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Recently Hořava proposed a nonrelativistic renormalizable theory of gravitation, which reduces to

Einstein’s general relativity at large distances, and that may provide a candidate for a UV completion of

Einstein’s theory. In this Letter, we derive the full set of equations of motion, and then we obtain

spherically symmetric solutions and discuss their properties. We also obtain solutions for the Friedmann-

Lemaı̂tre-Robertson-Walker cosmological metric.
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Recently a new four-dimensional theory of gravity was
proposed by Hořava [1], inspired by condensed matter
models of dynamical critical systems. It has manifest
three-dimensional spatial general covariance and time-
reparametrization invariance, but only acquires four-
dimensional general covariance in an infrared large dis-
tance limit. It may be described in a language akin to the
3þ 1 dimensional Arnowitt-Deser-Misner canonical for-
mulatin (ADM) of general relativity, but in which Einstein
gravity is modified so that the full underlying four-
dimensional covariance is broken. The nature of the mod-
ifications is governed by a rather strong principle of ‘‘de-
tailed balance’’ [1].

In the ADM formalism, the four-dimensional metric of
general relativity is parametrized as [2]

ds24 ¼ �N2dt2 þ gijðdxi � NidtÞðdxj � NjdtÞ; (1)

where the lapse, shift, and 3-metric N, Ni, and gij are all

functions of t and xi. In the simplest version of the theory in
[1], the lapse function N is viewed as a gauge field for time
reparametrizations, and it is effectively restricted to depend
only on t, but not the spatial coordinates xi. A closer
parallel with general relativity is achieved if this ‘‘project-
ability’’ restriction is relaxed. Thus one may take a broader
view of the Hořava proposal as a class of theories in which
the relative coefficients of the terms in the ADM decom-
position of the Einstein-Hilbert action are modified, and
additional terms involving higher spatial derivatives are
included too. The higher derivative terms can improve the
renormalizability of the theory, without the usual attendant
problems of ghosts that would arise if higher time deriva-
tives were present too. In this Letter, we shall take the
broader viewpoint (discussed also in [1]) in which the
theory is essentially a class of 3þ 1 dimensional modifi-
cations of general relativity.

The ADM decomposition (1) of the Einstein-Hilbert
action is given by

SEH ¼ 1

16�G

Z
d4x

ffiffiffi
g

p
NðKijK

ij � K2 þ R� 2�Þ; (2)

where G is Newton’s constant and Kij is defined by

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ: (3)

Here, a dot denotes a derivative with respect to t.
The action of the theory proposed by Hořava [1] can be

written as

S ¼
Z

dtd3xðL0 þL1Þ;

L0 ¼ ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ þ �2�2ð�WR� 3�2
WÞ

8ð1� 3�Þ
�
;

L1 ¼ ffiffiffi
g

p
N

�
�2�2ð1� 4�Þ
32ð1� 3�Þ R2 � �2

2w4

�
Cij ��w2

2
Rij

�

�
�
Cij ��w2

2
Rij

��
; (4)

where �, �,�, w, and�W are constant parameters, and Cij

is the Cotton tensor, defined by

Cij ¼ �iklrkðRj
l � 1

4R�
j
l Þ: (5)

Comparing L0 to that of general relativity in the ADM
formalism, the speed of light, Newton’s constant, and the
cosmological constant emerge as

c ¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

1� 3�

s
; G ¼ �2

32�c
; � ¼ 3

2
�W:

(6)

[One can without loss of generality choose units so that
c ¼ 1. Indeed this was done in (1) and (2).] Furthermore,
the requirement thatL0 be equivalent to the usual Einstein-
Hilbert Lagrangian, and thus have four-dimensional gen-
eral covariance, implies that one must take � ¼ 1. In
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Hořava gravity, � represents a dynamical coupling con-
stant, susceptible to quantum corrections [1]. In order to
recover general relativity in the infrared limit, the other
dynamical coupling constants would need to flow so that
� ! 0, �W ! 1, and w ! 1, with �2�W fixed. (There
would also need to be a fine-tuning dynamical mechanism,
presumably from a matter sector, to subtract the now-
infinite cosmological constant proportional to �2�2

W .)
Note from (6) that for � > 1

3 , the cosmological constant

�W has to be negative. The cosmological implications of
the action (4) were recently discussed in [3,4]. See also [5].

