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We describe the construction of the complete four-loop four-particle amplitude ofN ¼ 8 supergravity.

The amplitude is ultraviolet finite, not only in four dimensions, but in five dimensions as well. The

observed extra cancellations provide additional nontrivial evidence that N ¼ 8 supergravity in four

dimensions may be ultraviolet finite to all orders of perturbation theory.
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An often-expressed sentiment is that pointlike quantum
field theories based on Einstein’s theory of general relativ-
ity, including supersymmetric extensions thereof, are quan-
tum mechanically inconsistent, due to either a proliferation
of divergences associated with the dimensionful nature of
Newton’s constant, or absence of unitarity. A series of
recent computations has challenged this widely held belief.
In particular, the three-loop four-graviton amplitude [1,2]
in N ¼ 8 supergravity [3] exposes cancellations beyond
those needed for ultraviolet (UV) finiteness at that order.
Novel cancellations occur already in this theory [4,5] at
one loop, related [6,7] to the remarkably good behavior of
gravity tree amplitudes under large complex deformations
of external momenta [7,8], and to the unordered nature of
gravity amplitudes [5]. The modern unitarity method [9]
implies that extensive UV cancellations occur to all loop
orders [10], for a class of terms obtained by isolating one-
loop subamplitudes via generalized unitarity [11], leading
to the proposal [6] that the multiloop UV cancellations
trace back to the tree-level behavior. These surprising
cancellations point to the possible perturbative UV finite-
ness of the theory.

Interestingly, M theory and string theory have also been
used to argue both in favor of the finiteness of N ¼ 8
supergravity [12], and that divergences are delayed through
nine loops [13,14]; issues involving the decoupling of
certain massive states [15] remain in either case. The non-
compact E7ð7Þ duality symmetry of N ¼ 8 supergravity

[3,16] may also play a role [7,17], though this remains to be
demonstrated. A mechanism rendering a pointlike theory
of quantum gravity ultraviolet finite would be novel and
should have a profound impact on our understanding of
gravity.

Indeed, all studies to date conclude that supersymmetry
and gauge invariance alone cannot prevent the onset of UV
divergences to all loop orders in four dimensions. In fact, it
had been a longstanding expectation that, in generic super-
gravity theories, four-graviton amplitudes diverge at three
loops in four dimensions [18]. Such a divergence would be
associated with a counterterm composed of four appropri-
ately contracted Riemann tensors (the square of the Bel-

Robinson tensor), denoted by R4. A recent study [19]
explains the known lack of this counterterm [1,2], both in
terms of non-renormalization theorems and an algebraic
formalism for constraining counterterms. However, it does
predict divergences at L ¼ 5 loops in dimension D ¼ 4
and at L ¼ 4 loops in D ¼ 5 [20], unless additional can-
cellation mechanisms beyond supersymmetry and gauge
invariance are present.
In contrast, explicit computations of the four-graviton

amplitude at successive loop orders have consistently re-
vealed unexpected UV cancellations. Results at two loops
strongly suggested [21], and at three loops proved [1,2] that
the R4 divergence is absent in N ¼ 8 supergravity. In
addition, UV divergences are absent at three loops in D<
6. The theory first diverges in D ¼ 6, and the counterterm
has the schematic form D6R4, where D is a space-time
derivative acting on the Riemann tensors [2]. The compu-
tation described in this Letter reveals no UV divergences at
four loops in bothD ¼ 4 andD ¼ 5, specifically ruling out
a counterterm of the form D6R4 in D ¼ 5. The origin of
the observed UV properties is, however, not yet properly
understood.
It is worth noting that more speculative field-theoretic

studies have suggested further delays to the onset of diver-
gences. For example, if off-shell superspaces with manifest
N ¼ 6, 7, or 8 supersymmetries were to exist, D ¼ 4
divergences would be delayed to at least L ¼ 5, 6, or 7
loops, respectively [22,23]. Locality of counterterms in
N ¼ 8 light-cone superspace has also been used to argue
[17] for an L ¼ 7 bound. With the additional speculation
that all fields respect an 11-dimensional gauge symmetry,
one can even delay the first potential divergence to nine
loops [19]. Interestingly, this bound coincides with the one
suggested [14] from a string theory non-renormalization
theorem [13].
In this Letter, we describe the four-loop four-particle

