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Using mode-coupling theory, we derive a constitutive equation for the nonlinear rheology of dense col-

loidal suspensions under arbitrary time-dependent homogeneous flow. Generalizing previous results for

simple shear, this allows the full tensorial structure of the theory to be identified. Macroscopic deforma-

tion measures, such as the Cauchy-Green tensors, thereby emerge. So does a direct relation between the

stress and the distorted microstructure, illuminating the interplay of slow structural relaxation and arbi-

trary imposed flow. We present flow curves for steady planar and uniaxial elongation and compare these to

simple shear. The resulting nonlinear Trouton ratios point to a tensorially nontrivial dynamic yield con-

dition for colloidal glasses.
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The imposition of flow can drive a fluid far from equi-
librium. Because of the occurrence of long relaxation
times, this effect is ubiquitous in complex fluids (colloids,
polymers, etc.) whose rheology is of significant techno-
logical interest, and also represents an important challenge
in nonequilibrium statistical physics. Continuum ap-
proaches have provided important insights, using symme-
try and other principles to construct or constrain
phenomenological constitutive relations. While the con-
stitutive equations of Newtonian fluids and Hookian solids
are derivable from fundamental starting points (the theory
of linear response based on Onsager’s regression hypothe-
sis), there has been less progress with their nonlinear
generalizations for viscoelastic fluids, plastic solids and
other strongly deforming soft materials.

A central aim of theoretical rheology is thus to derive
from the underlying microscopic interactions the constitu-
tive equations that relate the stress tensor to the macro-
scopic deformation history of a material. For entangled
polymer melts, the constitutive equation of Doi and
Edwards [1] has enjoyed considerable success. An analo-
gously general microscopic constitutive equation for col-
loidal dispersions remains conspicuously lacking [2]. Even
the simplest hard-sphere colloids in concentrated suspen-
sion exhibit a broad range of viscoelastic behavior; along-
side to flow-thinning [3] and thickening [4], slow structural
relaxation leads to glasses showing a solidlike response,
strain hardening or softening, and plastic flow [5].

But, while the linear viscoelastic spectra of colloidal
suspensions are fairly well understood [6], only recently
has progress been made in nonlinear flow predictions for
simple shear [7,8]. Shear represents a relatively weak flow
in which material lines grow linearly with time, while in
elongational flows such growth is exponential, creating
much more severe deformations of material elements.
Thus, a description capable of handling arbitrary deforma-
tion histories is highly desirable. In the continuum ap-
proaches, invariance arguments strongly restrict the

deformation measures that can appear. A good microscopic
theory (e.g., [1]) should implicitly respect such invariances
so that a tensorially admissible constitutive structure
emerges from a first-principles starting point.
In this Letter, we develop such a theory for dense

suspensions of spherical colloidal particles under imposed
time-dependent flow. Our approach, which considerably
generalizes [7,8], is nonlinear in the velocity gradient
tensor and, in the absence of flow, features a transition to
a glassy solid as a function of the thermodynamic control
parameters, allowing the delicate interaction between glass
formation and (time-dependent) external deformation to be
investigated. Our treatment assumes incompressible homo-
geneous flow, neglecting fluctuations of the solvent veloc-
ity field and thus hydrodynamic interactions [7]. These
assumptions may break down at high flow rates and/or
densities where lubrication forces drive cluster formation
and shear thickening [4].
We consider a system of N spherical Brownian particles

dispersed in a solvent with a specified velocity profile
vðr; tÞ ¼ �ðtÞ � r. The time-dependent velocity gradient
tensor �ðtÞ is assumed spatially constant, thus excluding
the inhomogeneous flows which occur in shear-banded and
shear-localized states. Incompressibility implies that
Tr�ðtÞ ¼ 0. The distribution function evolves according
to a Smoluchowski equation @t�ðtÞ ¼ �P

i@i � ji (where
ji is the probability current of particle i) [1,9]:

