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We propose a method to measure the superfluid fraction of an atomic gas. The method involves the use
of a vector potential generated by optical beams with nonzero angular momenta to simulate uniform
rotation. The induced change in angular momentum of the atomic gas can be measured spectroscopically.
This allows a direct determination of the superfluid fraction.
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Central to the understanding of the physics of degenerate
Bose gases are the concepts of Bose-Einstein condensation
and superfluidity [1,2]. Bose-Einstein condensation refers
to the macroscopic occupation of a single quantum state.
Superfluidity refers to a set of fascinating hydrodynamic
phenomena, notably persistent (dissipationless) flow.

Both phenomena admit clear quantitative definitions,
allowing a Bose gas to be characterized by ‘“‘condensate”
and “‘superfluid” fractions [1,3]. These two quantities in
general take very different values. A gas of noninteracting
bosons at low temperature forms a Bose-Einstein conden-
sate (BEC), but is not superfluid. In the low-temperature
limit, liquid *He is both a BEC and a superfluid, but the
condensate and superfluid fractions are markedly different,
believed to be ~10% and 100%, respectively [1]. In 2D
systems the superfluid fraction can be nonzero even if the
condensate fraction vanishes.

For ultracold atomic Bose gases, the condensate fraction
is readily measured through the mapping of occupation
numbers in momentum space to real space by expansion
imaging [4]. Characteristic signatures of superfluidity have
been observed in atomic gases, notably dissipationless flow
[5,6], and the formation of quantized vortices in rotating
gases [7]. However, there has been no quantitative mea-
surement of the superfluid fraction. Such a measurement is
crucial for the investigation of some of the most interesting
properties of interacting Bose gases [8]: strong interactions
can lead to condensate depletion without loss of superfluid
fraction; the Kosterlitz-Thouless phase transition in a
quasi-2D geometry is manifest by a universal jump of the
superfluid density [9].

In this Letter, we describe how the superfluid fraction of
an atomic gas can be measured using a light-induced vector
potential [8]. Our method is closely analogous to the
classic experimental method of Andronikashvili [10].
There, liquid helium is put in contact with a rotating object:
the normal fluid picks up nonzero angular momentum,
while the superfluid acquires no angular momentum. A
measurement of the angular momentum of the fluid then
allows a determination of the superfluid fraction. Here, we
consider the use of an optically induced vector potential to
simulate uniform rotation [8]. We show how spectroscopy
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can be used to measure the net change in angular momen-
tum of the fluid, and hence the superfluid fraction.
Recently, measurement of the superfluid fraction from
the density profile of a rotating gas was also proposed
[11]. Throughout the Letter, we consider a gas of identical
bosons, but the method can be extended to other situations,
such as superfluidity of paired fermions.

The definition of the superfluid fraction was expressed in
a form suitable for our purposes by Leggett [12]. It applies
to a fluid contained in a ring-shaped vessel with a radius R
that is large compared to its transverse dimensions, so that
the classical moment of inertia is I, = NMR? for N atoms
of mass M. We start by adopting this assumption of ge-
ometry, but this will be relaxed at the end of the Letter. The
walls of the vessel are taken to rotate with angular velocity
w, and the fluid allowed to come to thermal equilibrium.
Under these conditions, the superfluid fraction is [12]

L
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where (L) is the average angular momentum of the fluid. A
normal fluid will come to rest in the frame rotating with the
walls, so that (L) = I yw and p,/p = 0. A (perfect) super-
fluid is unaffected by the rotating walls, so (L) = 0 and
ps/p =1
When the fluid is in equilibrium with the rotating walls it

is described by the equilibrium density matrix defined by
the Hamiltonian in the rotating frame [13]
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Here, H and L are the Hamiltonian and the total angular
momentum in the laboratory frame. We shall show how a
Hamiltonian of the form (2) can be achieved for an atomic
gas, and how the resulting average angular momentum (L)
can be measured so that (1) can be directly applied.

