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We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose

gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some

detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag

resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this

coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.
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Introduction: Coulomb drag and spin Coulomb drag.—
Understanding electronic transport [1] is one of the most
important goals of condensed-matter physics. Indeed, ma-
terials are often characterized according to their transport
properties. Furthermore, transport measurements provide
important physical information. For example, the tem-
perature dependence of transport coefficients, such as re-
sistivity and conductivity, contain information on the
elementary excitations and their scattering mechanisms.
Moreover, the magnetic-field dependence allows for ex-
tracting the electronic phase-coherence length.

Analyzing results of transport measurements is compli-
cated by the multitude of effects, such as electron-electron
and electron-phonon interactions, that contribute. This
problem is to a large extent circumvented in the
Coulomb drag measurement of Gramila et al. [2], illus-
trated in Fig. 1, that aims at singling out the electron-
electron interactions from the start. In this setup a bilayer
of two-dimensional electron gases is separated by a tunnel
barrier. A current I is driven through the bottom layer that
drags along the electrons in the other layer. In the top layer,
an electrochemical potential is built up that cancels the
drag and induces a voltage drop VD, which results in a drag
resistivity �D ¼ VD=I. Originating from electron-electron
interactions, this resistivity usually has the typical �D / T2

Fermi-liquid-like temperature dependence at low tempera-
tures [3–5].

One approach in describing Coulomb drag is in terms of
a function �Dðvt � vbÞ that gives the rate of change of
momentum per volume of the electron gases due to
Coulomb scattering [4,5] and that to a good approximation
depends on the difference in the drift velocities vt and vb in
the top and bottom layers. The equations of motion for
these drift velocities are then given by

ntme

dvt

dt
¼ ��Dðvt � vbÞ � nteEt � ntmevt

�t
;

nbme

dvb

dt
¼ þ�Dðvt � vbÞ � nbeEb � nbmevb

�b
:

(1)

Here �e is the charge of the electron and me its mass.

Furthermore, the electronic density and the electric field in
the top (bottom) layer are denoted by nt (nb) and Et (Eb),
respectively. We have also added a scattering rate 1=�t and
1=�b for the top and bottom layer, respectively, that effec-
tively takes into account intralayer Coulomb scattering,
electron-phonon interactions, and disorder. In applying
the above result to the situation in Fig. 1, we take vt ¼ 0
since there is no current in the top layer. Solving for vb in
the steady state, using that �D � nbmevb=�b because the
interlayer scattering is much weaker than the intralayer
scattering, we find that vb ¼ �eEb�b=me, as usual. In the
linear-response regime the drift velocities are small, and
we can use that �DðvÞ ’ �0

Dð0Þv incorporating the fact that
there is no net momentum transfer if the drift velocities are
equal. We then find that the electric field in the top layer is
Et ¼ ��0

Dð0Þvb=ent. Using that the current density in the
bottom layer jb ¼ �nbevb, we have for the drag resistivity

�D ¼ Et

jb
¼ �0

Dð0Þ
e2ntnb

: (2)

This result shows that the drag resistivity is determined by
the slope of the function �DðvÞ at v ¼ 0.
In an analogy to Coulomb drag, D’Amico and Vignale

proposed spin Coulomb drag [6], which was observed by
Weber et al. [7]. Spin drag, in which the layer degree of

FIG. 1. Illustration of a Coulomb drag measurement: A pair of
two-dimensional electron gases is separated by a tunnel barrier.
A current is applied in one of the layers leading to a voltage drop
in the other. (Adapted with permission from Ref. [19].)
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freedom from Coulomb drag is played by the spin of the
electrons, is very similar to Coulomb drag. In this Letter,
we study spin drag due to the short-range interatomic
interactions in a spin-one Bose gas [8] in the normal state
and propose an experiment to observe it making use of so-
called spin motive forces. For this system, we derive
equations of motion similar to Eqs. (1). The absence of
disorder and an underlying lattice that supports phonons
imply that the analogues of the scattering times �b and �t
are infinite. Nonetheless, we recover a great deal of the
phenomenology of conventional electronic transport. In
particular, we define a transport coefficient analogous to
�D which for bosons becomes large at small temperatures
due to Bose enhancement, i.e., the enhanced scattering of
bosons to states that are already occupied. In addition, we
investigate heating effects and find that they are completely
analogous to the usual joule heating in electronic systems.

