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We present a scheme for eliminating the optical diffraction of slow light in a thermal atomic medium of

electromagnetically induced transparency. Nondiffraction is achieved for an arbitrary paraxial image by

manipulating the susceptibility in momentum space, in contrast to the common approach, which employs

guidance of specific modes by manipulating the susceptibility in real space. For negative two-photon

detuning, the moving atoms drag the transverse momentum components unequally, resulting in a Doppler

trapping of light by atoms in two dimensions.
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Every classical wave field is subjected to diffraction
throughout its propagation. Nondiffracting beams, i.e.,
optical modes that maintain their intensity distribution in
the transverse planes normal to the propagation direction,
exist only within the particular class of Bessel beams [1].
There is no solution, in any field in optics, to suppress
diffraction for an arbitrary image and for any distance
along the propagation direction.

In recent years, the process of electromagnetically in-
duced transparency (EIT) has been employed to reduce or
eliminate the diffraction spreading of beamlike fields [2–
13] by manipulating the susceptibility in real space and
inducing a gradient of the index of refraction [14].
Similarly to waveguiding, special modes, such as the
Laguerre-Gauss modes, propagate in the induced wave-
guides without diffraction or, equivalently, arbitrary im-
ages can be revived after a certain self-imaging distance. In
this Letter, we suggest a method to achieve light propaga-
tion without diffraction for any arbitrary paraxial image,
with both the intensity and phase information of the image
completely maintained. We utilize Dicke narrowing in a
vapor EIT medium [15] to obtain a susceptibility that is
quadratic in the transverse momentum space and by that
eliminate the effect of diffraction. A unique manifestation
of nondiffraction is the ability to suspend the expansion of
a beam regardless of its position. Other applications may
include high-resolution imaging, slowing and storage of
images [16,17], and nonlinear optics [7].

In EIT, a beamlike probe field traverses the medium with
a reduced group velocity, in the presence of a second pump
field. Spatial manipulation of the probe’s susceptibility
may be achieved either by applying a suitable nonuniform
pump beam or by employing inhomogeneity of the atomic
medium. The former technique, known as electromagneti-
cally induced focusing, was observed in a vapor medium
[2] and later with cold atoms [3]. Exact cancellation of
diffraction by induced focusing was studied extensively as
induced solitons [4], induced waveguides [5,6], and trans-
verse confinement [7,8], but in all these investigations were

limited to Gaussian or certain higher-order modes. The
low group velocity of each transverse mode is different,
resulting in the dispersion of multimode profiles, and self-
imaging may occur only at certain distances [9].
Waveguiding using an inhomogeneous medium was
studied for ultracold atoms in an anisotropic trap [10,11].
Nondiffracting spatial solitons of a specific transverse
shape may also be supported by self-focusing or cross-
focusing, due to a strong Kerr effect in EIT [12,13].
Here, we analyze a novel scheme for spatial confinement

in the paraxial regime, which incorporates a large plane-
wave pump, a uniform atomic spatial distribution, and a
weak probe, as opposed to the methods of finite pump,
finite atomic cloud, and Kerr solitons, respectively. Instead
of imposing transverse nonuniformity in real space, we
prescribe nonuniformity in k? space, such that the paraxial
optical diffraction, which is also k?-dependent, is com-
pletely counterbalanced. Here, k? denotes the transverse
wave vectors, i.e., the Fourier components of the envelope
of the field in the transverse plane. We study slow light via
EIT in a dilute thermal vapor in the presence of a buffer

FIG. 1 (color online). (a) Illustration of Doppler trapping of
slow light. A beamlike probe and a plane wave pump propagate
along the z direction. EIT effects in the medium depend on the
wave vector difference k?, such that atoms that move oppositely
to k? ‘‘drag’’ the respective field’s component more efficiently
back to the main axis. (b) Level structure. To simplify the
notation, the pump and the probe are assumed to have the
same frequency !, and the Raman detuning � is introduced
via the energy difference between the lower levels.
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gas. Because of frequent velocity-changing collisions with
the buffer-gas atoms, the atomic motion is diffusive, lead-
ing to the phenomena of Dicke narrowing and diffusion of
light [18]. For a finite-sized probe and a plane-wave pump,
the atoms effectively ‘‘carry’’ the complex amplitude of
the probe field within their internal coherence as they
diffuse, resulting in an effective diffusion of the probe’s
envelope [16,19]. In this Letter, we show that by introduc-
ing a nonzero two-photon (Raman) detuning, the atomic
motion also induces a k?-dependence of the refraction
index. Specifically, for negative Raman detuning, the
k?-dependent refraction takes the shape of the paraxial
diffraction with an opposite sign, thus enabling its cancel-
lation. This diffraction elimination is homogenous and
continuous, as opposed to discrete diffraction-management
techniques [20].