In the ring geometry, the kinetic energy in (2) can be
written
| ST
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where p | is the momentum in directions perpendicular to
the azimuthal direction, and € is the angular momentum in
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units of % (therefore quantized to integer values). The
rotation shifts the energy minimum in the angular momen-
tum to

B MR’w o
h Nh '

This shift can be viewed as an azimuthal vector potential

corresponding to a nonzero flux threading the ring.

A shift in the dispersion relation can be achieved by the
use of two-photon Raman transitions to imprint vector
potentials [8]. This was recently implemented [14] using
two counterpropagating laser beams to couple states m =
—1,0, 1 of the F = 1 hyperfine levels of ®’Rb. In that case,
the two-photon processes lead to a linear vector potential
directed along the axis of the lasers [14,15].

To generate an azimuthal vector potential, we consider
two Laguerre-Gauss (LG) beams [16] with different orbital
angular momenta, copropagating in the direction perpen-
dicular to the toroidal trap. In this way, a two-photon
transition imparts negligible linear momentum to the
atoms, but a nonzero angular momentum, *A¢€, where
A¢ is the difference in the orbital angular momenta of
the two beams. For a three-level system [14,15] this leads
to an effective Hamiltonian
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which is a matrix in the hyperfine states m = —1, 0, +1.
Q) is the two-photon Rabi frequency, § = gpupB/h is the
detuning of the lasers from the Raman resonance set by the
Zeeman effect of a (uniform) magnetic field B, and €
accounts for the quadratic Zeeman effect.

The energy eigenvalues for the angular motion are illus-
trated in Fig. 1. The lowest energy band has a minimum at a
nonzero angular momentum €*. To derive analytic expres-
sions for the energies and wave functions in this band, we
consider the limit of large Rabi frequency and develop a
perturbation theory in 1/Q) ;. We parametrize the resulting

single-particle energy as
(62
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The energy E| is a global shift that depends on all parame-
ters of the optical field. A slight increase in the effective
mass for the azimuthal motion is given by
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The most important effect for our purposes is the shift in
the minimum of the dispersion curve to
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for small 6/Qpg, and €* = —A€ for §/Qp > 1.
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FIG. 1. Energy levels for the angular motion of an atom under

the influence of two-photon Raman coupling via beams with
orbital angular momentum difference A€. The atoms move in a
trap of radius R, the detuning is & = 0.57(A€)>/MR?, € = 0,
and Rabi frequencies of Q; =0 (dotted line) and Qj =
2h(A€)2/MR? (solid lines) are shown. The lowest band has its
minimum displaced to a nonzero angular momentum ¢, equiva-
lent to the effect of an azimuthal vector potential. (The smooth
curves interpolate between the allowed integer values of €.)

This can be viewed as the introduction of an effective
vector potential. In order to clarify the physical consequen-
ces of €*, note that, for an atom with angular momentum €,
the angular velocity when the light is on is

_1dE_ h

Dlight = 3 77 = 1R (€ —€). )

Thus, for given ¢, the most significant effect of the light is
to cause a constant shift in the angular velocity by
h€*/M*R?. In analogy with (3) and (4), it is as if the optical
field causes the laboratory frame to behave as a frame of
reference that is rotating with angular frequency

he*
M*R*’

The lowest band (5) plays the role of H,, (2), with an
effective rotation rate (9) that can be tuned by the parame-
ters of the optical field. Provided the splitting of the bands
is large compared to the chemical potential, QO = u/h,
the atoms form a one-component gas in the lowest band
[17]. Then, if the position of the band minimum (7) is
varied sufficiently slowly that the fluid has time to come to
equilibrium for the new €*, a clear distinction appears
between normal and superfluid components: the normal
fluid will relax, and pick up a nonzero angular momentum;
the superfluid will not relax, but will retain vanishing
average angular momentum. This distinction provides the
definition of the superfluid fraction (1).

