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The enhanced spin Hall effect in Au metal due to the resonant skew scattering is studied with first-

principles band structure calculations. Especially the gigantic spin Hall angle �S ffi 0:1 observed recently

[T. Seki et al., Nature Mater. 7, 125 (2008)] is attributed to the orbital-dependent Kondo effect of Fe in the

Au host metal, where the t2g orbitals are in the mixed-valence region while eg orbitals are in the Kondo

limit. The enhanced spin-orbit interaction by the electron correlation in the t2g orbitals leads to the

gigantic spin Hall effect. Impurities with 5d orbitals are also discussed.
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Spin Hall effect (SHE) is an effect where the transverse
spin current is produced by the electric field or electric
current [1–15]. It does not require any magnetic field or
magnets, and is an interesting and promising phenomenon
for application to spin injection and manipulation in spin-
tronics. SHE is especially robust and large in metals due to
the large number of carriers and Fermi energy [10–15]. For
example, SHE in Pt metal even at room temperature
[12,14] is more than 2 orders of magnitude larger than
that of GaAs [7]. Even larger SHE has been recently
reported in the Au=FePt system [13], where the spin Hall
conductivity is�105��1 cm�1 and the spin Hall angle �S

is as large as ffi 0:1.
Naively speaking, SHE is the two copies of anomalous

Hall effect (AHE) for up and down spins, respectively, and
the knowledge on the latter can be directly transferred to
the former. When the longitudinal conductivity �xx is
larger than �106��1 cm�1, and the Hall conductivity
�H is much larger than e2=ðhaÞ ffi 103��1 cm�1 with h
and a being the Planck constant and the lattice constant,
respectively, the dominant contribution to the AHE is the
extrinsic skew scattering [16–20]. In this case, �H is
proportional to �xx, and hence the Hall angle � ¼
�H=�xx is the well-defined measure for the magnitude of
AHE independent of the impurity concentration. In other
words, the Hall angle can be determined by examining the
single scattering event due to the impurity. The typical
value of � is estimated as the ratio ��="F with � being
the spin-orbit interaction (SOI) and "F the Fermi energy.
Usually, "F is at least a few eV, the � is of the order of 10–
20 meV for the 3d orbitals, for example. Therefore, the
Hall angle is roughly estimated as �� 10�3. This Hall
angle � can be enhanced by the resonant skew scattering
by the magnetic impurity [17,18]. Using the Anderson
Hamiltonian describing the virtual bound state causing
the resonant scattering, the anomalous Hall angle can be
expressed in terms of the hybridization energy � and SOI

�, and the phase shift �1 due to the p-wave scattering as
�� ð�=�Þ sin�1, which can be of the order of 10�2 [17].
Therefore, the spin Hall angle �S ffi 0:1 is a surprisingly
large value, which needs to be understood for the design of
the gigantic SHE.
In this Letter, we propose that the local electron corre-

lation and spin fluctuation further enhance SHE compared
with AHE by the explicit first-principles band structure
calculation with the Au metal as the host where the Fermi
energy is at the 6s bands. Namely, SHE is not the simple
two copies of AHE, and the comparison between these two
offers a unique opportunity to study the many-body effect.
Let us consider the scattering of a spin S ¼ 1

2 particle by

a potential with SOI. The amplitude of the scattered wave
is given by [16]

f"ð�Þ ¼ f1ð�Þj"i þ iei’f2ð�Þj#i;
f#ð�Þ ¼ f1ð�Þj#i � ie�i’f2ð�Þj"i

(1)

for incoming up-spin and down-spin electrons, respec-
tively, where � is the angle between the wave vectors of
incident ( ~k) and scattered ( ~k0) waves, and f1ð�Þðf2ð�ÞÞ
corresponds to the spin nonflip (spin flip) scattering am-

FIG. 1 (color). The spin polarization Sð�Þ ~n induced by the
skew scattering due to the spin-orbit interaction of the scatterer
and the spin unpolarized electron beam.
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plitudes. The skewness of the scattering is represented

by the function Sð�Þ ¼ 2Im½f�
1
ð�Þf2ð�Þ�

jf1ð�Þj2þjf2ð�Þj2 , while the function

Ið�Þ ¼ jf1ð�Þj2 þ f2ð�Þj2 determines the scattering inten-
sity. The meaning of the skewness function Sð�Þ is shown
in Fig. 1. When the unpolarized electrons are incident, the

scattered electrons are spin polarized as Sð�Þ ~n with ~n ¼
ð ~k� ~k0Þ=j ~k� ~k0j. By solving the Boltzmann equation with
this skew scattering, the spin Hall angle �S is given by [9]

