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We show that all multipartite pure states can, under local operations, be transformed into bipartite pair-

wise entangled states in a ‘‘lossless fashion’’: An arbitrary distinguished party will keep pairwise en-

tanglement with all other parties after the asymptotic protocol—decorrelating all other parties from each

other—in a way that the degree of entanglement of this party with respect to the rest will remain entirely

unchanged. The set of possible entanglement distributions of bipartite pairs is also classified. Finally, we

point out several applications of this protocol as a useful primitive in quantum information theory.
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In what way is multipartite entanglement different from
bipartite entanglement? Instances of this question have
featured prominently in the quantum information litera-
ture, motivated by the central role entanglement plays in
quantum information theory [1]. Yet, in many ways, the
understanding of multiparticle entanglement and its ap-
plications is still unsatisfactory: Quite pragmatically
speaking, while many quantum communication and cryp-
tographic protocols have been identified between two sepa-
rated laboratories, fewer practical protocols, say, in key
distribution, are known that directly rely on genuinely
multipartite correlations. Since then, progress on the "tra-
ditional questions’’ on multiparticle entanglement seems to
have slowed down, such as the problem of what ingredients
are eventually needed to prepare an arbitrary state (meant
in a local, asymptotically reversible fashion) [2,3]. What is
more, it still seems not quite clear what the exact role of
multipartite entanglement is in the known communication
protocols, and even—quite prominently—in quantum
computation. All this motivates the question of in what
sense can one think of multipartite correlations as being
different from bipartite ones, or more specifically, in what
sense can the former just be translated into the latter.

In this work we will introduce a protocol for transform-
ing arbitrary multiparticle entanglement into a simple, in
fact, bipartite normal form. This protocol, referred to as
entanglement combing, shows in what sense bipartite cor-
relations are contained in any state, and can be viewed as a
primitive in quantum information that can be used to
construct new protocols, a perspective that we outline.

The indeed surprising feature of this primitive is that this
transformation can be done in a lossless fashion: One can
simply decorrelate multipartite entanglement always into
bipartite one, without losing any of the entanglement be-
tween the party holding the bipartite entanglement and the
rest. We will first discuss the protocol, as usual under
asymptotic local operations and classical communication
(LOCC). Then, we fully classify the region of entangle-
ment distribution that can be achieved in the combing

process. Finally, we will outline a number of possible
applications of the protocol.
The task.—Consider an arbitrary pure mþ 1-partite

state j�iA;B1;���;Bm
(of finite dimension) shared among an

arbitrary distinguished party (Alice) and the other parties
(here many Bobs). Obviously, in any such state the multi-
partite entanglement structure can be very intricate. The
goal is to distill tensor products j�1iA1;B1

� � � � �
j�miAm;Bm

of bipartite entangled states with respect to

Alice and many Bobs under LOCC; see Fig. 1. This pro-
tocol hence complements recently studied protocols for
multipartite states: One is entanglement of assistance [4]
and the other is random distillation [5]. Entanglement of
assistance asks how much entanglement between two
specified parties can be distilled for a pure m-partite state
under helpful LOCC operations of the other m� 2 parties
[4]. Random distillation in turn asks how much pairwise
entanglement can be obtained by LOCC whichever two
parties would share the final entanglement. Here we show
that in fact the entanglement between a fixed party with the
rest can actually be divided into pure bipartite states shared
between the fixed party and the rest ones individually.
What is more, the final bipartite entanglement content
can be taken to be same. It should be emphasized that as
in any protocol discussing rates of entanglement trans-

FIG. 1 (color online). Entanglement combing: An arbitrary
multipartite entangled pure state j�iA;B1 ;���;Bm

can be asymptoti-

cally deterministically transformed into a tensor product of
bipartite states j�1iA1;B1

� � � � � j�miAm;Bm
under LOCC opera-

tions, in a way such that the bipartite entanglement between A on
the one hand and B1; . . . ; Bm on the other hand is preserved.
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formations, all results in this work are meant in the asymp-
totic setting. As usual, we simply write jc i�s ! j�i�r for
some r, s � 0 if there is a sequence fing of integers such
that jc i�n ! j�ni under LOCC and limn!1 k j�i�in �
j�ni k¼ 0 with limsupn!1in=n ¼ r=s. We will now care-
fully state the first main conclusion:

Proposition 1 (Entanglement combing).—Any pure state
shared between mþ 1 parties A; B1; . . . ; Bm can be locally
transformed, ‘‘combed’’, into a tensor product of bipartite
states shared between A and B1; . . . ; Bm, i.e.,
j�iA;B1;���;Bm

! j�1iA1;B1
� � � � � j�miAm;Bm

under LOCC.