This behavior of the atomic gas in a toroidal trap with an
azimuthal vector potential is in marked contrast to the case
of a linear vector potential [14]. There, both superfluid and
normal components must come to rest in the laboratory
frame, consistent with the observations in Ref. [14]. Here,
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when the normal fluid comes to equilibrium at a nonzero
€*, it is at rest in the laboratory frame. However, the
superfluid is rotating, as follows from (8). The azimuthal
vector potential causes a steady superfluid flow around the
ring-shaped trap. Note that for the normal fluid to come to
equilibrium with the new €*, it must change its angular
momentum. Therefore, the trap must not be perfectly rota-
tionally symmetric. (No fluid can come to equilibrium in a
rotating container if the walls of the container are perfectly
smooth.) It is an important practical feature that there is
no requirement for the trap to have perfect rotational
symmetry.

In the Andronikashvili experiment [10] a torsional os-
cillator is used to measure the moment of inertia of the fluid
coupled to the oscillator, /. A frequency shift arises from
the fluid’s contribution to the energy, which in the rotating
frame is (H,) = — 4 lw?. Here, when the light is on there
is a contribution to the energy of — 3 /w?;. One can envis-
age various ways in which an oscillator can modulate @
(9) and therefore experience a frequency shift related to /.
For example, given that w. o €* o« B, the coil that gen-
erates the Zeeman field B experiences the moment of
inertia as a reduction in its inductance; this could appear
as a shift in the resonant frequency of an electrical circuit
containing the coil. However, the fotal energy
T1(hA€/M*R?)* is very small (=0.1 peV), making the
signal small compared to sensitivities of current micro-
mechanical or electrical oscillators.

A key element of our proposal is that, with the above
light-induced vector potential, one can use spectroscopic
methods to determine the average angular momentum {L).
The wave function in the lowest band is a linear superpo-
sition of the three hyperfine levels |¢) =3, _ | o ,,|lm)
with amplitudes {i,,} which vary with €. A perturbative
analysis shows that there are equal and opposite correc-
tions to |4+, |> which depend linearly on €. Thus, (L) can
be obtained from a measurement of the difference in the
number of particles in the states m = £ 1. Using the Taylor
expansion

[ 11> = 1|2 = Apy + Ap'€ + O?)  (10)
we can write
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where we define the fractional imbalance
ap =N =N Sl PP

N Ze("e) '

with (n,) the average number of particles with angular
momentum €. Inserting (11) in (1) one finds

Peo1- nm(Lﬁp(’) FO(u/ny),  (13)

where the corrections arise from the approximation (10),

which is accurate provided the atoms are in the parabolic
region of the lowest band.

In the limit of large (), the wave function of the lowest
band is (4, o, ;) = 1/2(1, —/2,1) for all €. Com-
puting perturbative corrections to order 1/Q% in |i,,|%,
we find Apy = (6/Q3)[V2Qx — h(A€)2/(2MR?) — 2€] +
O(1/Q3), and Ap' = —\2hAL/(MR*Qp) + O(1/Q3).
Combining this with (7) we obtain

&=1—lim< il
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) +O(1/Qy). (14)

The limit w — 0 in (1), replaced here by wq; > 6 — 0, is
discussed further below.

Equations (13) and (14) show how a spectroscopic mea-
surement of the populations N,, can lead to a direct mea-
surement of the superfluid fraction. That there is a
connection between these quantities is a central result of
this Letter.

To distinguish a normal fluid from superfluid, the frac-
tional population difference Ap (12) must be measured
with an absolute accuracy of order

2

2h(A2€) 26 . (15)
MR-Qy

This expression was derived for §/Qp < 1. In Fig. 2 we
show the fractional change in occupation for a normal
fluid, with angular momentum centered on €*, computed
for arbitrary 6/ . This is shown for parameters which for
ZNa would correspond to R =10 um, Qg =27 X
4.4 kHz, and A€ = 10 (two beams of orbital angular mo-
mentum 5). In this case, Ap must be measured to an
absolute accuracy of about 3%. The required relative ac-
curacy to distinguish a normal fluid (Ap — Apg # 0) from
a superfluid (Ap = Apy) is (Ap — Apg)/Apy, and is
about 10% in the linear regime §/Q; < 0.25 in Fig. 2.
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FIG. 2. Angular momentum €* at the bottom of the band
(dashed line) and change in particle imbalance Ap — A p, (solid
line) as a function of 8/ for a normal fluid (i.e., centered on
€%y for Qp = 10001/ MR?, Al = 10, € = 0. This illustrates the
precision required to distinguish a normal fluid (here Ap —
Apg ~ 3%) from a perfect superfluid (Ap — Apy = 0).
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This relatively small signal poses a moderate experimental
challenge. It is important to stress that it relies only on the
measurement of fractional occupations of different states.
It is therefore insensitive to systematic uncertainties in the
absolute atom number determination, and statistical errors
can be reduced by averaging over many shots.

