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We apply a feedback cooling technique to simultaneously cool the three electromechanical normal
modes of the ton-scale resonant-bar gravitational wave detector AURIGA. The measuring system is based
on a dc superconducting quantum interference device (SQUID) amplifier, and the feedback cooling is
applied electronically to the input circuit of the SQUID. Starting from a bath temperature of 4.2 K, we
achieve a minimum temperature of 0.17 mK for the coolest normal mode. The same technique,
implemented in a dedicated experiment at subkelvin bath temperature and with a quantum limited
SQUID, could allow to approach the quantum ground state of a kilogram-scale mechanical resonator.
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The prospect of observing quantum behavior and inves-
tigating decoherence in macroscopic mechanical resona-
tors [1,2] requires cooling to ultralow temperatures, such
that the thermal energy becomes comparable to the quan-
tum energy. In addition to conventional refrigeration, this
goal requires the use of feedback cooling techniques [3],
unless the frequency is as large as several hundred MHz.
Various authors have recently reported advances in cooling
mechanical resonators, using either optomechanical [4–
10] or electromechanical [11,12] techniques, and imple-
menting either active feedback [4–7] or dynamical back-
action effects [8–12]. These experiments involved mostly
nanomechanical or micromechanical resonators, and have
demonstrated cooling capability down to mK temperatures
[6]. Cooling of a gram-scale optical spring resonator to a
few mK has been demonstrated as well using the tech-
niques developed for interferometric gravitational wave
(GW) detectors [7]. In this Letter, we show that very
efficient cooling can be achieved even in much larger
systems, exploiting the techniques developed for
resonant-mass GW detectors, based on electromechanical
transducers coupled to superconducting quantum interfer-
ence device (SQUID) sensors. In this case, one can take
advantage of the larger quality factor achievable in macro-
scopic systems with respect to micromechanical ones. As
experimental demonstration, we simultaneously cool the
three electromechanical normal modes of the ton-scale
resonant-bar GW detector AURIGA. Our cooling tech-
nique is based on an electronic feedback directly applied
to the input circuit of the SQUID.

AURIGA represents the state-of-art in the class of reso-
nant GW detectors [13], and has been in continuous oper-
ation from year 2004, searching for galactic astrophysical

events in collaboration with a world network of detectors
[14]. It is located in Padua (Italy) and is based on a 2:2�
103 kg, 3 m long bar made of a low-loss aluminum alloy
(Al5056), cooled to liquid helium temperatures. The fun-
damental longitudinal mode of the bar, sensitive to gravi-
tational waves, has an effective mass M � 1:1� 103 kg
and a resonance frequency !B=2� � 900 Hz. According
to the equipartition theorem, the rms amplitude of the
resonator motion is given by xrms � hx2i1=2 � � kBT

M!2
B
�1=2,

where kB is the Boltzmann constant and T is the tempera-
ture. For the AURIGA bar, the rms thermal motion is
xrms � 4� 10�17 m at T � 4:2 K. The bar resonator mo-
tion is detected by a displacement sensor with a sensitivity
of order several 10�20 m=

������
Hz
p

over a �100 Hz band-
width. This sensitivity is accomplished by a multimode
resonant capacitive transducer [15] combined with a very
low noise dc SQUID amplifier [16] (Fig. 1). In this scheme,
the bar resonator is coupled to the fundamental flexural
mode of a mushroom-shaped lighter resonator, with 6 kg
effective mass and the same resonance frequency. As the
mechanical energy is transferred from the bar to the lighter
resonator, the motion is magnified by a factor of roughly 15.
A capacitive transducer, biased with a static electric field of
107 V=m, converts the differential motion between bar and
mushroom resonator into an electrical current, which is
finally detected by a low noise dc SQUID amplifier through
a low-loss high-ratio superconducting transformer. The
transducer efficiency is further increased by placing the
resonance frequency of the electrical LC circuit close to
the mechanical resonance frequencies [15], at 930 Hz.