This can be done in a way such that the entanglement of A
with respect to B1; . . . ; Bm is left unchanged,

P
kEk ¼P

kSð�Ak
Þ ¼ SðAÞ.

Here, SðAÞ is the initial von Neumann entropy of A, and
the entanglement of a bipartite pure state is measured as the
usual entanglement entropy Eðj�kiAk;Bk

Þ :¼ Sð�Ak
Þ ¼: Ek,

�Ak
denoting the respective reduced state. In the proof of

this statement—delayed to the proof of possible distribu-
tions—two techniques feature strongly: One is the protocol
quantum state merging [6] and the other is a Lemma [6]
that implies the entanglement of assistance. All technicali-
ties when identifying the reachable set are related to appro-
priately generating appropriate resources using these pro-
tocols in substeps, then using them in later steps, to again
create suitable resources and so on, subtly balancing trade
offs, in a way that yields asymptotically the correct rates.

T1 (Quantum state merging).—For a pure tripartite state
j�iA;B;C, the entanglement cost of merging A to B under the

reference C is equal to the conditional entropy SðAjBÞ ¼
SðABÞ � SðBÞ. When SðAjBÞ is positive, SðAjBÞ entangle-
ment has to be consumed to perform merging. When
SðAjBÞ is negative, merging can be performed under
LOCC, and moreover �SðAjBÞ entanglement is obtained.

T2 (Assisting).—For a pure tripartite state j�iA;B;C, if
SðBÞ> SðAÞ, then there exists a complete measurement on
C such that the resulting state of ABC is the ensemble
fpk; jc kiA;B � jkiCg satisfying Sð�k

AÞ � SðAÞ.
Distribution of entangled pairs.—Now we know that

entanglement between an arbitrary distinguished party
Alice and all other parties as a whole can be ‘‘combed’’
under LOCC into pairwise entanglement such that the sum
of the pairwise entanglement is just the initial entangle-
ment. Clearly, there is no reason to assume that this final
distribution is unique: This very distribution is, however,
important when thinking of new protocols based on this
primitive. We now turn to giving a complete answer to the
possible distributions of entangled pairs:

Proposition 2 (Distribution of entangled pairs).—The
feasible set of different entanglement distributions in en-
tanglement combing F ¼ fðE1; E2; � � � ; EmÞg for a given
initial state j�iA;B1;���;Bm

is a polytope: It is the positive part

of the polytope the extreme points of which being given by
merging the states of m parties to A in different orders.

Proof.—It is clear that, if such a protocol exists,P
kEðj�kiAk;Bk

Þ � Sð�AÞ, as the degree of entanglement

between Alice and the multiple Bobs cannot increase [7].
The surprising fact is that the upper bound can indeed be
achieved. Let us first briefly see that such a protocol exists
(although this protocol not being constructive). Suppose
we consider to deal with Bm first. If SðAÞ �
SðB1 � � �Bm�1Þ, then we perform T1 that will merge Bm

into A and, additionally, �SðBmjAÞ ¼ SðAÞ � SðBmAÞ ¼
SðAÞ � SðB1 � � �Bm�1Þ of entanglement between A and Bm

will be obtained as an asymptotic rate, where we use the
fact that for a pure state j�iX;Y , SðXÞ ¼ SðYÞ. That is,

j�iA;B1;���;Bm
! jc iðBm;AÞ;B1;���;Bm�1

� j�iAm;Bm
such that

SðBmAÞ þ Eðj�iAm;Bm
Þ ¼ SðAÞ, SðAÞ denoting the initial

local entropy of A. If SðAÞ< SðB1 � � �Bm�1Þ, then we
perform T2 to achieve the ensemble fpk; j�ikA;B1;���;Bm�1

�
jkiBm

g such that Sð�k
AÞ � SðAÞ. In both cases the entropy of

the A remains invariant up to asymptotically negligible
corrections, and Bm is decoupled. However, now we are
left with am-partite state among A and B1; � � � ; Bm�1. Next
we deal with Bm�1 and iterate the strategy until we obtain
the final state of the form j�1iA1;B1

� � � � � j�miAm;Bm
.

