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We present a set of functional equations defining the anomalous dimensions of arbitrary local single

trace operators in planarN ¼ 4 supersymmetric Yang-Mills theory. It takes the form of a Y system based

on the integrability of the dual superstring � model on the five-dimensional anti–de Sitter space (AdS5 �
S5) background. This Y system passes some very important tests: it incorporates the full asymptotic Bethe

ansatz at large length of operator L, including the dressing factor, and it confirms all recently found

wrapping corrections. The recently proposed AdS4=three-dimensional conformal field theory duality is

also treated in a similar fashion.

DOI: 10.1103/PhysRevLett.103.131601 PACS numbers: 11.25.Tq, 11.15.Tk, 11.30.Ly, 11.30.Pb

Introduction.—In the last few years, there has been
impressive progress in computing the spectrum of anoma-
lous dimensions of planar N ¼ 4 supersymmetric Yang-
Mills (SYM) theory. A great deal of this success was based
on Maldacena’s anti–de Sitter space conformal field theory
(AdS/CFT) correspondence between this 4D theory and
type IIB superstring theory on the AdS5 � S5 background
[1], and on the integrability discovered and exploited on
both sides of the correspondence [2–10]. As an outcome, a
system of asymptotic Bethe ansatz (ABA) equations was
formulated in [11] that made possible the computation of
anomalous dimensions of single trace operators consisting
of an asymptotically large number of elementary fields of
N ¼ 4 SYM theory, at any value of the ’t Hooft coupling
� � 16�2g2. This is very important, though still limited,
information on the nonperturbative behavior of the theory.

A far richer and instructive set of quantities to evaluate
would be the anomalous dimensions of ‘‘short’’ operators
such as the famous Konishi operator. The thermodynamic
Bethe ansatz (TBA) approach to the superstring sigma
model [12] has lead to a remarkable calculation of wrap-
ping effects at weak coupling. The 4-loop anomalous
dimension of Konishi and similar operators have been
calculated [13], in complete agreement with the direct
perturbative computations [14].

Here we propose a set of equations, the so called Y
system [15], defining the anomalous dimensions of any
physical operator of planar N ¼ 4 SYM at any coupling
g. Its integrability properties are those of the discrete
classical Hirota dynamics.

The derivation of this Y system from the bound states of
the ABAwill be given in a future publication [16]. Here we
will demonstrate the crucial test of its self-consistency: we
will see that the Y system incorporates the ABA equations
of [11], including the crossing relation constraining the
dressing factor S0 of the factorized scattering. We also

reproduce the Lüscher formulas recently used to compute
the SYM leading wrapping corrections. In particular we
rederive all known wrapping corrections for twist two
operators at weak coupling and present an explicit formula
for such corrections for a generic single trace operator of
planar N ¼ 4. In the last section we apply our method to
the study of the recently conjectured AdS4=CFT3 duality
[17] and find there a new wrapping correction.
Our Y systems opens a way to the systematic study of

anomalous dimensions of all operators. An even better
formulation would be a DdV-like integral equation, in the
spirit of the one found in [18] for the Oð4Þ sigma model.
This problem is currently under investigation.
Y system for AdS/CFT.—We will now propose the Y

system which yields the exact planar spectrum of AdS/
CFT. The Y system is a set of functional equations for
functions Ya;sðuÞ of the spectral parameter u, whose indices
take values on the lattice represented in Fig. 1. The equa-
tions take the usual universal form
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FIG. 1. T-shaped fat hook for the Y and T systems [19]. The
middle double line separates the two subgroups with extended
SUð2j2ÞL and SUð2j2ÞR symmetries.
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Yþ
a;sY

�
a;s

Yaþ1;sYa�1;s

¼ ð1þ Ya;sþ1Þð1þ Ya;s�1Þ
ð1þ Yaþ1;sÞð1þ Ya�1;sÞ : (1)

Throughout the Letter we denote f� ¼ fðu� i=2Þ and

f½a� ¼ fðuþ ia=2Þ. At the boundaries of the fat hook we
have Y0;s ¼ 1, Y2;jsj>2 ¼ 1, and Ya>2;�2 ¼ 0. The prod-

uct Y23Y32 should be finite so that Y2;�2 are finite.

