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We report measurements of the Casimir force between a gold sphere and a silicon surface with an array
of nanoscale, rectangular corrugations using a micromechanical torsional oscillator. At distances between
150 and 500 nm, the measured force shows significant deviations from the pairwise additive formulism,
demonstrating the strong dependence of the Casimir force on the shape of the interacting bodies. The
observed deviation, however, is smaller than the calculated values for perfectly conducting surfaces,
possibly due to the interplay between finite conductivity and geometry effects.
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The Casimir force is the interaction between neutral
conductors that can be understood as resulting from the
alteration of the zero point energy of the electromagnetic
field in the presence of boundaries [1]. For two perfect
metallic planar surfaces, the force is attractive and is given
by Fc � �2

@cA=240z4, where c is the speed of light, @ is
the Planck’s constant=2�, z is the separation between the
plates, and A is the area of the plates. There exists a close
connection between the Casimir force between conductors
and the van der Waals (vdW) force between molecules. For
the former, the quantum fluctuations are often associated
with the vacuum electromagnetic field, while the latter
commonly refers to the interaction between fluctuating
dipoles. In simple geometries such as two parallel planes,
the Casimir force can be interpreted as an extension of the
vdW force in the retarded limit. The interaction between
molecules in the two plates is summed to yield the total
force. However, such summation of the vdW force is not
always valid for extended bodies because the vdW force is
not pairwise additive. The interaction between two mole-
cules is affected by the presence of a third molecule. One
important characteristic of the Casimir force is its strong
dependence on geometry [2]. The Casimir energy for a
conducting spherical shell [3] or a rectangular box [4,5]
has been calculated to have opposite sign to parallel plates.
Whether such geometries exhibit repulsive Casimir forces
remains a topic of current interest [6].

In recent years, there have been a number of precision
measurements of the Casimir force [7–15]. These experi-
ments yield agreement with the theoretical calculations to
accuracies of better than 1% when nonideal behavior of the
metallic surfaces [16–18] are taken into account. The vast
majority of force measurements were performed between a
sphere and a flat plate, two flat plates, or two cylinders. For
these simple geometries, the Casimir force is not expected
to show significant deviations from the pairwise additive
approximation (PAA) at small separations. There has only

been one experiment that involved surfaces of other ge-
ometries, where the Casimir force is measured between a
sphere and a plate with small sinusoidal corrugations [19].
While this measurement shows deviations from PAA, the
interpretation of the deviation is still controversial. For
example, the Casimir force for sinusoidal corrugations on
perfect conductors was calculated without the assumption
of PAA [20]. The deviation from PAA is found to be strong
only when the ratio of the separation to the periodicity of
corrugation � is large. In Ref. [19], � is not small enough
for deviations from PAA to be significant. It is suggested
that lateral movement of the two surfaces may be able to
account for the deviations [21].

In this Letter, we report measurements of the Casimir
force between nanostructured silicon surfaces and a gold
sphere. One of the interacting objects consists of a silicon
surface with nanoscale, high aspect ratio rectangular cor-
rugations. The other surface is a gold-coated glass sphere
attached onto a micromechanical torsional oscillator.
Lateral movements of the surfaces are avoided by position-
ing the corrugations perpendicular to the torsional axis.
The Casimir force gradient is measured from the shifts in
the resonant frequency of the oscillator at distances be-
tween 150 and 500 nm. Deviations of up to 20% from PAA
is observed, demonstrating the strong geometry depen-
dence of the Casimir force. The measured deviation is,
however, about a factor of 2 smaller than deviations ex-
pected for perfectly conducting surfaces [22].

Figure 1(a) shows a cross section of an array of rectan-
gular corrugations with period of 400 nm (sample B)
fabricated on a highly p-doped silicon substrate. Two other
samples, one with period 1 �m (sample A) and the other
with a flat surface, are also fabricated. The fabrication
procedure started with a layer of silicon oxide (0:2 �m)
deposited onto a blank silicon wafer by chemical vapor
deposition. Lithography was performed with a deep ultra-
violet stepper followed by reactive ion etching to transfer
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the pattern from the photoresist to the silicon oxide.
Trenches with depths t � 2a (�1 �m) were then created
using deep reactive ion etching using the oxide as etch
mask. A continuous etch and deposit recipe was used to
yield smooth side walls at 90.3� and 91.0� to the top
surface, respectively, for samples A and B. Residual hydro-
carbons were removed using an oxygen plasma etch.
Finally, the oxide etch mask is removed using hydrofluoric
acid. In order to ensure that the optical properties of the
silicon are identical, all samples were fabricated on the
same wafer and later diced into 0.7 by 0.7 mm pieces for
the force measurement.

