ
�
Re�c

�
ðPc þ 
Pc;uÞ þ Re�t

�5
Xt

�
2
�
: (4.5)

The parameter

PcðXÞ ¼ 1

�4

�
2

3
Xe þ 1

3
X�

�
(4.6)

describes the short-distance contribution of the charm
quark, where � ¼ jVusj, and has been calculated including
electroweak corrections, in Ref. [6]. The charm-quark
contribution of dimension-eight operators at the charm-
quark scale �c [31] combined with long-distance contri-
butions were calculated in Ref. [30] to be


Pc;u ¼ 0:04� 0:02: (4.7)

The hadronic matrix element of the low-energy effective
Hamiltonian can be extracted from the well-measured Kl3

decays, including isospin breaking and long-distance QED
radiative corrections [24,32,33]. The long-distance contri-
butions are contained in the parameters þ, including NLO
and partially next-to-next-to-leading-order corrections in
chiral perturbation theory. �EM denotes the long-distance
QED corrections [24].

Including the two-loop electroweak corrections to Xt,
we find for the branching ratio of the charged mode

Br ðKþ ! �þ� ��Þ ¼ ð7:81þ0:80
�0:71 � 0:29Þ � 10�11; (4.8)

The first error is related to the uncertainties in the input
parameters. The main contributions are (Vcb:56%, �	:21%,
mc:8%, mt:6%, ��:4%, �s:3%, sin2�W :1%). The second
error quantifies the remaining theoretical uncertainty. In
detail, the contributions are (
Pc;u:46%, XtðQCDÞ:24%,

Pc:20%, þ:7%, XtðEWÞ:3%), respectively.

The branching ratio of the CP-violating neutral mode
involves the top-quark contribution only and can be
written as

Br ðKL ! �0� ��Þ ¼ L

�
Im�t

�5
Xt

�
2
: (4.9)

Again, the hadronic matrix element can be extracted from
the Kl3 decays and is now parametrized by L [24]. There
are no more long-distance contributions, which makes this
decay channel exceptionally clean.
Whereas the CP-conserving contribution to the branch-

ing ratio is completely negligible compared to the direct
CP-violating contribution within the standard model [34],
the indirect CP-violating contribution is of the order of 1%
and should be included at the current level of accuracy.
This can be achieved by multiplying the branching ratio
with the factor [35]

1� ffiffiffi
2

p j�Kj 1þ PcðXÞ=ðA2XtÞ � 	

�
; (4.10)

where A ¼ Vcb=�
2, and �K describes indirect CP violation

in the neutral Kaon system. Taking this factor into account,
and including again the full two-loop electroweak correc-
tions, we find

Br ðKL ! �0� ��Þ ¼ ð2:43þ0:40
�0:37 � 0:06Þ � 10�11: (4.11)

The first error is again related to the uncertainties in the
input parameters. Here main contributions are (Vcb:54%,
��:39%, mt:6%). The contributions to the second, theoreti-
cal uncertainty are (XtðQCDÞ:73%, L:18%, XtðEWÞ:8%,

Pc;u:1%), respectively. All errors have been added in

quadrature.

FIG. 5. ~Xt as a function of MH , in two different renormalization schemes. The dashed lines show the LO results, the dashed-dotted
lines the LO results including the electroweak corrections in the large-mt limit. The full two-loop results are represented by the dotted
lines. The left panel shows the results where all parameters are defined in theMS scheme. By contrast, in the right panel, all parameters
apart from � are defined in the on-shell scheme. For comparison, we also plot in both panels the NLO result, where all masses are
defined on-shell and all couplings in the MS scheme. It is represented by the solid lines.
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V. CONCLUSIONS

In this paper, we have calculated the complete two-loop
electroweak matching corrections to Xt, the top-quark
contribution to the rare decays KL ! �0� ��, Kþ !
�þ� ��, and B ! Xd;s� ��. This is, in particular, important

for rare kaon decays: future proposals aim at an experi-
mental accuracy of 3% for the branching ratios, while the
leading-order electroweak scheme ambiguity is of similar
size. Our calculation reduces the scheme ambiguity in Xt

from �2% to �0:134%. The resulting theory uncertainty
in the branching ratios is rendered from dominant to
negligible.