Ultracold atomic gases and spin motive forces.—We
consider ultracold atoms with hyperfine spin F in a time-
and position-dependent magnetic field with a direction
given by the unit vector �ðx; tÞ, such that the Zeeman
interaction reads HZ ¼ ���ðx; tÞ � F=@, where F are
the spin operators and � is an effective Zeeman splitting
energy. If the magnetic-field direction is varying slowly in
space and time, it is convenient to choose �ðx; tÞ as the
local spin quantization axis. In this frame of reference,
spatial and temporal variation of the magnetic-field direc-
tion manifests itself as fictitious, or fixed-frame, electric
and magnetic fields E and B [9] that are ultimately due to
the spin Berry phase [10]. For atoms with spin projection
mF these are given by

EmF;� ¼ mF@� �
�
@�

@t
�r��

�
;

BmF;� ¼ mF@����� � ðr���r��Þ;
(3)

where @ is Planck’s constant, ���� is the three-dimensional

fully antisymmetric Levi-Civita tensor, and a sum over
repeated Cartesian indices �;�; � 2 fx; y; zg is implied.
Note that, because the atoms are neutral, there are no real
electromagnetic fields that couple to the atomic motion. In
the context of ferromagnetic metals these fictitious electric
and magnetic fields, respectively, underlie the phenomena
of spin motive forces induced by moving domain walls and
the topological Hall effect, both of which have been ob-
served very recently [11,12]. In the context of cold atoms,
the Aharonov-Bohm phase due to the fictitious magnetic
field, in combination with phase coherence, has been used
to imprint coreless vortices on F ¼ 1 spinor Bose-Einstein
condensates [13,14]. For the existence of the fictitious
electric and magnetic fields, phase coherence is, however,
not required [9], and we can focus instead on the semiclas-
sical regime using the equation of motion

m
dvmF

dt
¼ EmF

þ vmF
� BmF

; (4)

for an atom with velocity vmF
and spin projection mF.

The specific geometry we consider is illustrated in Fig. 2
and consists of a toroidal trap with radius R and effective
cross section area A in the transverse direction, created by a
rapidly moving laser beam [15]. To implement the ficti-
tious electric field we superpose a Ioffe-Pritchard magnetic
trap. Fictitious electric fields along the torus are achieved
by varying the axial bias field of the Ioffe-Pritchard trap, so
that [14]

� ð�Þ ¼ �zðtÞẑþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

zðtÞ
q

½r̂ cos2�� �̂ sin2��;
(5)

in cylindrical coordinates ðr; �; zÞ. Using Eq. (3), we then
find that

E mF
¼ 2@mF

1

R

d�zðtÞ
dt

�̂; (6)

and BmF
¼ 0. The adiabatic approximation that leads to

the above holds when the time scale T0 on which the
direction of the external magnetic field is changed is
much larger than the spin precession time @=�.
Furthermore, this spin precession time should be smaller
than the time it takes the atoms to encircle the torus. Since
� is a large energy scale, these conditions are easily
satisfied.
Spin drag.—We now specifically consider noncon-

densed bosonic atoms with F ¼ 1, e.g., sodium atoms.
Furthermore, to study spin drag we consider the case that
the trap is loaded with equal densities of atoms in spin
state j1iwithmF ¼ þ1 and j0iwithmF ¼ 0. According to
Eq. (6), the atoms in spin state j1i then feel a fictitious
electric field E1 � E along the torus which accelerates
them. The atoms in the j0i state feel no fictitious electric
field but may accelerate due to spin drag, i.e., due to
collisions with the other atoms.
To investigate the spin drag quantitatively, we use an

effective one-dimensional Boltzmann equation for the dis-
tribution function f1ðk; tÞ and f0ðk; tÞ of the mF ¼ 1 and
mF ¼ 0 atoms, with @k the momentum along the torus,
given by