The geometry of nanoscale, rectangular trenches was
chosen because the Casimir force on such structures is
expected to exhibit large deviations from PAA. We con-
sider the interaction between the trench array and a parallel
flat surface at distance z from the top surface of the
trenches. In the pairwise additive picture, this interaction
is a sum of two contributions: the volume from the top
surface to the bottom of the trench and the volume below
the bottom of the trench. The latter component is negligible
because the distance to the other surface is more than
1 �m, larger than the distance range at which Casimir
forces can be detected in our experiment. For a trench
array of 50% duty cycle, the former component yields
exactly half of the interaction between two flat surfaces
Fflat regardless of the periodicity because half of the ma-
terial is removed [22]. In practice, the trench arrays are
created with duty cycle close to but not exactly at 50%.
Under PAA, the total force is equal to pFflat, where p is the
fraction of solid volume. The calculation of the Casimir
force in such corrugated surfaces, in contrast, is highly
nontrivial. While perturbative treatments [20] are valid for
smooth profiles with small local curvature, they are im-

practical for the deep, rectangular corrugations. Using a
different approach based on path integrals, Büscher and
Emig [22] calculated the Casimir force for the corrugated
geometry made of perfect conductors. Strong deviations
from PAA were obtained when the ratio z=� is large. In the
limit when � goes to zero, the force on a trench array
approaches the value between flat surfaces, leading to
deviations from PAA by a factor of 2. Such large deviations
occur because the Casimir force is associated with con-
fined electromagnetic modes with wavelength comparable
to the separation between the interacting objects. When
�� z, these modes fail to penetrate into the trenches,
rendering the Casimir force on the corrugated surface
equal to a flat one.

We measure the gradient of the Casimir force on the
silicon trench arrays using a gold-coated sphere attached to
a micromechanical torsional oscillator [10]. The oscillator
consists of a 3:5 �m thick, 500 �m square silicon plate
suspended by two torsional rods. As shown in Fig. 1(c),
two glass spheres, each with radius R of 50 �m, are
stacked and attached by conductive epoxy onto the oscil-
lator [13] at a distance of b � 210 �m from the rotation
axis. The large distance (�200 �m) between the oscillator
plate and the corrugated surface ensures that the attraction
between them is negligible and only the interaction be-
tween the top sphere and the corrugated surface is mea-
sured. Before attachment, a layer of gold with thickness
4000 A is sputtered onto the spheres. Two electrodes are
located between the plate and the substrate. Torsional
oscillations in the plate are excited when the voltage on
one of the electrodes is modulated at the resonant fre-
quency of the oscillator (f0 � 1783 Hz, quality factor
Q � 32 000). For detecting the oscillations, additional ac
voltages at amplitude of 100 mVand frequency of 102 kHz
is applied to measure the capacitance change between the
top plate and the electrodes. A phase-locked loop is used to
track the shifts in the resonance frequency [10] as the
sphere approaches the other silicon plate through extension
of a closed-loop piezoelectric actuator. As shown in
Fig. 1(c), the movable plate is positioned so that its tor-
sional axis is perpendicular to the trench arrays in the other
silicon surface. Such an arrangement eliminates motion of
the movable plate in response to lateral Casimir forces
[21,23] because the spring constant for translation along
the torsional axis is orders of magnitude larger than the
orthogonal direction in the plane of the substrate.

To prepare the silicon surface [14] for force measure-
ment, hydrofluoric acid is used to remove the native oxide
on the surface of the silicon chip. The hydrofluoric acid
also passivates the silicon surface to temporarily prevent
oxide formation at ambient pressure. In the next step, the
silicon chip is baked at 120 �C for 15 minutes to eliminate
residual water that might have accumulated in the trenches.
The silicon chip is then positioned to within a few micro-
meters from the gold sphere, and the chamber is immedi-
ately evacuated to a pressure of 10�6 torr by a dry roughing
pump and a turbo pump.