The anomalous dimension of a particular operator (or
the energy of a string state in the AdS context) is defined
through the corresponding solution of the Y system and is
given by the formula (E ¼ �� J)

E¼X

j

�1ðu4;jÞþ
X1

a¼1

Z 1

�1
du

2�i

@��a
@u

logð1þY�
a;0ðuÞÞ: (2)

In terms of xðuÞ defined by u=g ¼ xþ 1=x, the energy

dispersion relation reads �aðuÞ ¼ aþ 2ig

x½þa� � 2ig

x½�a� , eval-

uated in the physical kinematics, i.e., for jx½�a�j> 1, while
��aðuÞ is given by the same expression evaluated in the

mirror kinematics where jx½s�j> 1 for a � s � �aþ 1

and jx½�a�j< 1 [13] (as well as Y�
a;0 , or any quantity

marked by the asterisk). Finally, the Bethe roots are defined
by the finite L Bethe equations

Y1;0ðu4;jÞ ¼ �1; (3)

where this expression is evaluated at physical kinematics.
The Y system is equivalent to an integrable discrete

dynamics on a T-shaped ‘‘fat hook’’ drawn in Fig. 1 , given
by the Hirota equation [19]

Tþ
a;sT

�
a;s ¼ Taþ1;sTa�1;s þ Ta;sþ1Ta;s�1; (4)

where

Ya;s ¼ Ta;sþ1Ta;s�1

Taþ1;sTa�1;s

: (5)

The nonzero Ta;s are represented by all visible circles in

Fig. 1. The Hirota equation is invariant with respect to the

gauge transformations Ta;s!g½aþs�
1 g½a�s�

2 g½s�a�
3 g½�a�s�

4 Ta;s.

Choosing an appropriate gauge we can impose T0;s ¼ 1.
Both the Y and the T systems are infinite sets of func-

tional equations which must still be supplied by the bound-
ary conditions and analyticity properties. Alternatively, we
can identify the proper large L solutions to these equations
and find T and Y functions at finite L by continuously
deforming from this limit. Hopefully this deformation is
unique, as in [18]. Also, after appropriate truncation, the Y
system can be studied numerically.

Large L solutions and ABA.—We expect the Y functions
to be smooth and regular at large u: Ya;s�0ðu ! 1Þ !
const, whereas for the black, momentum carrying nodes
in Fig. 1, we impose the asymptotics

Y�
a�1;0 �

�
x½�a�

x½þa�

�
L

(6)

for large L or u. As we will now show these asymptotics

are consistent with the Y system (1). Indeed, when L is
large Ya;0 goes to zero and we can drop the denominator in

the right-hand side of (1) at s ¼ 0. Using 1þ Ya;s ¼
Tþ
a;sT

�
a;s

Taþ1;sTa�1;s
following from (4) and (5), we have

Yþ
a;0Y

�
a;0

Ya�1;0Yaþ1;0

’
�

Tþ
a;1T

�
a;1

Ta�1;1Taþ1;1

��
Tþ
a;�1T

�
a;�1

Ta�1;�1Taþ1;�1

�
; (7)

where in the equation for a ¼ 1 one should replace Y0;0 by

1 as can be seen from (1). From our study of the Oð4Þ �
model [18] we expect that Ta;s	0 and Ta;s�0 cannot be

simultaneously finite as L ! 1. However, in this limit
the full T system splits into two independent SUð2j2ÞR;L
subsystems and, noticing that each factor in the right-hand
side is gauge invariant, we can always choose finite solu-
tions TR

a;s	0 and T
L
a;s�0 and interpret them as one solution of

the full T system in two different gauges (see [18] for more
details). These are the transfer matrices associated to the
rectangular representations of SUð2j2ÞR;L, described in de-
tail in the next section and in the Appendix.
The general solution of this discrete 2D Poisson equa-

tion in z and a is then

Ya;0ðuÞ ’
�
x½�a�

x½þa�

�
L �½�a�

�½þa� T
L
a;�1T

R
a;1; (8)

where the first two factors in the right-hand side represent a

zero mode of the discrete Laplace equation Aþ
a A�

a

Aa�1Aaþ1
¼ 1.