�S ¼
R

d�Ið�ÞSð�Þ sin�R
d�Ið�Þð1�cos�Þ , where

R
d� is the integral over the

solid angle. The numerator represents the transverse spin
current produced by the scattering, i.e., the velocity per-

pendicular both to ~k and ~n with the spin polarized along ~n,
while the denominator corresponds to the usual transport
scattering rate. Without the resonance effect, the typical
value of � is of the order of 10�3, i.e., much smaller than
unity. Actually, the obtained value of � in Ref. [9] is 1=500
for n-type GaAs assuming the screened Coulomb potential.
The partial wave analysis gives the expression for f1ð�Þ
and f2ð�Þ

f1ð�Þ ¼
X

l

Plðcos�Þ
2ik

½ðlþ 1Þðe2i�þ
l � 1Þ þ lðe2i��

l � 1Þ�;

f2ð�Þ ¼
X

l

sin�

2ik
ðe2i�þ

l � e2i�
�
l Þ d

d cos�
Plðcos�Þ: (2)

Putting Eq. (2) into the expression for �S above, we obtain

�S¼ 3Im½ðe�2i�1 �1Þðe2i�þ
2 �e2i�

�
2 Þ�

9sin2�þ
2 þ4sin2��

2 þ3½2�cos2�þ
2 �cos2��

2 �
; (3)

where we have assumed that the resonant channel is the
d wave (l ¼ 2) which is subject to SOI and the scattering is
characterized by the two phase shifts ��

2 ¼ �J¼2�1=2,

while that (�1) for the p-wave scattering is assumed to
be spin independent. Assuming that �1 for the nonresonant
p wave is small (j�1j ffi 0:1 [17]), �Sffi�6�1ðcos2�þ

2 �
cos2��

2 Þ=ð9sin2�þ
2 þ4sin2��

2 þ3½2�cos2�þ
2 �cos2��

2 �Þ.
Thus, the most important factor is cos2�þ

2 � cos2��
2 ,

which is related to the difference in the occupation num-
bers of the J ¼ 2� 1

2 impurity states induced by SOI

through the Friedel sum rule [21]. Thus, the local density
of states (DOS) for the d electrons determines the magni-
tude of SHE, which can be studied by the first-principles
calculation as described below.

We take Au as the host metal, where the gigantic SHE
has been observed [13]. The electron configuration of Au
atom is 5d106s1, and the Fermi energy is at the 6s6p bands
with relatively small SOI. Therefore, it is difficult to ex-
plain the giant SHE in terms of the intrinsic mechanism, in
sharp contrast to the case of Pt with 5d96s2 [14]. Because
in [13] the spin current is supplied from FePt to Au, it is
natural to consider the three possibilities of the imperfec-
tions, i.e., (i) Au vacancies, (ii) Pt impurities, and (iii) Fe
impurities. From the above consideration, there are several
requirements to obtain the gigantic SHE; (I) there should

be the resonance at the Fermi energy due to either the
Kondo peak or the mixed valance, (II) the orbital angular
momentum should not be quenched, and (III) the peak
must be split due to SOI by the energy comparable or
larger than the width of the peak. We have studied the
impurity states in Au host metal for these three cases in
terms of the local density approximation (LDA)[22] plus
on-site Coulomb interaction U (LDAþU) [23] (U ¼ 5,
J ¼ 0:9 eV). We used the accurate full-potential aug-
mented plane wave method, as implemented in the
WIEN2K code [24]. The atomic positions are relaxed in