The following simplified picture, illustrated in Fig. 1(a),
explains this spatial-confinement phenomenon. Generally,
for a negative detuning, a moving atom couples more
efficiently with the ‘‘counterpropagating components’’
(wave vectors) of the field due to the Doppler effect. In
EIT, a residual Doppler effect takes place, which depends
on the wave vector associated with the difference between
the pump and the probe [15,21]. In the simplest arrange-
ment—a plane wave, degenerate, and copropagating
pump—the pump-probe wave vector difference equals
k?. Therefore, for negative Raman detuning, each compo-
nent in k? space exhibits stronger coupling with the atoms
moving in the (�k?) direction and is effectively carried
back towards the main axis. This is, in fact, a realization of
a Doppler trapping of light by atoms, in analogy with the
trapping of atoms in a Doppler optical trap.

Consider a dilute vapor of �-type atoms, with two
nearly degenerate lower states, j1i and j2i, and a single
excited state j3i. A probe beam and a strong plane wave
pump propagate along the z direction, with equal fre-
quency !, and couple states j1i and j2i with state j3i,
respectively [see Fig. 1(b)]. The energy difference between
the lower levels, �, defines the Raman detuning [22], and
the one-photon detuning is assumed to be much smaller
than the width of the optical resonance. Under the paraxial
approximation, assuming the changes in the probe’s enve-
lope along the z direction are much smaller than the
changes in the transverse plane, and assuming the pump
is nearly constant along z, the propagation of the probe in
steady state can be described by [18],

�
@

@z
þ i

k2?
2q

�
�ðk?; zÞ ¼ i�ð�;k?Þ�ðk?; zÞ; (1)

where q ¼ !=c, c is the speed of light, and �ðk?Þ is the
linear susceptibility, with Im� being the absorption co-
efficient and Re� being the dispersion. �ðk?; zÞ is the
Fourier transform of the slowly varying Rabi envelope of
the probe, defined by

�ðk?; zÞ ¼ eið!t�qzÞ Z d2r?e�ik?�r? ~�ðr?; z; tÞ; (2)

with ~�ðr?; z; tÞ the rapidly oscillating Rabi frequency. The
second summand in the left-hand side of Eq. (1) is the well-
known diffraction term, which is quadratic in k? and
purely imaginary.
For an atom at rest, the susceptibility in the vicinity of

the EIT line is �0ð�Þ ¼ i�½1� �p=ð�� i�Þ�, where 2� is

the absorption coefficient in the absence of the pump; �p is

the power-broadening term, proportional to the pump in-
tensity; and � is the total homogenous EIT line width—the
sum of �p and the decoherence rate within the ground

state manifold. In a vapor medium with buffer gas, the
EIT atoms are subjected to frequent velocity-changing
collisions with the buffer-gas atoms [23]. The resulting
atomic motion is diffusive and is characterized by a diffu-
sion coefficient D, incorporating both the mean thermal-
velocity and the collision rate. Because of residual Doppler
broadening and Dicke narrowing, the EIT line shape be-
comes dependent on the two-photon wave vector differ-
ence, k? � 0, and the resulting susceptibility is [18]

�ð�;k?Þ ¼ i�

�
1� �p

�þDk2? � i�

�
: (3)

The term Dk2? is the Doppler-Dicke width, originating

from the atomic motion [24].
On the Raman resonance, � ¼ 0, the susceptibility � is

purely imaginary and thus generates a k?-dependent ab-
sorption filter without dispersion. The absorption filter
for � ¼ 0, depicted in Fig. 2 (dashed black line), is a

Lorentzian of width k0 ¼ ð�=DÞ1=2. When the spatial spec-
tra of the probe beam �ðk?; zÞ is confined within k? �
k0, the absorption is approximately quadratic in k? and,

FIG. 2 (color online). Imaginary (top) and real (bottom) com-
ponents of the probe susceptibility, normalized by the absorption
in the absence of the pump, �, as a function of k? for different
Raman detunings:� ¼ 0 (dashed black line),� ¼ �� (solid red
line), and � ¼ �2� (dotted blue line). The typical width is k0 ¼
ð�=DÞ1=2, where � ¼ 2�p was chosen here. The negative qua-

dratic shape of the dispersion curve for �< 0, in the central jk?j
region, can be used to eliminate the optical diffraction.
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according to Eqs. (1) and (2), operates as a Laplacian in
real space, and causes a diffusionlike behavior [18].

For k? � k0, the absorption and the dispersion for non-
zero Raman detuning can be written as

Im� ¼ Im�0 þ ��p�
�2 � �2

ð�2 þ�2Þ2
k2?
k20

þOðk4?Þ; (4a)

Re� ¼ Re�0 � ��p�
2��

ð�2 þ�2Þ2
k2?
k20

þOðk4?Þ: (4b)

At the central part of the spatial spectrum, the dispersion is
quadratic in k?, exactly like a paraxial diffraction term.
Therefore, by properly choosing the parameters, the domi-
nant part of the motional-induced dispersion, namely, the
k2? term, can cancel the free-space diffraction. The strength

and the sign of the dispersion depend on�, and, in order to
eliminate diffraction, a nonzero negative detuning is re-
quired. For the specific case of � ¼ ��, the absorption
filter in Eq. (4a) is flat up to the fourth order in k?, as seen
in Fig. 2 (top, solid red line), implying that no motional-
induced diffusion will accompany the propagation of para-
xial images. By this, we avoid spreading due to absorption,
which was significant, for example, in electromagnetically
induced focusing [25]. We therefore choose � ¼ �� and,
following Eq. (1), require the diffraction cancellation con-
dition