Thus we obtained all Ya;0, describing for a > 1 the

AdS/CFT bound states [21], in terms of TL;R
a;s up to a single,

yet to be fixed, function �. We pulled out the first factor in
(8) from the zero mode to explicitly match the asymptotics
(6). The second factor will become the product of fused
AdS/CFT dressing factors [6,9,11] as we shall see below.
Asymptotic transfer matrices.—In the large L limit Ya;0

are small and the whole Y system splits into two
SUð2j2ÞL;R fat hooks on Fig. 1. The Hirota equation (4)

also splits into two independent subsystems. For each of
these subsystems there already exists a solution compatible
with the group theoretical interpretation of Y and T sys-
tems: TL

a;�1ðTL
1;�sÞ and TR

a;1ðTR
1;sÞ are the transfer matrix

eigenvalues of antisymmetric (symmetric) irreducible rep-
resentations of the SUð2j2ÞL and SUð2j2ÞR subgroups of
the full PSUð2; 2j4Þ symmetry. It is known [20,22] that
these transfer-matrices can be easily generated by the usual
fusion procedure. Explicit expressions for Ta;s are given in

the Appendix. E.g.,

T1;1¼R�ðþÞ

R�ð�Þ

�
Q��

2 Qþ
3

Q2Q
�
3

�R�ð�ÞQþ
3

R�ðþÞQ�
3

þQþþ
2 Q�

1

Q2Q
þ
1

�BþðþÞQ�
1

Bþð�ÞQþ
1

�
;

(9)

where QlðuÞ ¼
QKl

j¼1ðu� ul;jÞ ¼ ð�gÞKlRlðuÞBlðuÞ and

Rð�Þ
l ðuÞ � YKl

j¼1

xðuÞ � x
l;j
ðx
l;jÞ1=2

; Bð�Þ
l ðuÞ � YKl

j¼1

1
xðuÞ � x
l;j
ðx
l;jÞ1=2

:
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The index l ¼ 1, 2, 3 corresponds to the roots x1;j, x2;j, x3;j
(x7;j, x6;j, x5;j) for T

L
1;1 (TR

1;1) in the notations of [7]. Rð�Þ

and Bð�Þ with no subscript l correspond to the roots x4;j of

the middle node and Rl, Bl without supercript (þ) or (�)
are defined with x�j replaced by xj. The choice (9) is

dictated by the condition that the asymptotic BAE’s ought
to be reproduced from the analyticity of T1;1 at the zeroes

u1;j, u2;j, u3;j of the denominators. For the left or right

wings the ABA reads

1 ¼ Qþ
2 B

ð�Þ

Q�
2 B

ðþÞ

��������u1;k

; �1 ¼ Q��
2 Qþ

1 Q
þ
3

Qþþ
2 Q�

1 Q
�
3

��������u2;k

;

1 ¼ Qþ
2 R

ð�Þ

Q�
2 R

ðþÞ

��������u3;k

:

(10)

Once the unknown function � is fixed to be

��

�þ ¼ S2
BþðþÞR�ð�Þ

B�ð�ÞRþðþÞ
Bþ
1LB

�
3L

B�
1LB

þ
3L

Bþ
1RB

�
3R

B�
1RB

þ
3R

(11)

the Bethe equation (3) yields the middle node equation for
the full AdS/CFT ABA of [7] at u ¼ u4;k

� 1 ¼
�
x�

xþ

�
L
�
Qþþ

4

Q��
4

B�
1LR

�
3L

Bþ
1LR

þ
3L

B�
1RR

�
3R

Bþ
1RR

þ
3R

�
�
�
BþðþÞ

B�ð�Þ

�
1��

S2;

(12)

� ¼ �1 in SLð2Þ grading. The dressing factor is SðuÞ ¼Q
j�ðxðuÞ; x4;jÞ. The subs L, R refer to the wings.