The absolute corrections are small in a renormalization

scheme where on-shell masses and MS coupling constants
are used for the electroweak sector. In addition, we analyze

the convergence in theMS scheme and the on-shell scheme
to estimate the remaining perturbative uncertainty.

Our analytic results are summarized by an approximate,
but very accurate formula. We also give the leading term in
a small sin�W expansion. The full expression can be ob-
tained upon request from the authors.
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APPENDIX A: sin�W EXPANSION

The explicit expression of the full two-loop electroweak

correction XðEWÞ
t is too long to be given explicitly here. The

result significantly simplifies if we expand in the small
parameter sin�W—see Fig. 6 for the validity of the expan-

sion. In the MS scheme, after normalizing the effective
Hamiltonian to GF, we find

XðEWÞ
t ðxt; a; ŝND; �Þ ¼ 1

128ŝ2ND

�X17
i¼1

ciAi þOðŝNDÞ
�
; (A1)

where a ¼ ðMH=m
MS
t Þ2,

c1 ¼ 1

3aðxt � 1Þ2xt
; c2 ¼ 1

ðxt � 1Þ3ðaxt � 1Þ’1

�
1

4

�
;

c3 ¼ 1

2ðxt � 1Þ3ðaxt � 1Þ’1

�
a

4

�
;

c4 ¼ 1

2ðxt � 1Þ3ðaxt � 1Þ’1

�
1

4xt

�
;

c5 ¼ 1

2ðxt � 1Þ3ðaxt � 1Þ’1

�
xt
4

�
;

c6 ¼ 1

ðxt � 1Þ3ðaxt � 1Þ’1

�
axt
4

�
;

c7 ¼ 1

2a2x2t ðxt � 1Þ3ðaxt � 1Þ’2

�
1

axt
;
1

a

�
;

c8 ¼ 1

axt � 1
log2ðaÞ;

c9 ¼ 1

3ðxt � 1Þ3ðaxt � 1Þ logðxtÞ;

c10 ¼ 1

2aðxt � 1Þ4xtðaxt � 1Þ log
2ðxtÞ;

c11 ¼ 1

ðxt � 1Þ2 log

�
�2

M2
W

�
;

c12 ¼ 1

ðxt � 1Þ3 logðxtÞ log
�
�2

M2
W

�
;

c13 ¼ 1

ðxt � 1Þ2ðaxt � 1Þ logðaÞ;

c14 ¼ 1

2aðxt � 1Þ3ðaxt � 1Þ logðxtÞ logðaÞ;

c15 ¼ 1

ðxt � 1Þ2 Li2ð1� aÞ; c16 ¼ 1

axt
Li2ð1� xtÞ;

c17 ¼ 1

aðxt � 1Þ2xt
Li2ð1� axtÞ;

and

A1¼þð16�48aÞ�2þð288a�ð32�88aÞ�2Þxt
þð2003aþ4ð4�6a�a2Þ�2Þx2t þð9að93þ28aÞ
�4að3�2aþ8a2Þ�2Þx3t þð3að172�49a�32a2Þ
þ4að20�aþ16a2Þ�2Þx4t �ð3að168þ11a�24a2Þ
þ4að45þ8a2Þ�2Þx5t þ96a�2x6t ;

FIG. 6. The sin�W expansion of XðEWÞ
t �=4� in theMS scheme

as a function of the renormalization scale �. The solid line
shows the full result, while the dashed line corresponds to the
leading term of the expansion.
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A2 ¼ �768xt � ð525� 867aÞx2t þ ð303þ 318aÞx3t � 195ax4t ;

A3 ¼ �8ð95� 67aþ 11a2Þx2t þ 2ð662� 78a� 177a2 þ 40a3Þx3t � ð608þ 476a� 595a2 þ 114a3Þx4t
þ ð44þ 188a� 321a2 þ 103a3 � 8a4Þx5t � að28� 72aþ 33a2 � 4a3Þx6t ;

A4 ¼ þ48� 10ð57þ 4aÞxt þ 51ð29þ 10aÞx2t � ð841þ 1265aÞx3t þ ð308þ 347aÞx4t � ð28� 40aÞx5t þ 12ax6t ;

A5 ¼ þ768þ ð816� 768aÞxt þ ð1240� 1232aÞx2t � 4ð415þ 2aÞx3t þ ð311þ 722aÞx4t
þ ð145� 267aÞx5t � ð36þ 51aÞx6t þ 20ax7t ;