@t�ðtÞ ¼ �ðtÞ�ðtÞ
�ðtÞ ¼ X

i

@i � ½@i � Fi � �ðtÞ � ri�:
(1)

Fi is the force acting on particle i due to the other particles.
The thermal energy and bare diffusivity are set to unity.
Equilibrium and nonequilibrium solutions to (1) are dis-
tinguished by the existence of a finite probability current.
Its existence rules out the possibility of a distribution
function of Gibbs-Boltzmann form.
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When constructing constitutive equations based on a
given microscopic dynamics it is important to first identify
the relevant affine deformation measures. We achieve this
by considering the translational invariance of the two-time
correlation functions. The first step is to show that a trans-
lationally invariant initial distribution function can lead to
a translationally invariant, but anisotropic, distribution
function �ðtÞ, despite the fact that the Smoluchowski
operator is itself not translationally invariant. This follows
from the formal solution

�ð�; tÞ ¼ e

R
t

0
ds�ð�;sÞ

þ �eð�Þ; (2)

where we assume an equilibrium Gibbs-Boltzmann distri-
bution �eð�Þ at t ¼ 0, � � fr1; . . . ; rNg and eþ is a time-
ordered exponential [10]. We now consider shifting the
particle coordinates by a constant vector r0i ¼ ri þ a. This
leads to �ð�0; tÞ ¼ �ð�; tÞ �P

i@i � �ðtÞ � a � �ð�; tÞ þ
AðtÞ and hence the shifted distribution function

�ð�0; tÞ ¼ e

R
t

0
ds½�ð�;sÞþAðsÞ�

þ �eð�Þ; (3)

where�eð�0Þ ¼ �eð�Þ. The time-ordered exponential can
be rewritten using an operator identity

�ð�0; tÞ ¼ expþ
�Z t

0
dse

R
t

s
ds0Aðs0Þ

þ �ð�; sÞe�
R

t

s
ds0Aðs0Þ

�
�

� e

R
t

0
dsAðsÞ

þ �eð�Þ: (4)

Using AðtÞ�eð�Þ ¼ 0 and applying the commutator
½�ð�; sÞ; Aðs0Þ� ¼ �a � �TðsÞ � �Tðs0Þ �Pi@i yields

�ð�0; tÞ ¼ �ð�; tÞ; (5)

as desired. We now use this result to study the invariance
properties of the correlation functions. The correlation of
two wave-vector-dependent fluctuations is given by
Cfqgk ðt; t0Þ � h�fqðtÞ�gkðt0Þi�ðt0Þ, where h�i�ðt0Þ indicates

an average over the distribution (2). Translating the parti-
cles by a constant vector a and using (5) yields

Cfqgkðt; t0Þ ¼ e�i½ �qðt;t0Þ�k��aCfqgkðt; t0Þ: (6)

Translational invariance requires that the correlation func-
tion is unaffected by the shift with a. This leads to the
requirement that a fluctuation at wave vector k ¼ �qðt; t0Þ at
time t0 is correlated with a fluctuation with wave vector q at
time t as a result of the affine solvent flow, where

�qðt; t0Þ ¼ q � e�
R

t

t0 ds�ðsÞ� : (7)

For shear, (7) recovers the familiar shear-advection [8],
while for an extensional flow, (7) describes the exponential
deformation of material lines. The tensorial exponential
function in (7) may appear unfamiliar, but is simply the
inverse of the deformation gradient tensor Fðt; t0Þ �
@rðtÞ=@rðt0Þ, a standard quantity in elasticity theory used
to connect initial (t0) and final (t) coordinates following
homogeneous deformation, rðtÞ ¼ Fðt; t0Þ � rðt0Þ. The de-

formation gradient is related to the velocity gradient tensor
via @tFðt; t0Þ ¼ �ðtÞFðt; t0Þ. We can thus define the forward
and reverse-advected wave vectors �qðt; t0Þ and qðt; t0Þ using
the deformation gradient