During each step the entropy of A remains invariant, again
up to corrections not relevant for the rate.
We now turn to the actual proof of the possible distri-

butions. There are two steps of the argument to arrive at the
conclusion. In the first step, we formulate a convex outer
approximation F0 � F of the set, noting that we get better
rates if we allow negative quantity of entanglement shared
between Alice and the Bobs. A negative value means that
entanglement is actually consumed instead of being ob-
tained at the final stage, or in other words entanglement
should be borrowed in order to accomplish the task [8]. If
negative values are allowed, the combing can be regarded
as merging process and the extreme points of the convex
set F0 are obtained by merging the states of all Bobs except
the last one to that of Alice in different orders. Convexity of
F0 is readily shown by the time-sharing technique [9]. For
the mþ 1-partite state, one point (E1; . . . ; Em) is obtained
by the merging order: Say, first merging Bm to A, second
Bm�1 to ABm, third Bm�2 to ABm�1Bm, and so on. So we
get E1 ¼ SðB1Þ, E2 ¼ SðAB3 . . .BmÞ � SðB1Þ, until
Em�1 ¼ SðABmÞ � SðB1 . . .Bm�2Þ, Em ¼ SðAÞ �
SðB1 . . .Bm�1Þ, evidently summing to SðAÞ. These m!
points are the extreme points of F0: The reason comes
from quantum distributed compression. Imagine that if
after the merging protocol Bobs compress their parts and
send to a new party, say Z, then Z is capable to recover the
original state �B1;...;Bm

while preserving the coherence with

Alice. (E1; . . . ; Em) is an extreme point in the distributed
compression [6]: First compressing and sending B1, then
B2; . . . ; Bm in a sequence. All other extreme points are
found similarly, and F0 is a polytope. F � F0 or a contra-
diction will arise.
In the second step, we show that the combing region is

just the intersection of this polytope with the positive cone:
That is, each non-negative point can be achieved without
borrowing entanglement beforehand. At the final stage of
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combing, obviously only non-negative quantities of entan-
glement are allowed. We know how to achieve any point in
F0 with borrowing, and know that F must contain only
positive points; hence, we are left to show that there exists
a nonborrowed protocol approximating all non-negative
points arbitrarily well. We will use the techniques of time
sharing in information theory [9] and ‘‘breeding’’ in en-
tanglement distillation [10]. Moreover, it will be a sequen-
tial scheme labeled by rounds r, where each is an
asymptotic protocol. The entire procedure is meant as a
sequence of protocols on more and more input copies,
where the rates in the asymptotic versions of each round
are preserved. The main idea is to prepare just the right
resources for the next round, amplify the output and find
that initially borrowed resources become asymptotically
negligible.

Denote any point V 2 F in its interior. Using
Caratheodory’s theorem, we know that V can be written as
a convex combination of no more thanm extreme points of
the polytope, labeled P;Q; . . . ; S, V¼pPþqQþ . . .þsS,
which is pointwise strictly positive by assumption. Let us
denote with Pþ the positive part of P and with P� the
negative part, and similarly forQ; . . . ; S. Let us denote with
jþiA;Bk

a maximally entangled qubit pair between A and

Bk.
In the first round r ¼ 1, we will consider the (asymptotic

protocol) that performs entanglement assistance on some
number of initial copies of j�iA;B1;...;Bm

in order to prepare

the integer number bn1c of maximally entangled pairs
jþiA;B1

between A and B1, of with n better and better

approximation, where

n1 :¼ nðpP�
1 þ qQ�

1 þ . . . sS�1 Þ: (1)

n will then be the quantifier of the asymptotic limit of the
protocol, and analogously for parts 2; . . . ; m. This process,
which may be inefficient, then yields bn1c specimens of
jþiA;B1

shared between A and B1, bn2c of jþiA;B2
between A

and B2, asymptotically perfectly, with arbitrarily small
norm error in each round, and so on.