The constants� and w2 are real, and have their origin as
the Newton constant and Chern-Simons coupling of
Euclideanized three-dimensional topologically massive
gravity [6]. However, if we make an analytic continuation
of these parameters, namely � ! i�, w2 ! �iw2, the
four-dimensional action remains real, with the sign of all
terms except (KijK

ij � �K2) in (4) now being reversed. In

this case, the emergent speed of light becomes c ¼
1
4�

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W=ð3�� 1Þp

. The requirement that this speed be

real implies that �W be positive for � > 1
3 .

We now consider the equations of motion for the action
(4). The equation following from the variation of N is

purely algebraic, and is given by

2

�2
ðKijK

ij � �K2Þ � �2�2ð�WR� 3�2
WÞ

8ð1� 3�Þ
� �2�2ð1� 4�Þ

32ð1� 3�Þ R2 þ �2

2w4
ZijZ

ij ¼ 0; (7)

where

Zij � Cij ��w2

2
Rij:

The variation �Ni implies

rkðKkl � �KgklÞ ¼ 0: (9)

The equations of motion due to the variation of �gij are
more complicated; they are given by

2

�2
Eð1Þ
ij � 2�

�2
Eð2Þ
ij þ �2�2�W

8ð1� 3�ÞE
ð3Þ
ij þ �2�2ð1� 4�Þ

32ð1� 3�Þ Eð4Þ
ij

���2

4w2
Eð5Þ
ij � �2

2w4
Eð6Þ
ij ¼ 0; (10)

where

Eð1Þ
ij ¼NirkK

k
jþNjrkK

k
i�Kk

irjNk�Kk
jriNk�NkrkKij�2NKikKj

k� 1
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Eð2Þ
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ij ¼NðRij� 1
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2RgijÞ�2ðrirj�gijrkrkÞðNRÞ; Eð5Þ
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þ 1
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lrn½N�mklðZmigkjþZmjgkiÞ�� 1

2rn½NZm
n�mklðgkiRjlþgkjRilÞ�� 1

2rnrnrk½N�mklðZmigjlþZmjgilÞ�
þ 1

2rn½rirkðNZm
n�mklÞgjlþrjrkðNZm

n�mklÞgil�þ 1
2rl½rirkðNZmj�

mklÞþrjrkðNZmi�
mklÞ�

�rnrlrkðNZm
n�mklÞgij: (11)

(The equations of motion were also obtained in [4].) Note
that in deriving these equations of motion, we have relaxed
the projectability restriction and allowed the lapse function
N to depend on the spatial coordinates xi as well as t. Had
we not done so, Eq. (7) would instead have to hold only
when integrated over all space. Obtaining general relativity
in an infrared limit could then be problematical.

We may now seek static, spherically symmetric solu-
tions with the metric ansatz

ds2 ¼ �NðrÞ2dt2 þ dr2

fðrÞ þ r2ðd�2 þ sin2�d�2Þ: (12)

If we consider a system with the Lagrangian L0 only, we
obtain the (anti–)de Sitter–Schwarzschild [(A)dS-
Schwarzschild] black hole with

N2 ¼ f ¼ 1� 1

2
�Wr

2 �M

r
: (13)

The easiest way to obtain the solution for the full
Lagrangian L0 þL1 is to substitute the metric ansatz
into the action, and then vary the functions N and f. This
is a valid procedure since the ansatz contains all the
allowed singlets compatible with the SOð3Þ action on the
S2. The resulting reduced Lagrangian, up to an overall
scaling constant, is given by

L ¼ Nffiffiffi
f

p
�
2� 3�Wr

2 � 2f� 2rf0 þ �� 1

2�W

f02

� 2�ðf� 1Þ
�Wr

f0 þ ð2�� 1Þðf� 1Þ2
�Wr

2

�
: (14)