�qðt; t0Þ ¼ q � F�1ðt; t0Þ; qðt; t0Þ ¼ q � Fðt; t0Þ: (8)

The magnitudes of the advected wave vectors are thus
related to the left and right Cauchy-Green tensors, given by
Bðt; t0Þ ¼ Fðt; t0ÞFTðt; t0Þ and C�1ðt; t0Þ ¼ F�1ðt; t0Þ �
½F�1ðt; t0Þ�T , respectively [11]:

�q2ðt; t0Þ ¼ q � Bðt; t0Þ � q;
q2ðt; t0Þ ¼ q � C�1ðt; t0Þ � q: (9)

By considering the translational invariance of solutions to
(1), we have thus identified the appropriate deformation
measures for describing the affine deformation in our
Brownian system. This enables us to formulate a theory
obeying the principle of material objectivity [10], see
below.
Integration through the transient flow history [7,8] yields

an alternative solution of (1), formally equivalent to (2) but
more suitable for approximation.

�ðtÞ ¼ �e þ
Z t

�1
dt0�eTrf�ðt0Þ�̂ge

R
t

t0 ds�
yðsÞ

� ; (10)

where �̂�� � �P
iF

�
i r

�
i is the potential part of the micro-

scopic stress tensor, and the adjoint Smoluchowski opera-
tor is �yðtÞ ¼ P

i½@i þ Fi þ ri � �TðtÞ� � @i. We take the
system to be in quiescent equilibrium in the infinite past
and thus neglect possible nonergodicity in the initial state
and related ageing phenomena. The validity of this as-
sumption will be dependent upon both the specific system
and flow history under consideration [8]. By using (10) to
calculate the average of ��

k�k=N and, in the spirit of mode-

coupling theory, approximating by projecting onto density
fluctuations [7,12], we obtain an expression for the dis-
torted structure factor Skðt;�Þ ¼ h��

k�ki�ðtÞ

Skðt;�Þ ¼ Sk �
Z t

�1
dt0

@Skðt;t0Þ
@t0

�2
kðt;t0Þðt; t0Þ; (11)

where an isotropic term has been suppressed, n is the
number density, and Sk is the equilibrium structure factor
used to proxy the colloidal interactions [10]. Equation (11)
describes the flow induced microstructural distortion
which becomes appreciable when the flow interferes with
slow cooperative structural relaxation [13]. Flow enters the
description via the advected wave vector, both explicitly
through Skðt;t0Þ and implicitly through its effect on the

transient correlator. The second term in (11) is anisotropic,
whereas the third term is purely isotropic.
Equation (10) also can be employed to directly approxi-

mate the stress tensor. Projection operator approximation
of the resulting generalized Green-Kubo relation provides
an explicit approximation for �ðtÞ. This we find to be
related directly to Skðt;�Þ by
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� ðtÞ ¼ ��1�
Z dk�

16�3

kk

k
c0k�Skðt;�Þ; (12)

where ck is the direct correlation function, c0k ¼ dck=dk,
�Skðt;�Þ ¼ Skðt;�Þ � Sk, and � is an osmotic pressure
contribution. For shear flow, �xyðtÞ from (12) coincides

with a result of Fredrickson and Larson [14] for sheared
copolymers, reflecting the Gaussian statistics underlying
both their approach and our own. Stresses are thus con-
nected to microstructural distortions, which build up over
time via the affine stretching of density fluctuations com-
peting with structural rearrangements encoded in �kðt; t0Þ.