For the second round, r ¼ 2, we now know that from the
protocols at P;Q; � � � ; S under borrowing, and the tech-
nique of time sharing, grouping the prepared bipartite
entanglement, using asymptotic reversibility of pure-state
bipartite state transformations,

j�i�nA;B1;...;Bm
jþi�n1A;B1

. . . jþi�nmA;Bm
! jþi�k1A;B1

. . . ! jþi�kmA;Bm

(2)

holds as an asymptotic transformation, where kj :¼
nðpPþ

j þ qQþ
j þ . . . sSþj Þ, for j ¼ 1; . . . ; m. This can be

reached by performing the borrowing merging protocol P
with a relative weight of p, thenQ with a relative weight of
q, until S with a relative weight of s, and then combing the
resulting maximally entangled pairs appropriately. This is
possible, as the resources needed in the borrowing are
available. Define now xj :¼ kj=nj, as the amplification

ratio. By definition, xj > 1 for all j; due to positivity, there

will be more entangled pairs available after this step at any
position. Hence, bnk1c specimens of jþiA;B1

will be avail-

able after this step, asymptotically perfectly, and similarly
for the other parties.
For the third step, r ¼ 3, define x :¼ minfxj:j ¼

1; . . . ; mg> 1. Now one again borrows maximally en-
tangled pairs to assist the next step: We will use bnxc copies
of maximally entangled pairs to perform P again on bnpxc
copies, Q on bnqxc copies, until S on bnsxc copies. This in
turn is used in the next steps r. At large r we calculate the
relative weight of the initially consumed nn0 copies from
assisting. The total number of consumed copies in r rounds
is then nn0 þP

r
i¼0 nx

i ¼ nðn0 þ ðxrþ1 � 1Þ=ðx� 1ÞÞ.
Since x > 1, the initially consumed copies from assisting
will have a logarithmic weight in r asymptotically in r that
is negligible at large r. The entire asymptotic protocol
amounts to taking the r, n ! 1 limit, in that the appro-
priate rate and the norm approximation can be achieved to
arbitrary accuracy. In the end we can obtain the rate at the
interior point V 2 F without borrowing.
Notice that for the protocol to continue it is required that

x > 1. If x < 1, less and less entanglement is gained at one
position such that less and less copies can be activated
further. The condition that the activation can be amplified
is just the requirement that V lies in the positive part of F.
Now, if we are at a boundary point of F, at a face of the
polytope, one can approximate V with a sequence of
efficient protocols arbitrarily well, and the actual set of
asymptotically reachable points is closed. Notably, the
argument established here can also be used in other proto-
cols with borrowed resources.
Applications.—We will now turn to sketching potential

applications of this protocol in quantum information
theory.
i. Distributed compression.—Multipartite entangled

states can be employed as a resource in quantum distrib-
uted compression. From Schumacher compression [11], it
is known that a source emitting states with � can be
faithfully compressed into a Hilbert space of dimension
Sð�Þ. In quantum distributed compression, quantum data
are distributed among many Bobs who are required to
separately compress their data and send their parts to a
common party Alice who can decode the whole data
faithfully. It has just recently been proven [6] that the
qubits that are required to transmit is still Sð�Þ though
the classical scenario was known for a long time [12].
Notice that the compressed data are transmitted either
through ideal channels or teleported via ebits shared be-
tween Bobs and Alice. The entanglement combing pro-
vides a way how the parties can employ their shared
multipartite state as a resource to complete the task. The
multipartite can be used to replace the ideal quantum
channels and the bipartite entangled states. The whole
protocol works like this: First we apply the combing en-
tanglement to obtain bipartite entanglement between Alice
and many Bobs. Then we apply distributed compression to
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compressing the quantum data. Finally, we teleport the
compressed data. The region of distributed compression
and that of the combing are therefore both known. If there
exists an overlap between these regions, the compressed
data can be transmitted by the state.