A6 ¼ þ328xt � ð536þ 900aÞx2t þ ð208þ 1584aþ 670a2Þx3t � að668þ 1161aþ 225a2Þx4t
þ a2ð479þ 362aþ 28a2Þx5t � a3ð143þ 42aÞx6t þ 16a4x7t ;

A7 ¼ þ32� 4ð44� 9aÞxt þ ð384� 322a� 400a2Þx2t � ð400� 869a� 1126a2 � 696a3Þx3t þ 2ð80� 488a� 517a2

� 631a3 � 264a4Þx4t þ ð48þ 394aþ 269a2 þ 190a3 þ 882a4 þ 196a5Þx5t � ð64� 58a� 89a2 � 95a3 þ 34a4

þ 296a5 þ 32a6Þx6t þ ð16� 59a� 79a2 þ 256a3 � 239a4 þ 57a5 þ 48a6Þx7t þ ð1� aÞ3a2ð29þ 16aÞx8t ;

A8 ¼ þ28a2x2t � 32a3x3t ;

A9 ¼ �288þ 36ð1þ 8aÞxt þ 6ð647þ 87aÞx2t þ 5ð55� 927a� 132a2Þx3t � ð1233þ 98a� 879a2 � 192a3Þx4t
þ ð360þ 1371a� 315a2 � 264a3Þx5t � 24að17� 4a2Þx6t ;

A10 ¼ þ32þ 4ð�44þ 29aÞxt � 12ð�32þ 77aþ 31a2Þx2t þ 2ð�200þ 837aþ 767a2 þ 182a3Þx3t
� 2ð�80þ 625aþ 905a2 þ 520a3 þ 82a4Þx4t þ ð48þ 1079aþ 590a2 þ 1002a3 þ 462a4 þ 32a5Þx5t
þ ð�64� 1160a� 501a2 � 364a3 � 486a4 � 72a5Þx6t þ ð16þ 729aþ 1038a2 þ 38a3 þ 238a4 þ 52a5Þx7t
� að192þ 743aþ 50a3 þ 12a4Þx8t þ 192a2x9t ;

A11 ¼ þ16xt þ 324x2t � 36x4t ; A12 ¼ þ216xt � 672x2t þ 152x3t ;

A13 ¼ �16xt þ ð16� 42aÞx2t þ ð16þ 21aþ 60a2Þx3t � ð16� 21aþ 45a2 þ 32a3Þx4t � a2ð7� 24aÞx5t ;

A14 ¼ �32þ ð144� 68aÞxt þ ð�240þ 334aþ 332a2Þx2t þ ð160� 551a� 660a2 � 364a3Þx3t
þ að329þ 451aþ 650a2 þ 164a3Þx4t þ ð�48� a� 59a2 � 523a3 � 316a4 � 32a5Þx5t
þ ð16� 43a� 93a2 þ 255a3 þ 287a4 þ 32a5Þx6t � a2ð�29þ 42aþ 103a2 þ 8a3Þx7t ;

A15 ¼ �144ð1� aÞ2x2t þ 144ð1� aÞ2x3t � 36ð1� aÞ2x4t ;
A16 ¼ �32þ 96aþ ð48� 32aÞxt � 176ax2t � ð16� 74aÞx3t þ 212ax4t ;

A17 ¼ �32þ ð64� 100aÞxt � 8ð4� 34a� 29a2Þx2t � 4að34þ 170aþ 33a2Þx3t
þ 8a2ð47þ 51aþ 4a2Þx4t � 16a3ð15þ 4aÞx5t þ 32a4x6t :

Here we use

Li 2ð�Þ ¼ �
Z 1

0

logð1� �tÞ
t

dt;

and the two-loop functions ’1 and ’2 are given by [17]
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’1ðzÞ ¼

8>>><
>>>:
4

ffiffiffiffiffiffiffi
z

1�z

q
Cl2ð2 arcsinð ffiffiffi

z
p ÞÞ; 0 	 z < 1;

1
�z

�
2ln2 1��z

2 � 4Li2
1��z

2 � ln2ð4zÞ þ 1
3�

2

�
; z > 1;

(A2)

and

’2ðx;yÞ¼

8>>>>>>>>><
>>>>>>>>>:

1
�

�
�2

3 þ2ln

�
1
2ð1þx�y��Þ

�
ln

�
1
2ð1�xþy��Þ

�
� lnx lny�2Li2

�
1
2ð1þx�y��Þ

�

�2Li2

�
1
2ð1�xþy��Þ

��
; �2
0;

ffiffiffi
x

p þ ffiffiffi
y

p 	1;

2ffiffiffiffiffiffiffi
��2

p
�
Cl2

�
2arccos

�
�1þxþy
2
ffiffiffiffi
xy

p
��

þCl2

�
2arccos

�
1þx�y
2
ffiffi
x

p
��

þCl2

�
2arccos

�
1�xþy
2
ffiffi
y

p
���

; �2	0;
ffiffiffi
x

p þ ffiffiffi
y

p 
1:

(A3)

Here �z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=z

p
and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� x� yÞ2 � 4xy

p
.

The Clausen function is defined by Cl2ðzÞ ¼
�R

�
0 d� lnj2 sinð�=2Þj.

APPENDIX B: THE LARGE-mt EXPANSION

The two-loop electroweak corrections to the bbZ vertex,

denoted by �ð2Þb , have been calculated in the limit of a large

top-quark mass by Barbieri et al. in [36,37] and were
confirmed by Fleischer, Tarasov, and Jegerlehner [38], who
found a particularly simple analytic form of the results.
Buchalla and Buras have extracted from this result the
corrections to the sdZ vertex, which they used for their
analysis of the K ! �� �� decays in [9]. We will now take
the limit mt ! 1 in our complete result for the sd��
transition and compare it with the result in [38].

Several important points should be mentioned here: As
observed in [9], only Z penguin diagrams contribute to the
sd�� transition in the large-mt limit. The results in [38]
have been obtained in the so-called ‘‘gaugeless limit,’’
where, in particular, the W boson field does not appear.
Accordingly, the parameter corresponding to our xt is

defined in [38] by xt �
ffiffiffi
2

p
G�m

2
t =ð16�2Þ and will be de-

noted by ~xt in our paper. As a consequence, the result for

�ð2Þb is normalized to G2
F in [38]. On the other hand, we

performed a full standard model calculation and afterwards
took the limit mt ! 1.

Thus we now take the large-mt expansion of our result,
factor out G2

F, and perform a finite renormalization of the

top-quark mass in our LO result, by replacing mMS
t ¼

Mt þ 
Mt, in order to transform into the on-shell scheme.
Here 
Mt is given in the large-mt limit by


Mt

Mt

¼ e2

16�2s2W
xt

�
3

a
þ 1� 1

2
a� 1

16
ð4a1=2 � a3=2ÞgðaÞ

þ 1

16
a2 loga

�
; (B1)

and

gðaÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
a� 4

p �
arctanh

�
2� affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða� 4Þap

�

þ arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffi
a

a� 4

r ��
: (B2)

In this way we reproduce the result in [38]:

�ð2Þ;on-shellb ¼ 9� 13

4
a� 2a2 �

�
1

24
þ 7

12
a2 � 1

2
a3
�
�2

�
�
19

4
aþ 3

2
a2
�
lna�

�
7

4
a2 � 3

2
a3
�
ln2a

�
�
7

4
� 15

2
aþ 39

4
a2 � 4a3

�
Li2ð1� aÞ

� ð2� a

2
Þ ffiffiffi

a
p

gðaÞ � 1

2

�
7� 18aþ 33

4
a2 � a3

�
’1

�
a

4

�
:

(B3)

It corresponds to the effective Hamiltonian in the limit of
large top-quark mass

H eff ¼4GFffiffiffi
2

p �

2�sin2�W
�t

�
xt
8
þ �

4�

x2t
32sin2�W

ð3þ�ð2Þb Þ
�
Q�:

(B4)

Our result in the MS scheme is given by

�ð2Þ;MS
b ¼ �2� 11

4
a� 2a2 �

�
1

24
þ 7

12
a2 � a3

2

�
�2

�
�
7

4
aþ 2a2

�
lna�

�
7

4
a2 � 3

2
a3
�
ln2a

�
�
7

4
� 15

2
aþ 39

4
a2 � 4a3

�
Li2ð1� aÞ

� 1

2

�
7� 18aþ 33

4
a2 � a3

�
’1

�
a

4

�
(B5)

for �t ¼ Mt. It is normalized to GF and thus independent
of the tadpole contribution.
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