FIG. 2 (color online). Illustration of spin drag in a toroidal
trap. The atoms with mF ¼ 1 (red circle with arrow) are accel-
erated by the motive force due to the time-dependent quadrupole
field (blue arrows) of the Ioffe-Pritchard trap. Because of inter-
actions, the atoms with mF ¼ 0 are dragged along.
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@f1ðk; tÞ
@t

þ E

@

@f1
@k

¼ �collðkÞ

� 2�

@
ðT2B

01 Þ2
Z dk2

2�

Z dk3
2�

Z dk4
2�

ð2�Þ	ðkþ k2 � k3 � k4Þ	ð�k þ �k2 � �k3 � �k4Þf½1þ f1ðk; tÞ�
� ½1þ f0ðk2; tÞ�f1ðk3; tÞf0ðk4; tÞ � f1ðk; tÞf0ðk2; tÞ½1þ f1ðk3; tÞ�½1þ f0ðk4; tÞ�g; (7)

and where the equation of motion for f0ðk; tÞ follows by
taking E ¼ 0 and interchanging f0ðk; tÞ and f1ðk; tÞ. The
interspecies collisions are determined by the two-body T
matrix T2B

01 ¼ 4�a@2=mA, with a the scattering length for
collisions of atoms between atoms in states j1i and j0i and
m the atomic mass. The single-particle dispersion is �k ¼
@
2k2=2m. On the right-hand side, we have ignored intra-

spin-species collisions which tend to restore local equilib-
rium and are zero in the approximations outlined below.
Also note that, contrary to electronic transport in solid-
state physics, there are no terms corresponding to elastic or
electron-phonon collisions, because in cold-atom systems
there is no disorder or an underlying ionic lattice.

Since the intraspecies collisions enforce local equi-
librium for each spin species, we use a Bose-Einstein
distribution function with nonzero drift velocity as an
ansatz to solve the above equation. Specifically, we take
f1ðk; tÞ ¼ NBð�k�mv1ðtÞ=@Þ and f0ðk; tÞ ¼ NBð�k�mv0ðtÞ=@Þ,
withNBð�Þ ¼ ½e�T ð��
Þ � 1��1 the Bose-Einstein distribu-
tion function at chemical potential 
 and inverse thermal
energy �T ¼ 1=kBT. In the first instance we take the
temperature constant in time. The time dependence of
the chemical potential is determined by the conservation
of the number of atoms in each spin state and is left
implicit. From the Boltzmann equation we then find that
[cf. Eqs. (1)]

nm
dv1

dt
¼ nEþ �ðv0 � v1Þ;

nm
dv0

dt
¼ ��ðv0 � v1Þ;

(8)

where n is the one-dimensional density of each spin state,
and the function that determines the rate of momentum
transfer from species j1i to j0i is found from Eq. (7) as

�ðv0 � v1Þ ¼ �
Z dk

2�
�collðkÞ@k; (9)

with the right-hand side evaluated using the shifted Bose-
Einstein distribution functions. In Fig. 3, we plot this
function for various values of the degeneracy parameter

n�, with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@2=mkBT

p
the de Broglie wavelength.

We find that in the classical limit n� ! 0 it is given by
�ðvÞ ¼ ð4�a@nÞ2 Erfðm�v=@Þ=A2m. For increasing de-
generacy �ðvÞ develops local maxima and minima at small
jvmaxj which are due to Bose enhancement of interspecies
scattering.

From the equations of motion in Eqs. (8) we see that the
sum of drift velocities increases indefinitely. The relative

drift velocity v ¼ v1 � v0 can approach a steady state,
provided the motive force E is not too large. That is, from
Eqs. (8) we find that if nE � 2�ðvmaxÞ the system ap-
proaches a steady state where dv=dt ¼ 0. In the linear-
response regime E and v are small, and we have that
�ðv0 � v1Þ ’ �0ð0Þðv0 � v1Þ. Introducing the relative-
momentum particle current j ¼ nðv1 � v0Þ, we have in
linear response that v1 � v0 ¼ nE=2�0ð0Þ. From this we
define in the linear-response regime a resistivity � �
E=j ¼ 2�0ð0Þ=n2 that is analogous to the drag resistivity
in Eq. (2). For fermionic atoms this resistivity would
vanish at small temperatures. For bosons it becomes larger
due to Bose enhancement. This is further illustrated in the
inset in Fig. 3, which shows �0ð0Þ as a function of
1=ðn�Þ2 / T. The low-temperature behavior of � is found
by using that at small temperatures NBð�Þ ! kBT=ð��

Þ, which, using Eqs. (7) and (9), yields � / T�5=2. Note
that the critical temperature for Bose-Einstein condensa-
tion is zero within our one-dimensional model.
The fact that the total kinetic energy of the system is

increasing suggests that beyond-linear-response effects,
such as heating, may be important. To investigate these,
we have to solve Eqs. (8) coupled to an equation for the
temperature. This equation is most easily derived by con-
sidering the total energy U ¼ Rðf1 þ f0Þ�kdk=2�. We

evaluate this energy within our ansatz of Bose-Einstein
distribution functions with nonzero drift velocities and
time-dependent temperature TðtÞ in this case. Using the
Boltzmann equation in Eqs. (7) and (8), we find that
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FIG. 3. Rate of momentum transfer � in units of A2m=ð2a@nÞ2.
The difference of drift velocities is in units of @=m�. The inset
shows the derivative of � at v ¼ 0.
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dQ=dt ¼ nðv1 � v0Þ�ðv1 � v0Þ, where Q � U�
mnðv2

1 þ v2
0Þ=2. This energy is determined by the spread

in velocities in the gas of atoms and is therefore a measure
for its temperature. Evaluating the above using the linear-
response expression for the difference in drift velocities,
we find that dQ=dt ¼ n�j2=2, which is analogous to
Ohmic heating in electronic systems.

We go beyond linear response by solving the equation
for dQ=dt coupled to Eqs. (8). We consider the case that
the axial magnetic field of the Ioffe-Pritchard trap is in-
verted in a time T0, so that �zðtÞ ¼ ð2t� 1Þ=T0 for 0<
t < T0, and constant for t > T0. This implies via Eq. (6)

that E ¼ 4@�̂=RT0 for 0< t < T0 and zero for t > T0. We
consider specifically 23Na atoms. As parameters we take
T0 ¼ 10 ms [14], R ¼ 5 
m, and T ¼ 400 nK. For the
one-dimensional density we take n ¼ 1012 cm�3 � A,
with A ¼ �ð5 
mÞ2 [16]. For these parameters n� ¼ 45.
The result is shown in Fig. 4, together with the result for
n� ¼ 30. We find that heating effects are negligible on the
time scale that is shown. For each pair of curves the upper
one corresponds to v1ðtÞ, which, due to acceleration by the
motive force, acquires the value v1 ’ 4@=mR in the time
T0. The lower curve corresponds to v0, which starts at
v0ð0Þ ¼ 0. Because of the spin drag, the latter velocity
also becomes nonzero, which can be experimentally mea-
sured by studying the momentum distribution after expan-
sion. Note that the drag effect is larger for larger n� due to
the Bose enhancement.

Discussion and conclusions.—There are other experi-
mental setups possible to observe spin-drag effects. For
example, a cigar-shaped optical trap together with a
magnetic-field gradient in the axial direction also leads to
relative motion of the two spin species. We note that the
hydrodynamic regime, where spin-drag effects should be
large, has been realized recently in such cigar-shaped
systems [17]. Another possibility is using a Raman tran-

sition to convert a fraction of the atoms of one spin species
to another and to set them into motion with a velocity
determined by the recoil energy of the two-photon process.
Such an experiment has already been performed with
Bose-Einstein condensates [18]. However, to study spin
drag, and other analogues of electronic transport, the non-
condensed case is more suitable because the incoherent
collisions of the thermal atoms, rather than the coherent
interactions in a Bose-Einstein condensate, are analogous
to the collisions of the electrons.
Yet another experimental possibility is to use a sinu-

soidally varying axial bias field of the Ioffe-Pritchard trap.
This would lead to an ac electric field and the possibility to
measure the frequency dependence of the transport coeffi-
cient �. Other interesting generalizations of the present
work are including mesoscopic phase-coherence effects
and effects of critical fluctuations. Drag effects can also
be measured in Fermi gases [8], leading to another way to
probe the many-body physics of these systems.
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