There are in total three solutions. [We have also verified
that all the solutions indeed satisfy the full set of equations
of motion (7), (9), and (10).] The first solution is given by

f ¼ 1þ x2; x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi��W

p
r: (15)
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This is valid for all �, but strangely enough, the function
NðrÞ is unconstrained. This suggests that if we have a
hyperbolic spatial section, the Newtonian potential asso-
ciated with gtt ¼ �N2 can be an arbitrary function of r. [In
fact, with f given by (15), we have verified thatN can be an
arbitrary function of all the space-time coordinates.] As we
shall show later, this particular feature is specific to the
choice of coefficients that was made in [1] in order to
satisfy the condition of ‘‘detailed balance.’’

There are two more solutions, in which both f and N are
determined, given by

f ¼ 1þ x2 � 	xð2��
ffiffiffiffiffiffiffiffiffi
6��2

p Þ=ð��1Þ;

N ¼ x�ð1þ3��2
ffiffiffiffiffiffiffiffiffi
6��2

p Þ=ð��1Þ ffiffiffi
f

p
;

(16)

where 	 is an integration constant. For the solution to be
real, it is necessary that � > 1=3. It follows from (6) that
�W is a negative cosmological constant if we consider the
action (4); �W is a positive cosmological constant if we
consider instead the action with the continuation � ! i�,
w2 ! �iw2. In the limit where � ¼ 1=3, the function f
becomes that of the (A)dS black hole (13), but with twice
the cosmological constant. The solution has a curvature
singularity at x ¼ 0 for general �. It also has a curvature

singularity at x ¼ 1 if ð2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�� 2

p Þð�� 1Þ> 0.
It is of particular interest to investigate the � ¼ 1 solu-

tion, in which case the functions f and N are given by

N2 ¼ f ¼ 1þ x2 � 	
ffiffiffi
x

p
: (17)

The solution is asymptotically AdS4, with a horizon at x ¼
xþ, where xþ is the largest root of f. The temperature is
given by

T ¼ ð3x2þ � 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi��W

p
8�xþ

: (18)

There exists an extremal limit in which 	 ¼ 4=33=4, with

the horizon located at x ¼ 1=
ffiffiffi
3

p
, for which the tempera-

ture vanishes. The solution interpolates between the
AdS2 � S2 at the horizon and AdS4 at asymptotic infinity.
The significant difference between the solution (17) and
the usual AdS-Schwarzschild black hole (13) suggests that
general relativity is not always recovered at a large dis-
tance. [It was observed in [7] that by writing the
Schwarzschild metric in Painlevé-Gullstrand coordinates,
it does in fact satisfy the projectability condition, with
NðtÞ ¼ 1. We find that the AdS-Schwarzchild black hole
can also be written in Painlevé-Gullstrand type coordi-
nates, and it is given by

ds2 ¼ �dt2 þ
�
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r
þ�W

2
r2

s
dt

�
2 þ r2d�2:

Since in this coordinate system gij is flat, it follows that the

metric, with no modifications, gives an exact solution to
the Hořava theory with � ¼ 1, since the higher-order de-

rivative corrections, from L1, vanish. However, owing to
the negative cosmological constant�W , the solution has no
asymptotic r ! 1 region. (Recall that one no longer has
the freedom of four-dimensional general covariance.)]
The action (4) was obtained by imposing the condition

of detailed balance [1]. We may, however, entertain the
idea of deviating slightly from detailed balance, by con-
sidering the Lagrangian

L ¼ L0 þ ð1� �2ÞL1: (20)

There exist two pure AdS4 solutions. The function f is
given by

f ¼ 1� �W

1þ �
r2; (21)

where � can take both positive and negative values. The
remaining equations imply that

�½�WrN þ ð1þ ���Wr
2ÞN0� ¼ 0: (22)