FIG. 1. (a) Cross section of rectangular trenches in silicon,
with periodicity of 400 nm and depth of 0:98 �m (sample B).
(b) Top view of the structure. (c) Schematic of the experimental
setup (not to scale) including the micromechanical torsional os-
cillator, gold spheres, and silicon trench array. (d) Measurement
scheme with electrical connections. Excitation voltages Vac1 and
Vac2 are applied to the bottom electrodes.
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For small oscillations where nonlinear effects can be
neglected, the resonant frequency shift �f of the oscillator
is proportional to the gradient of the force F0�z� between
the surfaces,

 �f � CF0�z�; (1)

where C � �b2=8�2f0I and I is the moment of inertia of
the oscillator. The distance z is given by z0 � zpiezo � b�,
where z0 is the initial separation between the two surfaces,
zpiezo is the extension of the piezoelectric actuator, and b�
is the modification of the separation due to rotation of the
top plate to angle �. To calibrate z0 and the proportionality
constant C, a dc voltage V is applied to the silicon plate
with the gold sphere electrically grounded. The electro-
static force between a sphere and a flat plate is given by

 Fe � 2��0�V � V0�
2
X1

n�1

�coth��� � n coth�n��	
sinh�n��

; (2)

where cosh� � 1
 d=R and �0 is the permittivity of
vacuum. The residual voltage V0 is measured to be ��
0:43V by determining V at which �f attains minimum at
fixed z. For 100 nm< z < 2 �m, V0 is found to vary by
less than 3 mV. In Fig. 2, the solid line represents a fit to the
measured electrostatic force gradient for a flat surface. The
contribution of the Casimir force gradient to the measured
frequency shift (<4% at the smallest z) has been sub-
tracted. By averaging the fitted values for six sets of data
with V ranging from V0 
 245 mV to V0 
 300 mV, C is
determined to be 628� 5 m N�1 s�1. The voltages are
chosen to be larger than V0 to avoid depleting the surface
of the p-doped silicon with charge carriers. A similar
calibration procedure is performed on the silicon trench
arrays (dashed line in Fig. 2). Since there is no analytic
expression for the trench geometry, the electrostatic force
is calculated by solving Poisson’s equation in 2D using

finite element analysis. As shown in the inset to Fig. 2, the
boundary conditions are set by maintaining a fixed poten-
tial between the trench array and a flat surface, with the
volume between them divided into N > 10 000 triangles.
Since R� z, the proximity force approximation Fsc �
2�REfc can be used to obtain the force Fsc between a
sphere and a corrugated surface from the electrostatic
energy Efc between a flat surface and a corrugated surface.
To ensure that N is sufficiently large, we checked that the
calculated force varies by less than 0.1% even when N is
doubled.