The detector can then be simply modeled as a system of
three coupled resonators: its dynamics is described by
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three normal modes at separate frequencies, each one being
a superposition of the bar and transducer mechanical reso-
nators and the LC electrical resonator [13]. As seen from
the SQUID sensor, each mode k (k � 1, 2, 3) is modeled as
a RLC series electrical mode with an effective inductance
Lk, capacitance Ck, and resistance Rk (Fig. 2). The total
inductance Lk includes also the input inductance Lin of the
SQUID amplifier. Around the resonance frequency of each
mode !k=2�, with !k � �LkCk�

�1=2, the complex imped-
ance of the circuit is expressed by Zk�!� � Rk � i!Lk �
1=�i!Ck�. We point out that, although the modes appear as
purely electrical as seen from the SQUID, their dynamics
actually includes the full motion of both mechanical reso-
nators. In fact, the current in the electrical circuit is linearly
related with the mechanical motion of bar and transducer,
and the effective impedance parameters Lk, Ck, Rk of each
normal mode are determined by the mechanical and elec-
trical parameters of all resonators [13]. Thus, cooling the
normal modes of the system implies cooling the motion of
the mechanical resonators. The effective impedance pa-
rameters Lk, Ck, Rk are experimentally estimated by mea-
suring the current Is � Vcal=Zk in response to a calibration
voltage signal Vcal, injected through a small calibration coil
in series to the SQUID input coil (see Fig. 2). The induc-

tances Lk of the three modes are respectively 1:66�
10�4 H, 1:23� 10�5 H and 8:12� 10�6 H. The mode
resonance frequencies !k=2� are 865 Hz, 914 Hz,
953 Hz, and the quality factors Qk � !kLk=Rk are 1:2�
106, 0:88� 106, and 0:77� 106.

The effective temperature Tk of each mode is propor-
tional to the mean square current hI2

ki induced by thermal
fluctuations driving the mode, according to the equiparti-
tion theorem:

 hI2
ki �

kBTk
Lk

: (1)

To reduce the mode temperature, we implement an elec-
tronic feedback cooling (Fig. 2), or cold damping, tech-
nique [17]. The SQUID output voltage Vo � AIs is passed
through a passive low-pass filter D�!� with cutoff fre-
quency at 200 Hz, and the current ID � ADIs is fed back
to the signal circuit. The low-pass filter is used to phase-
shift by �=2 the feedback current ID, which is then pro-
portional to the derivative of the oscillating current of the
mode. As a consequence, the effect of the feedback current
is equivalent to that of a viscous damping, similarly to the
case of a mechanical oscillator subjected to a force pro-
portional to its velocity. This additional damping can be
represented by an equivalent resistor RD in series with Rk,
which can be calculated from the model of Fig. 2:

 RD � Re
�
iAD

1� AD
!Lin

�
: (2)

In particular, in our experiment RD 	 jADj!Lin, as
jADj 
 1 and AD is almost purely imaginary. Induc-
tance and capacitance of the mode are not significantly
modified, provided that the feedback current phase-shift is
close to �=2. Therefore, we write the total impedance of
the circuit under feedback cooling conditions, for ! ’ !k,
as Z0k�!� � Rk � RD � i!Lk � 1=�i!Ck�. As customary,
the relative strength of the feedback damping can be ex-
pressed by the ratio of the feedback to the intrinsic damp-
ing resistance (referred to the kth mode) gk � RD=Rk.
Then, the quality factor of the kth mode under feedback
cooling is reduced to Q0k � Qk=�1� gk�.

According to the fluctuation-dissipation theorem, the
thermal noise in the kth normal mode is generated by a
voltage noise source Vth with single-sided power spectral
density SVth

� 4kBT0Rk, where T0 is the temperature of the
thermal bath. This voltage noise is the effect of the inter-
action of the resonators with the microscopic degrees of
freedom of the thermal bath, and therefore it is not affected
by the feedback cooling. For ! ’ !k the power spectrum
of the current noise induced in the resonator is

 SIth �
SVth

jZ0kj
2 �

4kBT0!k

QkLk

!2

�!2 �!2
k�

2 � �!k!=Q0k�
2 : (3)

The Lorentzian shape of the spectrum is determined by the
feedback-reduced quality factor Q0k, while the prefactor is
determined by the intrinsic quality factorQk. Integration of
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FIG. 2 (color online). The feedback cooling scheme. The kth
normal mode is approximated, around its resonance frequency,
by a series-RLC circuit. In this representation, different modes
should be thought of as being in parallel with each other. The dc
SQUID is represented as current amplifier. The electronic feed-
back cooling is obtained by sending back a current ID phase
shifted of �=2 with respect to Is.