amplitude of N ¼ 8 supergravity, denoted by M
4-loop
4 ,

which we represent as a sum of 50 four-loop integrals Ii,

M4-loop
4 ¼

�
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�
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X50
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ciIi: (1)
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Here S4 is the set of 24 permutations of the massless
external legs f1; 2; 3; 4g with momenta ki, the ci are com-
binatorial factors depending on the symmetries of the
integrals, � is the gravitational coupling, and Mtree

4 is the
corresponding four-point tree amplitude. (All 2564 four-
point amplitudes of N ¼ 8 supergravity are related to
each other by supersymmetry, which enforces the propor-

tionality of M4-loop
4 to its tree-level counterpart Mtree

4 .) The

Mandelstam invariants are s ¼ ðk1 þ k2Þ2, t ¼ ðk2 þ k3Þ2,
u ¼ ðk1 þ k3Þ2. Each integral Ii corresponds to a four-loop
graph with 13 propagators and 10 cubic vertices. The
50 graphs may be obtained by attaching four external
legs to the edges of the five vacuum graphs in Fig. 1. Not
all possibilities contribute, however; diagrams containing
nontrivial two- or three-point subgraphs, such as all those
obtained from Fig. 1(a), do not appear in the amplitude.
Every integral takes the form

Ii ¼
Z �Y4

p¼1

dDlnp
ð2�ÞD

�
Niðlj; kjÞQ

13
n¼1 l

2
n

; (2)

where the propagator momenta ln are linear combinations
of four independent loop momenta lnp and the external

momenta kj. The numerator polynomial Niðlj; kjÞ is of

degree 12 in the momenta, by dimensional analysis.
Generically, we denote loop momenta by l and external
momenta by k.

The full amplitude is too lengthy to present in this Letter.
Rather, we outline its construction and demonstrate some
of the relevant UV cancellations. Explicit expressions for
the numerators, symmetry factors and propagators may be
found in the supplementary material [24]. As examples, the
graphs for four integrals, labeled I1, I25, I32, and I50 in the
supplementary material [24], are shown in Fig. 2.

To determine the amplitude, we first construct an ansatz
with numerator polynomials ~Niðlj; kjÞ that contain unde-

termined coefficients. Then we consider generalized uni-
tarity cuts decomposing the four-loop amplitude into a
product of tree amplitudes Mtree

ðiÞ , as shown in Fig. 3.

Equating the cuts of the ansatz to the corresponding cuts
of the amplitude,

M4-loop
4

��������cut
¼ X

states

Mtree
ð1Þ M

tree
ð2Þ � � �Mtree

ðnÞ ; (3)

constrains the undetermined coefficients in the ansatz.
As only tree amplitudes enter Eq. (3), we follow the

strategy [21] of reexpressing theN ¼ 8 supergravity cuts

in terms of sums of products of related cuts of the four-loop
four-gluon amplitude in N ¼ 4 super-Yang-Mills (sYM)
theory [25,26]. The strategy relies on the Kawai-Lewellen-
Tye (KLT) relations between gravity and gauge theory tree
amplitudes [27], facilitated by their recent reorganization
in terms of diagrams [28]. While we suspect that a repre-
sentation of theN ¼ 8 amplitude exists in which each Ni

is at most of degree four in the loop momenta, it is natural,
given the squaring nature of the KLT relations, to first solve
the cut constraints with this condition relaxed.We present a
solution in which each Ni is at most of degree eight [24].
This representation is sufficient for our purpose of demon-
strating UV finiteness in D ¼ 4, 5.
The KLT relations are valid in arbitrary dimensions.