In order to close our theory, we require the transient
correlator �kðt; t0Þ ¼ h��

kexp�½
R
t
t0 ds�

yðsÞ�� �kðt;t0Þi=NSk
describing the decay under flow of thermal density fluctu-
ations, where h�i denotes an equilibrium average. Time-
dependent projection operator manipulations yield exact
results for the equation of motion of the transient density
correlator containing a generalized friction kernel which is
amenable to mode-coupling approximations [7,8].
Applying these to our formal results yields

@

@t
�qðt; t0Þ

þ�qðt; t0Þ
�
�qðt; t0Þ þ

Z t

t0

dt0mqðt; t0; t0Þ @

@t0
�qðt0; t0Þ

�
¼ 0

(13)

where �qðt; t0Þ ¼ �q2ðt; t0Þ=S �qðt;t0Þ. The friction kernel

mqðt; s; t0Þ is the autocorrelation function of fluctuating

stresses, which in mode coupling are connected to struc-
tural relaxation as described by the density correlator. In
the present approximation, it is given by

mqðt; t0; t0Þ ¼ �

16�3

Z
dk

S �qðt;t0ÞS �kðt0;t0ÞS �pðt0;t0Þ
�q2ðt0; t0Þ �q2ðt; t0Þ

� Vqkpðt0; t0ÞVqkpðt; t0Þ
���kðt0;t0Þðt; t0Þ��pðt0;t0Þðt; t0Þ; (14)

Vqkpðt;t0Þ¼ �qðt;t0Þ � ð �kðt;t0Þc �kðt;t0Þ þ �pðt;t0Þc �pðt;t0ÞÞ; (15)

where p ¼ q� k. Equations (11)–(15) form a closed con-
stitutive theory for the microstructure and stress response
of Brownian particles under external flow, requiring only
Sk and �ðtÞ as input [10].

We next consider our theory from the standpoint of
continuum ‘‘rational mechanics’’ approaches [11], show-
ing that (in common with [1]), it complies with their
invariance requirements but avoids their oversimplifying
assumptions. Such approaches often express �ðtÞ as a
functional of a suitable deformation measure, weighted
by a fading memory; an example is the integral form of
the upper-convected Maxwell equation (Lodge equation)
with the memory taken as a known sum of decaying
exponentials [15]. In the present treatment, the memory
is instead given by�2

kðt; t0Þ which for general flows is both

anisotropic and a function of two times rather than a simple
time difference. In the absence of flow, �kðtÞ exhibits
nonexponential decay and, in the glass, arrests to a finite
plateau value leading to solidlike response [12].
An important symmetry consideration is the principle of

material objectivity (or frame indifference) [11,15,16].
This asserts that the relationship between � and � should
be invariant with respect to time-dependent rotation of
either the material sample or the observer. Although this
is only an approximate symmetry, based on the neglect of
inertial effects at the microscopic level [16], many soft
materials display this invariance to a good level of approxi-
mation. The overdamped Smoluchowski dynamics (1)
underlying our treatment excludes inertial effects from
the outset, so that our set of Eqs. (11)–(15) are material
objective, so long as this is preserved by our approxima-
tions. This can be explicitly confirmed by using (8) and (9)
to eliminate the advected wave vectors from (11)–(15) in
favor of the deformation tensors [10].
Next, we address the comparison between elongational

(planar or uniaxial) flow, and shear. Starting with the limit
of small strain, we obtain the linear response result

� lðtÞ ¼
Z t

�1
dt0

Z dk

16�3
f½k � ��ðt0Þ � k�kkg

�
�
S0k�kðt� t0Þ

kSk

�
2

(16)

where linearity enables us to introduce the symmetrized
tensor ��ðtÞ ¼ ½�ðtÞ þ �TðtÞ�=2, and �kðtÞ is the quiescent
correlator. As all anisotropy in (16) is contained within the
factor f�g, the angular integrals may be easily evaluated for
a given �ðtÞ. It follows that the planar-extensional and
shear viscosities are related by �e=�s ¼ 4, in compliance
with one of Trouton’s rules. In the glass phase, the transient
correlator does not relax to zero. Partial integration of (16),
followed by taking the small-strain limit, leads to �ðtÞ ¼
2G�ðtÞ, where �ðtÞ is the infinitesimal strain tensor
[Tr�ðtÞ ¼ 0], G ¼ �2