The dimensions of the trench array used in the calcu-
lation were obtained from the scanning electron micro-
graphs: the fraction of solid volume p is determined from
the percentage of bright pixels in the top view similar to
Fig. 1(b). Ten pictures at different locations with area 30 by
50 �m for sample A and 20 by 35 �m for sample B were
used to calculate pA and pB to be 0:478� 0:002 and
0:510� 0:001, respectively. The cross sectional view
yields the trench depth (tA � 0:98 �m and tB �
1:07 �m). As shown in Fig. 1(a), while we have optimized
the fabrication process so that the top corner of the trenches
has a sharp rectangular shape, the bottom sections show
certain degree of rounding. In all analysis described here,
the trenches are assumed to have perfect rectangular shape.
The validity of such approximation is justified by the in-
sensitivity of the calculated electrostatic force on the depth
of the trenches. Varying the depth of the trenches by 10%
produces less than 0.01% change in the calculated force.
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FIG. 2. Gradient of the electrostatic force (V�V0
300 mV)
on the flat silicon surface (solid circles) and corrugated silicon
structure (hollow squares). The solid line is a fit using Eq. (2) for
the flat surface. The dashed line is a fit using the force gradient
from finite element analysis for the corrugated structure. Inset:
The space between the corrugated structure and a flat surface is
divided into triangular mesh to solve the Poisson equation in 2D
(z � 200 nm).
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FIG. 3. Measured Casimir force gradient between the same
gold sphere and (a) a flat silicon surface, F0c;flat, (b) sample A,
F0c;A (� � 1 �m), and (c) sample B, F0c;B (� � 400 nm). In
(a), the line represents the theoretical Casimir force gradient
including finite conductivity and surface roughness corrections.
In (b) and (c), the lines represent the force gradients expected
from PAA (pF0c;flat). (d) Ratio � of the measured Casimir force
gradient to the force gradient expected from PAA, for samples A
(�=a � 1:87, hollow circles) and B (�=a�0:82, solid squares),
respectively. Theoretical values [22] for perfectly conducting
surfaces are plotted as the solid (�=a � 2) and dashed lines
(�=a � 1).
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By setting V equal to V0, the Casimir force gradient
F0c;flat is measured between the gold sphere and a flat silicon
surface [solid circles in Fig. 3(a)] obtained from the same
wafer on which the corrugated samples A and B were
fabricated. The main source of uncertainty in the measure-
ment (�0:64 pN�m�1 at z � 300 nm) originates from the
thermomechanical fluctuations of the micromechanical
oscillator. As the distance decreases, the oscillation ampli-
tude is reduced to prevent the oscillator from entering the
nonlinear regime [10]. At distances below 150 nm, the
oscillation amplitude becomes too small for reliable op-
eration of the phase-locked loop. In Fig. 3(a), the line
represents the theoretical force gradient between the gold
sphere and the flat silicon surface, including both the finite
conductivity and roughness corrections. Lifshiftz’s expres-
sions [14,16,17] are used to take into account the finite
conductivity. For the gold surface, tabulated values of the
optical properties [24] were used. For the silicon surface,
the tabulated values were further modified by the concen-
tration of carriers (2
 1018 cm�3) determined from the dc
conductivity of the wafer (0:028 � cm) [14]. Using an
atomic force microscope (NTMDT), the main contribution
to the roughness is found to originate from the gold surface
(�4 nm rms) rather than the silicon wafer (�0:6 nm rms).
The roughness correction [17,18] is taken into account by
the geometrical averaging method [14].

The Casimir force gradients F0c;A and F0c;B between the
same gold sphere and the corrugated samples A and Bwere
then measured and plotted in Figs. 3(b) and 3(c). As
described earlier, under PAA, the forces on the trench
arrays (where z is measured from the top of the corrugated
surface) are equal to the force on a flat surface multiplied
by the fractional volumes pA and pB. The solid lines in
Figs. 3(b) and 3(c) represent the corresponding force gra-
dients, pAF0c;flat and pBF0c;flat, respectively. Measurement of
the force gradient was repeated 3 times for each sample,
yielding results that are consistent within the measurement
uncertainty. To analyze the deviations from PAA, the ratios
�A � F0c;A=pAF

0
c;flat and �B � F0c;B=pBF

0
c;flat are plotted in

Fig. 3(d). The ratio � equals one if PAA is valid. For
sample A with �=a � 1:87, where a is half the depth of
the trenches, the measured force deviates from PAA by
�10%. In sample B with �=a � 0:82, the deviation in-
creases to �20%. For 150 nm< z< 250 nm, the mea-
sured Casimir force gradient in both samples show clear
deviations from PAA. At larger distances, the uncertainty
increases considerably as the force gradient decreases.

We compare our experimental results on silicon struc-
tures to calculations by Büscher and Emig [22] on perfect
conductors [solid and dashed lines in Fig. 3(d)]. In this
calculation, the Casimir force between a flat surface and a
corrugated structure with p � 0:5 was determined for a
range of �=a using a path integral approach. Since R� z,
the proximity force approximation allows a direct com-
parison of our measured force gradient using a sphere and
the predicted force that involved a flat surface. The mea-

sured deviation in sample B is larger than sample A, in
agreement with the notion that geometry effects become
stronger as �=a decreases. However, the measured devia-
tions from PAA are smaller than the predicted values by
about 50%, significantly exceeding the measurement un-
certainty for 150 nm< z < 250 nm. Such discrepancy is,
to a certain extent, expected as a result of the interplay be-
tween finite conductivity and geometry effects. The rela-
tively large value of the skin depth in silicon (�11 nm at
wavelength of 300 nm) could reduce the deviations from
PAA. So far, exact computation of the Casimir force in-
cluding both finite conductivity and geometry effects for
strongly deformed rectangular trenches has not yet been
performed. It is a nontrivial problem that warrants further
theoretical analysis.
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