Thus, if theN ¼ 4 amplitudes are valid in D dimensions,
then so are the N ¼ 8 amplitudes derived from them.
While we do not yet have a complete proof of the
(D> 4)-dimensional validity of the nonplanar contribu-
tions to the four-loop N ¼ 4 amplitudes, we have carried
out extensive checks. In particular, ordinary two-particle
cuts and cuts isolating four-point subamplitudes extend
easily to D dimensions [25,26,28]. The full N ¼ 4 sYM
amplitude, the details of its calculation, and nontrivial
consistency checks will be presented elsewhere [26].
Following the method of maximal cuts [2,29], we first

fix those coefficients of the ~Niðlj; kjÞ that contribute when
the number of cut propagators is maximal—13 in this case.
We then consider cuts with 12 cut lines, fixing the coef-
ficients that appear in terms proportional to single inverse
propagators l2n (i.e., contact terms). We continue this pro-
cedure down to nine cut lines, considering, in total, 2906
distinct cuts. At this point, the resulting expression is

FIG. 1. Vacuum graphs from which one can build the contrib-
uting four-point graphs by attaching external legs. They are also
useful for classifying the UV divergences.

FIG. 2. Four of the 50 distinct graphs corresponding to the

integrals composing the result for the M
4-loop
4 .

FIG. 3 (color online). Evaluating these 11 cuts, along with 15
two-particle reducible cuts, suffices to uniquely determine the
four-loop four-point amplitude. Each blob denotes a tree ampli-
tude.
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complete, which we demonstrate using a set of 26 cuts,
sufficient to completely determine any four-loop four-point
amplitude in any massless theory. The 11 cuts that cannot
be straightforwardly verified using lower-loop four-point
amplitudes in two-particle cuts are shown in Fig. 3.

The UV properties of the amplitude are determined by
the numerator polynomials Ni. We decompose them into

expressions NðmÞ
i containing all terms with m powers of

loop momenta (and 12�m powers in the external mo-
menta),

Ni ¼ Nð8Þ
i þ Nð7Þ

i þ Nð6Þ
i þ . . .þ Nð0Þ

i : (4)

There is some freedom in this decomposition, including
that induced by the choice of independent lnp in the loop

integral (2). The overall scaling behavior of Eq. (2) implies

that an integral with NðmÞ
i in the numerator is finite when

4D� 26þm< 0. For m odd, by Lorentz invariance, the
leading divergence trivially vanishes under integration,
effectively reducingm by one. Our representation hasm �
8 for all terms; hence the four-loop amplitude is manifestly
UV finite in D ¼ 4.

Demonstrating UV finiteness inD ¼ 5 is more subtle. It
requires the cancellation of divergences for m ¼ 6, 7, 8.
We employ a systematic procedure for extracting diver-
gences from multiloop integrals by expanding in small
external momenta [30].

We find that the numerator terms with m ¼ 8 can all be
expressed solely in terms of inverse propagators l2n; those
with m ¼ 7 have six powers of loop momenta carried by
inverse propagators; and those with m ¼ 6 have four
powers; schematically,

Nð8Þ
i � sasbl

2
j l

2
nl

2
pl

2
q; Nð7Þ

i � sasbðkj � lnÞl2pl2ql2r ;
Nð6Þ

i � sasbðkj � lnÞðkp � lqÞl2r l2w þ sasbscðlj � lnÞl2pl2q;
(5)

where each sa denotes s, t, or u. After expanding in small
external momenta, potential UV divergences enter through
vacuum integrals, just as at three loops [1]. Vacuum inte-
grals also exhibit infrared singularities, which we regular-
ize by injecting two fictitious off-shell external momenta at
appropriate locations in the graph.

Only 12 of the 50 integrals have a nonvanishing Nð8Þ
i ; all

of them are associated with vacuum diagrams (d) and (e) of
Fig. 1. For example, the k4l8 terms in the numerators of the
integrals I25 and I32 in Fig. 2 are

Nð8Þ
25 ¼ 1

8l
2
5l

2
6l

2
7½ð30s2 þ 13t2 þ 13u2Þl29

� ð32s2 þ 19t2 þ 19u2Þl28�;
Nð8Þ

32 ¼ 1
8f2ð7s2 þ 7t2 þ 6u2Þl25l28l210l212
þ l29½12ð2s2 � t2 þ 2u2Þl26l27l212
� ð24s2 þ 19t2 þ 19u2Þl25l28l211�g:

(6)

All of the l2n factors in Eq. (6) cancel propagators in the
integrals. Thus, to leading order in the expansion in small
external momenta, the k4l8 terms in I25 and I32 reduce to

the vacuum diagram VðdÞ of Fig. 1(d),

I25 ! �14ðs2 þ t2 þ u2ÞVðdÞ þOðk5Þ;
I32 ! þ14ðs2 þ t2 þ u2ÞVðdÞ þOðk5Þ:

(7)

Here we have summed over the S4 permutations of external
legs in Eq. (1). Because their combinatorial factors c25 and
c32 are equal [24], the I25 and I32 contributions cancel at
leading order. Similarly, all k4l8 contributions in the re-
maining diagrams cancel, independent of D.
As the k5l7 terms cannot generate a leading divergence,

we need only inspect the k6l6 term to determine the UV
properties of the amplitude in D ¼ 5. It is necessary to
expand all integrands down to k6l6. For the 12 integrals
starting at Oðk4l8Þ, two derivatives are required with re-
spect to the external momenta ki, acting on propagators of
the form 1=ðlj þ KnÞ2 (where Kn denotes a sum of external

momenta). The numerators obtained by expanding the
integrals to this order have the schematic form,

Nð6Þ
i þ Nð7Þ

i

Kn � lj
l2j

þ Nð8Þ
i

�
K2

n

l2j
þ Kn � ljKq � lp

l2j l
2
p

�
: (8)

The additional denominators can lead to doubled or
even tripled propagators for the graphs in Fig. 1. Vacuum
integrals with l�i l

�
j in the numerator can be reduced

using Lorentz invariance, l
�
i l

�
j ! ���li � lj=D, with

D ¼ 5. After this reduction, the potential UV diver-
gence is described by 30 vacuum integrals. Of these, 23
possess no loop momenta in the numerator, while seven
have an ðli þ ljÞ2 numerator factor that cannot be re-

duced to inverse propagators using momentum conserva-
tion. There are many ways to expand the original 50
integrals Ii. Shifting the loop momenta in Eq. (2) by
dDlnp ! dDðlnp þ kjÞ leads to different representations of

the terms proportional toNð7Þ
i andNð8Þ

i in Eq. (8), and hence
to different forms of the UV divergences in terms of the 30
vacuum integrals. Requiring that the different forms are
equal generates identities between vacuum integral diver-
gences. These identities suffice to demonstrate cancella-

tion of the k6l6 divergence in M4-loop
4 .

Independently, we verified the identities by evaluating
all 30 vacuum integrals analytically in D ¼ 5� 2�. To do
this we injected external off-shell momenta and factorized
the resulting four-loop propagator integrals into the prod-
uct of one-loop and three-loop propagator integrals, much
as we did at three loops [2]. Integration by parts [31] was
used to reduce the three-loop propagator integrals to mas-
ter integrals.
Both the vacuum integral identities and the direct inte-

gral evaluation lead to the exact cancellation of the poten-
tial D ¼ 5 UV divergence. It is striking that this
cancellation can be demonstrated using only the consis-
tency of the small momentum expansion. Figure 4 displays
two of the 16 vacuum integral identities needed to demon-
strate finiteness in D ¼ 5.
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The k6l6 cancellation rules out a D6R4 counterterm in
D ¼ 5. It implies that the first potential divergence is
proportional to k8 (since a divergence must have an even
power of k), corresponding to D ¼ 11=2. As the four-loop
four-point N ¼ 4 sYM amplitude diverges in D ¼ 11=2
[25,26], the correspondingN ¼ 8 supergravity amplitude
behaves no worse.

In summary, the results presented here demonstrate that
the four-loop four-particle amplitude of N ¼ 8 super-
gravity is UV finite in D< 11=2. Finiteness in 5 � D<
11=2 is a consequence of nontrivial cancellations, beyond
those already found at three loops [1,2]. From a traditional
vantage point of supersymmetry [18,19,23], our results are
surprising and lend additional support to the possibility
that N ¼ 8 supergravity is a perturbatively consistent
quantum theory of gravity.
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