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We apply the large-deviation method to study trajectories in dissipative quantum systems. We show that

in the long time limit the statistics of quantum jumps can be understood from thermodynamic arguments

in terms of dynamical phases and transitions between them in trajectory space. We illustrate our approach

with three simple examples: a driven 2-level system where we find a particular scale invariance point in

the ensemble of trajectories of emitted photons; a blinking 3-level system, where we argue that

intermittency in the photon count is related to a crossover between distinct dynamical phases; and a

micromaser, where we find an actual first-order phase transition in the ensemble of trajectories.
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Introduction.—Equilibrium statistical mechanics pro-
vides the tools to study equilibrium phases and phase
changes in many-body systems [1]. Thermodynamic
phases are characterized by the average values of thermo-
dynamic observables, such as the volume in a liquid or
magnetization in a magnet, which are controlled by con-
jugate fields, such as pressure or magnetic field.
Nonanalyticities in free-energies correspond to phase-
transition points, and the proximity to a phase-transition
manifests in large and rare fluctuations of observables
around their thermodynamic values [1].

An analogous perspective can be adopted for the study
of dynamical phases in nonequilibrium systems by apply-
ing the large-deviation (LD) method [2]. The LD formal-
ism allows us to treat ensembles of trajectories, classified
by dynamical order parameters or their conjugate fields, in
the same way that equilibrium statistical mechanics treats
ensembles of configurations. Important properties of clas-
sical nonequilibrium systems can be uncovered by exploit-
ing this analogy [2–4], such as the existence of ‘‘space-
time’’ phase transitions in glassy systems [5].

In this Letter, we apply the LD method to quantum
nonequilibrium systems. This approach reveals important
properties of ensembles of trajectories of quantum systems
that undergo quantum jumps in some form, such as driven
quantum systems weakly coupled to a thermal bath [6,7].
We show that one can observe features of dynamical cross-
overs and dynamical phase transitions even in quantum
systems with only a few degrees of freedom, and illustrate
our ideas with three simple examples: a driven 2-level
system; a blinking 3-level system (or electron shelving
problem); and a micromaser. We also establish a mapping
between two dynamical systems, where typical trajectories
of one are the rare trajectories of the other. This is particu-
larly useful for generating rare trajectories which otherwise
are highly suppressed.

Formalism.—We consider a quantum system weakly
coupled to a reservoir in the Markovian regime. The non-
unitary evolution of its density matrix �ðtÞ is described by a
so-called master equation [8,9],

d

dt
�ðtÞ ¼ �i½H;�� þ XNL

�¼1

�
L��L

y
� � 1

2
fLy

�L�; �g
�
; (1)

where L� and Ly
� (� ¼ 1; . . . ; NL) are the Lindblad op-

erators [8,9], f�; �g stands for an anticommutator, and we
have set @ ¼ 1. We are interested in the time record of
events such as photon emissions. In the formalism of
Eq. (1), these correspond to projection events due to the
action of one (or more) of the Lindblad operators. We
assume these events are detected with 100% efficiency.
Such a record is a particular quantum jump trajectory of the
system [7,9]. The probability PtðKÞ to observe K events

after time t is given by PtðKÞ ¼ Tr½�ðKÞðtÞ�, where �ðKÞðtÞ
is a reduced density matrix obtained by the projection of
the full density matrix onto the subspace of K events, e.g.,
the subspace containing K photons [6]. For large times
PtðKÞ acquires a LD form [2]:

PtðKÞ ¼ Tr½�ðKÞðtÞ� � e�t’ðK=tÞ: (2)

The ‘‘large-deviation’’ function ’ðkÞ (k � K=t) contains
all information about the probability of K at long times [2].
Alternatively, we can describe the statistics of K via the
generating function, which also has a LD form [2],

ZtðsÞ �
X1

K¼0

PtðKÞe�sK � et�ðsÞ: (3)

The LD functions ’ðkÞ and �ðsÞ are to trajectories [4,5]
what entropy density and free-energy density are to con-
figurations in equilibrium statistical mechanics [1], with s
being the conjugate field to the dynamical order parameter
K. The two are related by a Legendre transform, �ðsÞ ¼
�mink½’ðkÞ þ ks�, and the function �ðsÞ has the convexity
properties of (minus) a free-energy. Moreover, anomalous
dependence of �ðsÞ on s indicates nontrivial fluctuation
properties of dynamical trajectories. In particular, singu-
larities in �ðsÞ correspond to dynamical (or space-time [5])
phase transitions. It is this anomalous and phase-transition
behavior that we uncover below by calculating �ðsÞ for
simple driven quantum systems.
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The �ðKÞðtÞ obey a set of equations [6], which is un-
coupled by the Laplace transform (3). That is, the equation

for �sðtÞ �
P1

K¼0 �
ðKÞðtÞe�sK reads d

dt �sðtÞ ¼ W sð�sÞ,
where the superoperator W s is

Wsð�Þ ¼ �i½H;�� þ e�sL1�L
y
1

þ XNL

�¼2

L��L
y
� � 1

2

XNL

�¼1

fLy
�L�; �g: (4)

L1 is the Lindblad operator which produces the quantum
jumps we are counting inK. The equation @t� ¼ W sð�Þ is
sometimes called the generalized quantummaster equation
[10,11]. The operator W s is analogous to the Lebowitz-
Spohn operator [12] of classical nonequilibrium dynamics.
Physical dynamics takes place at s ¼ 0 [here W s ¼ W ,
see Eqs. (1) and (4)]. For s � 0, @t� ¼ W sð�Þ describes a
time evolution whose unfolding [6,7,13] generates an en-
semble of trajectories biased by e�sK; see Eq. (3). We call
this the s ensemble [5]. Provided that PtðKÞ obeys Eq. (2)
with ’ real, then in the long time limit �ðsÞ is given by the
largest real eigenvalue of W s [2].