Scalar factor from crossing.—Wewill now see that the Y
system constrains the dressing factor in (11) by the cross-

ing invariance condition of [9]. The S matrix Ŝð1; 2Þ of
Beisert [8] admits Janik’s crossing relation which relates
the S matrix with one argument replaced by x� ! 1=x�
(particle ! antiparticle) to the initial one. Since the trans-
fer matrices can be constructed as a trace of the product of
Smatrices we expect Ya;0 to respect this symmetry. Indeed,

we notice that under the transformation x� ! 1=x� (de-
noted by ?) and complex conjugation, T1;1 transforms as

�T?
1;1 ¼ Qþ

1
Q�

3

Q�
1
Qþ

3

�T1;1, where � � R�ð�ÞBþð�Þ
R�ðþÞBþðþÞ . By demanding

the combination ST1;1
Bþ
1
B�
3

B�
1
Bþ
3

to be invariant under that trans-

formation we get �S? ¼ S
� . This renders, using R�ðþÞ

Bþð�Þ ¼
Rþð�Þ
B�ðþÞ , the relation SS? ¼ R�ðþÞB�ð�Þ

RþðþÞBþð�Þ which is nothing but

the crossing relation for the scalar factor [9]

�12��12 ¼
x�2
xþ2

x�1 � x�2
xþ1 � x�2

1=x�1 � xþ2
1=xþ1 � xþ2

: (13)

Note that crossing does not simply mean x� ! 1=x�,
but it is also accompanied by an analytical continuation of
the dressing factor as a multivalued function of (x�1 , x

�
2 ).

The invariance of Y1;0 imposes its crossing transformation

rule (and similarly for all Ya;0). We conclude that Janik’s

crossing relation fits nicely with our Y system. The dress-

ing factor is encoded in the Y system, as for relativistic
models (see [18]).
Weak coupling wrapping corrections.—Here we will

reproduce from our Y system the results of [13,14] in a
rather efficient way and explain how to generalize them to
any operator of N ¼ 4 SYM. Notice that the large L
solution is now completely fixed by (8) and (11) with the
transfer matrices for each SUð2j2Þ wing generated from
W as explained in the Appendix.
To get the leading wrapping corrections associated to

any single trace operator it suffices to plug the Bethe roots
obtained from the ABA into Ya;0 [23]. Next we expand Ya;0

for g ! 0 and substitute it into the sum (2). For the case of
two roots u4;1 ¼ �u4;2 and L ¼ 2, satisfying the SLð2Þ
ABA (u4;1 ¼ 1

2
ffiffi
3

p þOðg2Þ), we find

Y�
a;0 ¼ g8

�
327

3a3 þ 12au2 � 4a

ða2 þ 4u2Þ2
�
2 1

yaðuÞy�aðuÞ ; (14)

where yaðuÞ¼9a4�36a3þ72u2a2þ60a2�144u2a�
48aþ144u4þ48u2þ16. Plugging this expression into
(2) we obtain ð324þ 864�3 � 1440�5Þg8, coinciding
with the wrapping correction to the anomalous dimension
of the Konishi operator trðZD2Z�DZDZÞ of [13,14].
The Konishi state could also be represented as the

operator tr½Z; X�2 in the SUð2Þ sector, where the ABA
equations are obtained by the following replacement