R1
0 dkk4½c0k�kð1Þ�2=ð60�2Þ is a

known approximation for the linear modulus [6,12].
Taking this comparison beyond linear response requires

numerical solution of (11)–(15). For simplicity, we per-
form calculations for a one-component system of hard
spheres [17]. In Fig. 1, we show �xy under shear and

(�xx � �yy) under planar elongation as a function of

Peclet number, Pe0 ¼ _	d2=D0, where _	 is the strain rate,
for various packing fractions around the glass transition
�c. A detailed comparison of theoretical shear flow curves
with experiment can be found in [3]; we do not know of
similar experimental data on elongational flows but hope
our work may stimulate future studies. The lower left panel
shows the Trouton ratio ð�xx � �yyÞ=�xy as a function of

Pe0. Upon entering the nonlinear (shear thinning) regime,
this ratio is significantly reduced below the linear response
value, indicating enhanced strain thinning under elonga-
tional flow relative to shear. Moreover, as�c is approached
from below, the linear response regime moves to lower
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values of Pe0 and disappears entirely on crossing the glass
transition. The resulting plateau in the flow curve identifies
a dynamical yield stress. The Trouton ratio displays an
approximately constant (noninteger) value over the entire
plateau: its low Pe0 limit furnishes a nontrivial yield con-
dition for the ratio between normal and shear stresses. In
the lower right panel of Fig. 1, we show in addition the
Trouton ratio for uniaxial elongational flow. We again
obtain a nontrivial yield stress ratio, distinct from that
found under planar elongation. Our results for uniaxial
and planar extension, alongside those for shear [7], thus
predict by first-principles theory three parameters of a
dynamic yield surface for glasses. The limiting stress at
zero flow rate for a fixed flow geometry identifies a point
on a dynamic yield manifold. In a system where (as here)
isotropic pressure is irrelevant, this manifold resides in the
space of deviatoric (i.e., traceless) stress tensors, and in the
principal stress frame (with stress eigenvalues s1;2;3) can be
represented, for instance, as a closed curve, fðs1 � s3; s2 �
s3Þ ¼ 0. Our new results for uniaxial and planar extension,
alongside those for shear [7], predict from first-principles
three parameters of the dynamic yield manifold for a glass.

In conclusion, we have derived from first principles a
constitutive equation for dense colloidal suspensions sub-
jected to an arbitrary time-dependent (but homogeneous)

deformation. Appeal to translational invariance identifies
appropriate deformation measures for an approximate de-
scription of the system in terms of density fluctuations.
Within our treatment, macroscopic stress is directly con-
nected with structural distortion at the microstructural
level. The inclusion of nonexponential slow relaxation
arising from interactions leads to a unified description of
fluid and glassy states. For steady shear, planar and uni-
axial elongational flows, we find strong nonlinearities in
the Trouton ratio as a function of strain rate. For colloidal
glasses, we predict nontrivial relations between dynamic
yield stresses in different flow geometries.
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FIG. 1. Steady state stress � ¼ �xy under shear (full lines,

ij ¼ _	�xi�yj) and stress difference � ¼ �xx � �yy under pla-

nar elongation [broken lines, 
ij ¼ _	ð�xi�xj � �yi�yjÞ] as a

function of Pe0 ¼ _	d2=D0, where d is the sphere diameter.
Each curve is labeled according to the distance from the glass
transition ���c, (a) �10�4, (b) �10�3, and (c) 10�4. The
inset shows a possible realization of planar elongational flow.
The lower left panel shows the Trouton ratio for such flow while
the lower right panel shows the ratio for uniaxial elongation
[
ij ¼ _	ð�xi�xj � �yi�yj=2� �zi�zj=2Þ].
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