the presence of the impurity. The numerical results pre-
sented below have been tested for convergence with re-
spect to the energy cutoff for augmented plane waves,
k points used for irreducible Brillouin zone and supercell
size. Figure 2 shows the DOS in the presence of one
impurity in the 2� 2� 2 supercell. Basically the structure
extending from�8 to�2 eV is due to the 5d bands of Au,
while 6s6p bands of Au are extended all through in this
energy range with smaller DOS. The change in the DOS is
almost confined in the range of the 5d bands in the case of
(i) vacancy [Fig. 2(a)], and is at around�1:5 eV in the case
of (ii) Pt [Fig. 2(b)]. We could not obtain a magnetic state
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FIG. 2 (color). Total, site-, orbital- and spin-decomposed
DOSs of (a) bulk fcc Au, 3.1% Au-vacancies, (b) 3.1% Pt
impurities, (c) 3.1% Fe impurities in nonmagnetic state, and
(d) in ferromagnetic state.
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in these cases even in the LDAþU calculation. This
conclusion is consistent with the earlier study by photo-
electron spectroscopy [25]. In sharp contrast, we obtained
the magnetic state as the ground state with both the LDA
and LDAþU calculations in the case of Fe. Accordingly,
the DOS for Fe [Fig. 2(d)] shows the spin splitting, and the
down-spin DOS has the sharp peak close to the Fermi en-
ergy. (We put the DOS for nonmagnetic state in Fig. 2(c)
for reference.) This means that there occurs the valence
fluctuation of Fe ion between d6 and d7. This is reasonable
since the Fe in Au is known as a Kondo impurity but the
Kondo temperature is as low as 0.4 K. Thus, we conclude
that only (iii) Fe impurities could be the origin of the large
SHE satisfying the criteria (I), (II), (III) discussed above.

The band structure calculation for the state with local
magnetic and orbital orderings corresponds to the mean
field theory of the Anderson Hamiltonian [21]. In the limit
of isolated impurity atom, this mean field theory gives the
correct energy positions of the peaks in the spectral func-
tion of the single-particle Green’s function. Of course,
there is no symmetry breaking by the local electron corre-
lation, and the true ground state is the superposition of the
degenerate symmetry breaking states, i.e., quantum fluc-
tuation of spins and orbitals occur. Early theories of Kondo
effect of Fe in Au have estimated the relevant quantities as
� ffi 1:4 eV,U ffi 5:4 eV, J ffi 0:9 eV [26], where� is the
energy broadening of the virtual bound state due to the
hybridization with the conduction bands. The crystal field
splitting is considered to be small (�0:1 eV), and SOI � ffi
30 meV is even smaller. The resistivity measurement at
room temperature shows a systematic change as the va-
lence of the impurity changes as Ti, V, Cr, Mn, Fe, Co, Ni,
and shows the dip at Mn, while the maximum at Fe (Fig. 17
of Ref. [27]). This strongly suggests the peak in the DOS
for Fe, i.e., the mixed valence case, although the low
temperature properties have been analyzed by the Kondo
model [27]. The magnetic susceptibility measurement
shows the S ¼ 2 magnetic moment, while the Mössbauer
experiment concluded rather S ¼ 3

2 [28]. These some-

what confusing situation can be resolved by the LDOS in
Figs. 2(c) and 2(d) together with Table I. Table I shows the
calculated spin/orbital magnetic moments and the d-orbital
occupation numbers. Note that the obtained values depend
slightly on the muffin-tin sphere radius Rmt and U value,
but the semiquantitative conclusion does not change. First,
the nonmagnetic state in the LDA calculation shows almost
no crystal field splitting (�0:1 eV), which is consistent
with the earlier result. However, the inclusion ofU changes
the situation dramatically, and the eg-t2g splitting is en-

hanced to be around 2 eV as shown in Fig. 2(d). This
corresponds to the orbital polarization due to the electron
correlation, i.e., the local version of the orbital ordering not
by the crystal field but by the electron correlation.
Therefore we conclude that the orbital-dependent Kondo
effect occurs for Fe in Au; the eg orbitals are in the Kondo

limit, while t2g orbitals are in the mixed valence region. At

temperatures above TK ffi 0:4 K, the t2g orbitals, within

which the orbital angular momentum is not quenched, play
the major role in the transport properties, while the
eg orbitals determine the low temperature Kondo effect.