Tsuð2Þ
a;s ¼ �Tslð2Þ

s;a . The scalar factor (11) becomes ��
�þ ¼

S2
Qþþ

4

Q��
4

B�
1L
Bþ
3L

Bþ
1L
B�
3L

B�
1R
Bþ
3R

Bþ
1R
B�
3R

as we can see by matching with the

ABA equations (12) for � ¼ 1. Repeating the same com-
putation for two magnons, now with L ¼ 4, we find pre-
cisely the same result for wrapping correction. This is yet
another important consistency check of our Y system.
For another important set of the so-called twist two

operators with L ¼ 2 (in the SLð2Þ grading). The Bethe
roots are in a symmetric configuration, u4;2j�1 ¼ �u4;2j
with j ¼ 1; . . . ;M=2. Plugging it into the transfer matrices
in the Appendix and constructing the Ya;0 from (8) we find

a perfect match with the results of [24].
AdS4=CFT3 correspondence.—The recently conjec-

tured [17] AdS4=CFT3 correspondence with the ABA for-
mulated in [25], following [26,27], can be treated similarly
to the AdS5=CFT4 case. The corresponding Y system is
represented in Fig. 2. There are now two sequences of
momentum carrying bound-states and the corresponding

Y-functions are denoted by Y4
a;0 and Y

�4
a;0. At large Lwe find

Y4
a;0 ’ ðx½�a�

x½þa�ÞL �½�a�
4

�½þa�
4

Tsuð2Þ
a;1 , Y

�4
a;0 ’ ðx½�a�

x½þa�ÞL �½�a�
�4

�½þa�
�4

Tsuð2Þ
a;1 , where

��
4

�þ
4
¼ �S4S�4

Qþþ
4

Q��
4

B�
1 B

þ
3

Bþ
1
B�
3
and��4 is given by the same expres-

sion with Q4 ! Q�4. Ta;1 can be found from the generating

functional W in the Appendix replacing RðþÞ ! RðþÞ
4 RðþÞ

�4

etc. Finally �aðuÞ ¼ a
2 þ ih

x½þa� � ih
x½�a� , and in all formulas we

should replace g by the interpolating function hð�Þ ¼ �þ
Oð�2Þ. The energy is then computed from an expression
analogous to (2) which to leading order at small � yields
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E ¼ X

j

�1ðu4;jÞ þ
X

j

�1ðu�4;jÞ �
X1

a¼1

Z 1

�1
du

2�
ðY4�

a;0 þ Y
�4�
a;0Þ:

Thus, as before, we can very easily compute the leading
wrapping corrections to any operator of the theory. E.g.,
for the simplest unprotected length four operator (L ¼ 2)
(irreducible representation 20, see [26] for details) we
find E ¼ 8h2ð�Þ � 32�4 þ Ewrapping�

4 þOð�6Þ, where

Ewrapping ¼ 32� 16�ð2Þ.
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Appendix: Transfer matrices.—The SUð2j2Þ transfer
matrices for symmetric (T1;s) and antisymmetric (Ta;1)

representations can be found from the expansion of the
generating functional [20,22]

W ¼
�
1�Q�

1 B
þðþÞR�ðþÞ

Qþ
1 B

þð�ÞR�ð�ÞD
��

1�Q�
1 Q

þþ
2 R�ðþÞ

Qþ
1 Q2R

�ð�Þ D

��1

�
�
1�Q��

2 Qþ
3 R

�ðþÞ

Q2Q
�
3 R

�ð�Þ D

��1
�
1�Qþ

3

Q�
3

D

�
;

D¼e�i@u asW ¼X1

s¼0

T½1�s�
1;s Ds;

W�1¼X1

a¼0

ð�1ÞaT½1�a�
a;1 Da: (A1)

The transfer matrices Ta;1 are functions of x
½�a� alone (T1;s

depend on all x½b�, b ¼ �a;�aþ 2; . . . ; a). The transfer
matrices for other representations can be obtained from
these by use of the Bazhanov-Reshitikhin formula [28].
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