Above we used A€ = 10 as a currently realistic experi-
mental value, but the signal can be increased by increasing
A€. Since we require Qp = u/h for atoms to be in the
parabolic region of the lowest band, it is instructive to write
(15) in the form (u/hQg)(48/Qr)(A€E/R)?, where £ is
the healing length. All three terms in this expression can in
principle be close to unity. One limitation to A€ arises from
the fact that the expression (14) applies in the limit @ >
6 — 0, so that the imposed rotation is sufficiently small
that the superfluid does not change its angular momentum.
This requires that the velocity of the superfluid, Rw . =
m*/(M*R), remains smaller than the critical velocity,
which is ~h/(M£). If this condition is violated, the super-
fluid will relax (vortices will enter the system) and acquire
nonzero angular momentum. The condition for stability of
the superfluid flow requires A€ to be less than
~(Qg/O)R/E for 6 < Qg (7), and ~R/E& otherwise.
(Note that typically ¢ = 0.5 um.) As (15) suggests, if
A< is limited by practical reasons, the signal will generally
be larger for lighter species, which for typical experimental
parameters have lower density, and hence larger £.

Experimentally, a large spectroscopic signal which
qualitatively distinguishes normal and superfluid compo-
nents can be observed by a “projective measurement’:
Suppose that the system is in equilibrium in the parabolic
band with Qg > u/h = 5. If we then reduce Qg to ~5
on a time scale short compared to the relaxation time but
long compared to 1/Qp, the superfluid and the normal
fluid will remain centered at € = 0 and € = €*, respec-
tively, but the difference in their spin composition will be
greatly enhanced (see Fig. 1). However, the quantitative
extraction of the superfluid fraction would in this case
require further analysis.

The ring-shaped trap discussed above is the case closest
to the theoretical discussions of the superfluid fraction
[12], and the simplest to present. However, our method
also applies to standard quasi-2D and 3D traps, provided
that the atoms always remain in the lowest energy band. As
an illustration we consider a scenario in which two hyper-
fine levels [15], labeled 1 and |, are coupled by the LG
beams propagating along z. In the (i, i) basis, we
parametrize the lowest energy dressed eigenstate as
[eX sin(0/2), cos(0/2)], where O(r) and y(r) depend on
the local optical field. For beams with angular momentum
difference A€, we take x(r) = A€, where ¢ is the azi-
muthal angle around the z axis. Assuming optical fields
such that (r) = ar < 1, where r is the radial distance in
the xy plane, the lowest energy state experiences an effec-
tive vector potential that simulates uniform rotation [8].

The total number of flux quanta inside r is A€(ar/2)? and
wer = (h/4M)A€a? [18]. Computing the leading pertur-
bative corrections to the state, as in (10), one finds |¢|* —
l)1? = Apy + Ap'r{p4(r)), where (p,(r)) is the local
azimuthal momentum density. Thus, the correction to
| 11> — |4|* depends linearly on the local angular mo-
mentum density. The spectroscopic measurement of (N —
N))/N, integrated over the sample, therefore provides a
measure of the angular momentum per particle {(L)/N.
Comparison of (L) with I w. allows the determination
of the normal and superfluid fractions.

In summary, we have proposed a method to measure the
superfluid fraction of an ultracold atomic gas. It combines
the use of optical beams with nonzero angular momentum
to simulate rotation, with a spectroscopic readout of angu-
lar momentum. Our observation that light-induced vector
potentials create a direct connection between the formal
definition of superfluid density and the spin composition of
a gas is very general, and we expect it to be applicable to
other experimental scenarios.
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