Thus we see that when detailed balance is satisfied, corre-
sponding to � ¼ 0, the function N is unconstrained, as
previously noted. For � � 0, we find that N2 ¼ f, giving
rise to the AdS4 spacetimes.
The general solution for f andN can also be obtained, in

the case of nonvanishing �. Owing to its complexity, we
shall present only the special case where � ¼ 1, for which
it is given by

N2 ¼ f ¼ 1þ x2

1� �2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2ð1� �2Þxþ �2x4

p
1� �2

: (23)

The large distance behavior of the function f is given by

f ¼ 1þ x2

1þ �
� 	2

2�x
þOðx�4Þ: (24)

Thus we see that for nonvanishing �, the metric has finite
mass, which becomes divergent for the detailed-balance
value � ¼ 0, in which case the function f becomes the
one given in (17). When � ¼ 1, the solution becomes the
AdS-Schwarzschild black hole (13).
We may also look for cosmological solutions of the

Friedmann-Lemaı̂tre-Robertson-Walker form

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2ðd�2 þ sin2�d�2Þ

�
;

(25)

where k ¼ 1, 0,�1 corresponding to a closed, flat, or open
universe, respectively. Supposing that the matter contribu-
tion is equivalent to an ideal fluid, we find that

�
_a

a

�
2 ¼ 2

3�� 1

�
�W

2
þ 8�GN


3
� k

a2
þ k2

2�Wa
4

�
; (26)

€a

a
¼ 2

3�� 1

�
�W

2
� 4�GN

3
ð
þ 3pÞ � k2

2�Wa
4

�
: (27)
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It is interesting to note that for k ¼ 0, there is no contri-
bution from the higher-order derivative terms in the action.
For k � 0, these contributions becomes dominant for small
a, but weak at large a, implying that the cosmological
solutions of general relativity are recovered at large scales.

For vacuum solutions with p ¼ 
 ¼ 0, we have�
_a

a

�
2 ¼ �W

3�� 1

�
1� k

�Wa
2

�
2
: (28)

It follows from (6) that for the action (4), the right-hand
side of the equation is negative definite for � > 1

3 . Thus in

this case, solutions only exist when k ¼ �1, in which case
a is a constant given by a2 ¼ �1=�W .

We can instead consider the action which is obtained
from the analytic continuation � ! i�, w2 ! �iw2 we
discussed earlier. The reality condition for the speed of
light now implies that �W is positive for � > 1

3 . The

solution is given by

a2 ¼ k

�W

þ 	eð2
ffiffiffiffiffiffi
�W

p
=
ffiffiffiffiffiffiffiffiffi
3��1

p Þt: (29)

It is of interest to note that for k ¼ 1, there is a minimum

scaling factor amin ¼ 1=
ffiffiffiffiffiffiffiffi
�W

p
.

In this Letter, we have studied the recently proposed
nonrelativistic and renormalizable gravity theory intro-
duced in [1]. We derived the full set of equations of motion,
and then considered the static, spherically symmetric so-
lutions. We found that there exists a solution where the
spatial section is a hyperbolic space and the metric com-
ponent gtt ¼ �N2 can be an arbitrary function of all the
space-time coordinates. We demonstrated that this feature
occurs because certain coefficients in [1] are chosen to

satisfy a condition of detailed balance. The system also
admits AdS2 � S2 vacuum solutions. In addition, there
exist black hole solutions that interpolate between AdS2 �
S2 at the horizon and AdS4 at asymptotic infinity. The
asymptotic falloff of the metric for the black hole solutions
is much slower than that of the AdS-Schwarzschild black
hole in general relativity, suggesting that Einstein’s gravity
does not always appear to be recovered at a large distance.
We also obtained cosmological vacuum solutions.
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[1] P. Hořava, Phys. Rev. D 79, 084008 (2009).
[2] R. L. Arnowitt, S. Deser, and C.W. Misner, The Dynamics

of General Relativity, edited by Louis Witten (Wilew, New
York, 1962), Chap. 7, p. 227.

[3] G. Calcagni, arXiv:0904.0829.
[4] E. Kiritsis and G. Kofinas, arXiv:0904.1334.
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