ii. New criteria for multipartite LOCC transforma-
tions.—Entanglement combing provides a lower bound for
the rate of multipartite states transformation under LOCC
operations. The entanglement of a multipartite state can
be combing at any party. For pure ðmþ 1Þ-partite states
we actually have mþ 1 different regions for different
combing processes. Consider two mþ 1-partite states
j�iA;B1;���;Bm

and jc iA;B1;���;Bm
. If rðSðc 1Þ;Sðc 2Þ;��� ;

Sðc mÞÞ lies in the region F of the combing protocol of
j�iA;B1;���;Bm

, then a single copy of j�iA;B1;���;Bm
can asymp-

totically be transformed into r copies of jc iA;B1;���;Bm
under

LOCC that immediately gives a lower bound for the rate,
c k denoting reduced states. First we perform the combing
protocol on j�iA;B1;���;Bm

to obtain the bipartite entangled

states between, then Alice prepares the multipartite state
jc iA;B1;���;Bm

and compresses different parts of Bk by

Schumacher compression, and then teleports the com-
pressed data of Bk to different Bobs. After having received
the data, the Bobs decode the data such that jc iA;B1;���;Bm

appears among the parties.
iii. Quantifying the multipartite character of entangle-

ment.—The intuition is that there should exist nontrivial
bipartite entanglement distribution in a genuine multipar-
tite entangled state. We know that the region is convex set
in a hyperplane in high dimension space. The geometry of
the region of entanglement distribution could provide the
information of genuine multipartite entanglement. A sim-
ple example is that if the state jc iA;B1;���;Bm

is of the form

j�iA;B1;���;Bk
� jc iA;Bðkþ1Þ;���;Bm

, then no genuine mþ
1-multipartite entanglement should exist. This fact is re-
flected in the rate region is that the hyperplane will have
lower dimension while generically it has dimensionm� 1.
A simple geometric quantity is the volume of the polytope
which we conjecture would be a potential quantity for
genuine multipartite entanglement (but also lower-
dimensional quantities could possibly be used).

iv. Relationship to the quantum marginal problem.—The
protocol reminds us in several ways of the celebrated
quantum marginal problem, one way of formulating it for
qubits being as such: Given mþ 1 parties A; B1; . . . ; Bm

and a vector ðs1; . . . ; smþ1Þ with entries from ½0; 1=2	. Is
there a pure state jc iA;B1;...;Bm

such that the spectra of the

local reductions of A and B1 to Bm are fsk; 1� skg, k ¼
1; . . . ; mþ 1? In fact, the feasible region of possible
ðs1; . . . ; smþ1Þ with a yes answer is a polytope [13]. There
are two connections to the marginal problem: On the one
hand, the possible combing polytopes are governed by the
entropies of collections of subsystems that are consistent
with a pure state. On the other hand, one can ask a similar
question in entanglement combing: Given one positive
point, we easily know there exists one state on which we

comb and obtain the distribution of bipartite states corre-
sponding to this point. A compatibility question is then,
given two (or several) points, whether a single pure state
exists giving rise to both points under combing.
v. Multipartite quantum communication.—Quite clearly,

any multipartite task of quantum communication based on
known resources, one can always first bring the multi-
partite state into a ‘‘combed’’ bipartite form. Then, using
the powerful machinery of bipartite pure-state entangle-
ment manipulation, one immediately arrives at bounds of
rates to the original protocol. In this sense, we expect this
protocol also to be a helpful tool for getting bounds to a
number of multipartite quantum communication protocols.
Summary and outlook.—In summary, we have estab-

lished a new protocol for multipartite pure states, showing
that all pure multipartite pure states can be transformed
into a bipartite form, entirely preserving the bipartite en-
tanglement with a party. We also identified the convex set
of attainable final configurations, giving rise to a new
toolbox useful in constructing multipartite tasks and as-
sessing rates for known ones, a perspective that seems quite
promising when further fleshing out the potential of multi-
partite quantum information processing.
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