FIG. 1 (color online). Scheme of the gravitational wave detec-
tor AURIGA. The system comprises three coupled resonators
with nearly equal resonant frequency of about 900 Hz: the first
longitudinal mode of the cylindrical bar, the first flexural mode
of the mushroom-shaped resonator, which is also one of the
plates of the electrostatic capacitive transducer, and the low-loss
electrical LC circuit. The electrical current of the LC resonator is
detected by a low noise dc SQUID amplifier.
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Eq. (3) over frequency yields the total mean square current
noise associated with mode k:

 hI2
ki �

kBT0

Lk

Q0k
Qk
�
kBT0

Lk

1

1� gk
; (4)

so that, similarly to the quality factor, the effective tem-
perature of the mode under feedback cooling is reduced to

 Tk �
T0

1� gk
: (5)

As the temperature reduction is determined by the Q
reduction, the larger is the initial quality factor, the larger
is the achievable feedback cooling.

We can also rewrite Eq. (3) in terms of the mode
temperature instead of the bath temperature:

 SIth �
4kBTk!k

Q0kLk

!2

�!2 �!2
k�

2 � �!k!=Q0k�
2 : (6)

This is precisely the expected power spectrum of a passive
resonator with quality factor Q0k at thermal equilibrium at
temperature Tk. Actually, the resonator is not at thermal
equilibrium at Tk, but is rather in a dynamical equilibrium
between the thermal bath at T0, and the measuring-
feedback system, which acts as a very low temperature
bath.

In the above analysis we have neglected the backaction
and additive noise of the SQUID amplifier, which are
expected to set a lower limit to the cooling efficiency. If
the SQUID noise is taken into account, with the further
simplified assumption of uncorrelated noise sources, the
following refined expression of the mode temperature can
be derived from the model in Fig. 2:

 Tk �
1

1� gk

�
T0 �

QkSVn
4kB!kLk

�
�

1

4kB

g2
k

1� gk

!kLk
Qk

SIn ;

(7)

where SIn is the spectral density of the SQUID measure-
ment noise In, fed back by the cooling loop, and SVn is the
spectral density of the SQUID back-action noise Vn. For
our present setup, the backaction contribution is almost
negligible with respect to thermal noise. According to
Eq. (7), there is an optimum value of gk, for which the
temperature achieves a minimum. This minimum achiev-
able temperature is slightly dependent on the considered
mode, and is of order 40 �K for our present setup.

We point out that feedback cooling of the modes does
not improve the sensitivity of the system as GW detector.
In fact, the cooling is due to a modification of the effective
response of the system to any kind of excitation. Therefore,
it suppresses in the same way both the thermal noise and
the external signal originated by an impinging GW.

To test the feedback cooling technique, we modified the
standard operating conditions of the AURIGA detector,
and set four different values of the feedback cooling gain
D, corresponding to four values of the relative feedback

damping gk. For each setting, we measured the power
spectral density of the current detected by the SQUID
sensor, and averaged for a time of roughly 1 h. The four
spectra are shown in Fig. 3. The overall power spectral
density for a given setting can be accurately fitted by a
proper combination of three Lorentzian curves, one for
each mode. In fact, differently from previous experiments
focused on a single mode, we simultaneously cool all three
modes. The three-mode fitting curve is also shown in
Fig. 3, superimposed on the corresponding noise spectrum.
For ! ’ !k, the fitting function can be approximated by
the single-mode expression Eq. (6), from which we can
infer the effective temperature of each mode Tk. The
experimental values of Tk as function of the damping ratio
�1� gk�

�1 are shown in Fig. 4. For a given feedback
setting, different values of gk are associated to the three
modes, because the intrinsic resistances Rk are in general
different. For instance, in our measurements g1 ranges
from 190 to 2000 and g3 ranges from 2200 to 30 000.
The values of gk are still small enough to make almost
negligible the effect of the SQUID noise. Therefore, we
expect the effective temperatures to follow the simple
behavior described by Eq. (5). The straight line in Fig. 4
represents Tk for all 3 modes, calculated using Eq. (5)
without free parameters, with T0 fixed to the thermody-
namic temperature of the bath, T0 � 4:2 K. The data are in
good agreement with the predictions of the model, even
well below 1 mK. The lowest achieved temperature are
T1 � 2:0 mK, T2 � 0:17 mK, and T3 � 0:20 mK. The
lowest temperatures for modes 2 and 3 correspond to an
average occupation number hNki � kBTk=@!k � 4000.

These results represent an improvement by more than
1 order of magnitude with respect to the lowest tempera-
ture reported in literature for actively cooled macroscopic
mechanical resonators [6], and only experiments per-
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FIG. 3 (color online). Power spectrum of the current noise in
the normal modes, as measured by the SQUID amplifier. The
noise spectra are related to four different feedback settings. Each
noise spectrum is well fitted by a proper combination of three
Lorentzian curves. Each Lorentzian peak is labeled by the
corresponding effective temperature, measured in mK.
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formed at much higher frequency [11] have achieved lower
occupation number. Although in our experiment we ac-
tively cool electromechanical normal modes rather than
purely mechanical modes, we believe that the comparison
is meaningful, as all three normal modes collect a signifi-
cant fraction of the energy of the two mechanical resona-
tors. For instance, from the detector calibration we
estimate that the mode 2, the coolest one, collects about
36% of the energy deposited by an impulsive excitation in
the bar resonator. Our cooling results are particularly rele-
vant because of the enormous size of the elements of our
system with respect to previously analyzed micromechan-
ical systems. This overturns the common belief that the
cooling should be easier for lighter resonators. To explain
this apparent paradox, we observe that the relevant parame-
ters in determining the cooling capability are the displace-
ment sensitivity and the intrinsic quality factor of the
resonator, which sets the potential Q-reduction ratio. In
our case, the latter is 1 order of magnitude higher than that
usually achieved by micromechanical resonators. In fact,
according to a well-established empirical rule, the quality
factor of a mechanical resonator scales roughly with the
volume to surface ratio, suggesting a limiting factor in the
surface dissipation mechanisms [18]. As a consequence,
large resonators made of high Q material, with linear
dimensions in the 1 cm–1 m range, can easily reach qual-
ity factor as large as 106–107, whereas achieving Q> 105

in micron-sized resonators has as yet proven difficult [19].
We also notice that a very large quality factor is a necessary
condition for the observation of any macroscopical quan-
tum behavior. In fact, the time scale � for decoherence in a
resonator with quality factor Q and temperature T is pro-
portional to the ratio Q=T [7,20].

Significant improvements with respect to the results
presented here are expected by performing a dedicated
experiment on a midscale (0.01–1 kg) resonator at subkel-
vin bath temperature. Conventional dilution refrigerators
can be used to cool kg-scale masses down to 10 mK [21].
At the same time, resonators made of very low dissipation
material, like silicon or sapphire, can reach quality factors
as large as 109 [22]. Moreover, our capacitive-SQUID
measurement system, similarly to SET-based ones [11],
is naturally compatible with ultralow temperatures, due to
the very low power dissipation, of order 10�10 W for
typical dc SQUIDs. Eventually, the maximum cooling ratio
will be limited by the SQUID sensitivity, according to
Eq. (7). As state-of-art devices can approach the quantum
limit [23–25], resonator temperatures lower than 1 �K are
achievable at kHz frequency, corresponding to a single-
digit occupation number of the quantum oscillator.

We thank W. J. Weber for discussions and reading of the
manuscript.
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FIG. 4 (color online). Effective temperature of the modes as
function of the damping ratio. The straight line is the mode
temperature predicted by Eq. (5), with T0 fixed to the value of the
bath temperature T0 � 4:2 K, and no free parameters. The
theoretical limit at no feedback damping is also shown, to
provide a graphical visualization of the achieved temperature
reduction.
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