Now we consider the orbital polarization within the t2g
states due to SOI. Note that t2g orbitals behaves like leff ¼
1 states with xy and zx� iyz orbitals corresponding to
m ¼ 0 and m ¼ �1 states, respectively. Thus, SOI is
effective within the t2g states leading to the energy splitting

between the Jeff ¼ 3=2 and Jeff ¼ 1=2 states. Naively, the
orbital polarization is determined by the competition be-
tween the hybridization energy � and the SOI splitting.
Here, one must carefully distinguish between the many-
body states and the single-particle states. The energy sepa-
ration between the many-body states with different total
angular momentum J is typically the order of SOI, and
much smaller than U or J. However, once the many-body
ground state of d electrons is fixed, the separation of the
single-particle state energy, which is the energy difference
between theN-electron andN � 1-electron state, can be as
large as U or J, which is important for the conduction
electrons which comes in or out to the d orbitals. Thus, it is
possible that the electron correlation U plays an essential
role, and even a SOI much smaller than the hybridization
energy can produce the large orbital magnetic moment
mo ¼ 1:5�B as shown in Table I. Correspondingly, the
single-particle m ¼ 1 state is almost occupied (0.82) while
m ¼ �1 state is almost empty (0.09), as is seen also from
the inset of Fig. 2(d). Figure 2(d) and Table I also explain
why the AHE is rather small compared with SHE. As for
AHE, the phase shift for m ¼ 1 (m ¼ �1) are almost �
(0), and both of them do contribute a little to the scattering,
while the m ¼ 0 state is almost in the unitary limit with
�=2-phase shift. Thus, we do not expect the enhanced
AHE, leading to the small anomalous Hall angle compared
with that for SHE [17]. For the SHE, on the other hand,
such a cancellation does not occur. One needs to treat the
spin or orbital fluctuation in this case, but a rough estimate
for the spin Hall angle can be obtained as follows. For the
conduction electrons, the energy difference between Jeff ¼
3=2 and Jeff ¼ 1

2 is that ofm ¼ 1 and m ¼ �1 states in the
mean field theory when one considers the Ising type cou-

TABLE I. Down-spin occupation numbers of the 3d orbitals of
the Fe impurity in Au from LDAþU calculations. The calcu-
lated magnetic moments are mFe

s ¼ 3:39�B and mtot
s ¼ 3:32�B

without SOI, as well as mFe
s ¼ 3:19�B, mFe

o ¼ 1:54�B, and
mtot

s ¼ 3:27�B with SOI. The muffin-tin sphere radius Rmt ¼
2:65a0 (a0 is Bohr radius) is used.

(a) xy xz yz 3z2 � r2 x2 � y2

No SOI 0.459 0.459 0.459 0.053 0.053

SOI 0.559 0.453 0.453 0.050 0.128

(b) m ¼ �2 m ¼ �1 m ¼ 0 m ¼ 1 m ¼ 2
No SOI 0.256 0.459 0.053 0.459 0.256

SOI 0.138 0.087 0.050 0.819 0.549
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pling lzsz. This energy is larger than the hybridization
energy and we expect the difference of the phase shifts
between these two channels of the order of �, giving a
large spin Hall angle of the order of �1 ffi 0:1 as observed
experimentally [13]. This picture for the Kondo effect in Fe
impurity in Au is different from the conventional one [26].
Further experimental studies using the spectroscopies such
as STS and ARPES are highly desired to clarify the nature
of this fundamental problem.

SHE associated with Kondo effect is expected for other
ions such as rare earths [29]. We have also studied the case
of 5d metals (Ta, W, Re, Os, Ir) doped into Au. In these
cases, the appropriateU value is�0:5 eV, and there occurs
no magnetic state. However, SOI is almost as large as U,
and hence the large SHE is expected. The DOS and the
associated phase shifts for Wand Os are shown in Fig. 3 as
the two representatives. Even without the magnetic mo-
ment, SHE is enhanced due to the resonant state at Fermi
energy, and the corresponding spin Hall angle is estimated
as �S ffi 0:2 sin2�1 ffi 0:04 in these cases, in semiquantita-
tive agreement with the early experiment [17].

In conclusion, we have studied the enhanced SHE due to
the resonant skew scattering. Compared with AHE, SHE,
where the time-reversal symmetry is not broken, gives a
unique opportunity to study the electronic states near the
impurity without disturbing its magnetic behavior. We

have presented the formula for the spin Hall angle in terms
of the phase shifts [Eq. (3)], and also the first-principles
band structure calculation to analyze the mechanism of the
gigantic SHE. We have shown that SHE shed a new light
on the Kondo effect, which plays the key role to enhance
SHE and a new picture for the Fe impurity state in Au has
been proposed. This leads to the material design of the
large SHE even at room temperature with the potential
application to the spintronics.
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