1

2q
¼ ��p

2�k20
: (5)

Under regular diffraction, a focused Gaussian beam that
hits the medium with a waist radius w0 spreads as wðzÞ2 ¼
w2

0ð1þ z2=z2RÞ, with zR ¼ qw2
0=2 being the Rayleigh

length. Condition (5) can be intuitively explained, by
requiring the diffraction spreading at one Rayleigh length
(w2

0) to be comparable to the typical diffusion spreading

(D�, where � ¼ zR=vg is the slow-light delay and vg ¼
�2=ð��pÞ is the group velocity). For a waist of �100 �m

and a Rayleigh length of a few cm, conditions (5) and
k? � k0 can be satisfied with D of the order of 10 cm2=s
and vg of �10 km=s, which are readily available [16,19].

Notice however, that due to the deviation from the Raman
resonance condition, the absorption per unit length, � ¼
2�½1� �p=ð2�Þ�, is substantial. It becomes smaller as the

power-broadening increases and eventually approaches
� ¼ � for � � �p. For a beam with w0 ¼ �=k0 and for

� � �p, condition (5) becomes � ¼ ð�2=2Þ=zR � 5=zR,

which means the intensity decreases by about expð�5Þ
every Rayleigh length.

In our scheme, strong absorption is unavoidable due to
the nonzero Raman detuning. While an observation of the
nondiffraction phenomenon is well within current experi-
mental capabilities, applications of it may require smaller
absorption. Here, the fact that the absorption is indepen-
dent of k? is crucial, allowing a wide range of gain
schemes to be potentially applicable. Homogenous gain
mechanisms that are available for vapor, e.g., Raman gain

[26], can be considered, and specifically two integrated
gain schemes in EITwere recently explored [27,28]. There
is also the trivial possibility to introduce gain before or
after the cell, providing the gain medium is much thinner
than the Rayleigh length.
Figure 3 presents numerical calculations of the effect,

obtained by taking the Fourier transform of the bound-
ary condition, �ðx; y; z ¼ 0Þ, according to Eq. (2), solv-
ing Eq. (1), and doing the inverse Fourier transform.
The exact expression (3), rather than the approxima-
tion of Eqs. (4a) and (4b), was used for the calcula-
tion. Figure 3(a) demonstrates the transmission of two
Gaussian beams in the transverse plane at zR, and
Fig. 3(b) depicts the propagation of three beams along
the z axis up to 4zR. Without EIT (left column), there is
only free-space diffraction, and with EIT on-resonance
(�=� ¼ 0, center column), the diffraction spreading is
accompanied by a diffusion spreading, due to the

FIG. 3 (color online). Numerical calculations demonstrating
the effect of nondiffraction. (a) An incident beam of two focused
Gaussian modes, with a waist radius of w0 ¼ �=k0 ¼ 100 �m
and separation of 3w0, propagating one Rayleigh length for � ¼
795 nm. Condition (5) is satisfied, e.g., with D ¼ 11 cm2=s and
vg ¼ 9000 m=s. The normalized transmitted images and the

profile cross sections (incident is dashed line, transmitted is
solid line) are shown for three cases: free-space diffraction
(left); on-resonance EIT transmission (center); and EIT with a
negative detuning, � ¼ �� (right), exhibiting no diffraction and
no diffusion. (b) Intensity at the y ¼ 0 plane (normalized for
each z), of three Gaussian beams with 4w0 separation, propagat-
ing four Rayleigh lengths.
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k?-dependence of Im�. For EIT with �=� ¼ �1 (right
column), the elimination of spreading due to both diffrac-
tion and diffusion is clearly evident. Notice that the width
of each Gaussian beam in Fig. 3(b) increases by �50%
after 4zR. This is the effect of fourth order in �ðk?Þ, and
we have verified numerically that the spreading after
4 Rayleigh lengths approaches zero as w0 is increased
(e.g., for a waist of w0 ¼ 8�=k0, the spreading is �3%).
An example of nondiffraction of an elaborated image that
traverses 2zR is presented in Fig. 4. As evident from Figs. 3
and 4 and in contrast to previous nondiffraction schemes,
our scheme works for a general image and for any distance
along the propagation direction.

In conclusion, we utilize the EIT linear susceptibility in
the wave vector space, rather than in real space, to elimi-
nate the diffraction of a paraxial probe beam with a general

transverse profile, limited in k?-space to the region k? �
ð�=DÞ1=2. From the viewpoint of optical information pro-
cessing, our scheme may be useful to increase the capacity
of information carried by the slow light and hence also the
memory capacity in storage of light. As � is increased and
D is decreased, the resolution of the nondiffracting pattern
may be increased. Elongated narrow beams can also be
utilized for the purpose of guiding, for example, via non-
linear interactions or dipole trapping. An intriguing exten-
sion of this work would be to generalize the two-
dimensional ‘‘Doppler trap’’ to pulses of finite duration,
in order to achieve trapping in three dimensions.

We thank D. R. Fredkin and R. Pugatch for helpful
discussions.
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