2-level system.—Consider a 2-level system, Fig. 1(a),
driven by a resonant laser in contact with a zero tem-
perature bath [9]. When the observable K is the number
of emitted photons the generalized master operator is
W sð�Þ ¼ �i�½a þ ay; �� þ e�s�a�ay � �

2 faya; �g,
where a and ay are the lowering and raising operators,
j0ih1j and j1ih0j, respectively, � is the Rabi frequency,
and � is the decay rate. We consider the specific choice
� ¼ 4�, which is interesting for reasons we discuss below.
Here the LD function takes the simple form

�ðsÞ ¼ �2�ð1� e�s=3Þ; (5)

which is shown in Fig. 1(b). It vanishes at s ¼ 0. This is a
statement of conservation of probability: W 0 reduces to
the master operator of Eq. (1) which leaves Tr½�� invariant.
Derivatives of �ðsÞ give moments of the photon number
distribution. In particular, the average number of emitted
photons is k0 � hKi=t ¼ ��0ð0Þ, and the Mandel parame-
ter, Q0 � ðhK2i � hKi2Þ=hKi � 1 ¼ ��00ð0Þ=�0ð0Þ. The
LD function around s ¼ 0 encodes the information about
fluctuations of typical trajectories [4,10].

Away from s ¼ 0, �ðsÞ encodes information about rare
trajectories. Consider the s-dependent average photon
number (per unit time),

kðsÞ � hKis
t

¼ 1

tZtðsÞ
X

K

KPtðKÞe�sK ¼ ��0ðsÞ:

This expression is the average ofK=twhere the probability
of trajectories is biased by the factor e�sK. Pursuing a
thermodynamic analogy, think of K and s as volume and
pressure. Increasing (dereasing) the pressure leads to a
smaller (larger) average specific volume; i.e., by control-
ling pressure we obtain a denser or less dense system.
Something analogous occurs here in the dynamics: s > 0
corresponds to trajectories with kðsÞ< k0, i.e., less active

than typical, while s < 0 corresponds to trajectories with
kðsÞ> k0, i.e., more active than typical, Fig. 1(b).
We can also define an s-dependent Mandel parameter,

QðsÞ � ðhK2is � hKi2sÞ=hKis � 1 ¼ ��00ðsÞ=�0ðsÞ � 1,
which measures the bunching or antibunching properties of
trajectories with a fixed average photon number tkðsÞ. For
the specific case of � ¼ 4� we have kðsÞ ¼ 2�e�s=3=3
(i.e., trajectories go from more to less active as s is in-
creased from negative to positive), butQðsÞ ¼ �2=3 for all
s, Fig. 1(b). This result is surprising. We expect photon
emissions to be antibunched [9], but an s-independent Q
indicates that all subensembles of trajectories, no matter
how active or inactive, have the same fluctuation properties
of typical trajectories: trajectories would look the same if
rescaled by their average emission rate. Hence � ¼ 4� is a
‘‘special point’’ in parameter space where the dynamics
displays trajectory scale invariance. Note that this occurs
while all correlation times remain finite.
3-level system.—Consider now a 3-level system like

the one of Fig. 2(a), driven by two resonant lasers on the
j0i � j1i and j0i � j2i lines with Rabi frequencies �1 and
�2, respectively. Level j1i decays to j0i with rate �1. We
are interested in the statistics of the number K of photons
emitted. When �1 � �2 typical photon emission trajec-
tories are intermittent, displaying ‘‘bright’’ and ‘‘dark’’
periods [7,14]. In this case quantum jumps can become
evident on macroscopic timescales [15].
The generalized master operator W s is of the form (4),

with H ¼ P
2
j¼1 �jðaj þ ayj Þ, where aj � j0ihjj and ayj �

jjih0j, and only one set of Lindblad terms, NL ¼ 1, with

FIG. 1 (color online). (A) Laser driven 2-level system coupled
to a T ¼ 0 bath. (B) Large-deviation function �ðsÞ. Dynamical
trajectories go from more active to less active as s, the conjugate
field to the number of emitted photons K, is increased, as shown
by the average photon rate kðsÞ � hKis=t ¼ ��0ðsÞ. The Mandel
parameter QðsÞ ¼ �2=3 for all s, indicating that for � ¼ 4�
trajectories display a form of scale invariance. (C) The photon
count probability is obtained from (5) by a Legendre transform:
PtðKÞ � e�t’ðK=tÞ with ’ðkÞ ¼ 3½k lnðk=k0Þ � ðk� k0Þ�. It is a
� ¼ 3 Conway-Maxwell-Poisson distribution [20], PtðKÞ /
½PoissonðK; tÞ�3. (D) Representative trajectories from subensem-
bles with different average k.
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L1 ¼ ffiffiffiffiffiffi
�1

p
a1. The LD function �ðsÞ is obtained from Ws

by direct diagonalization. It is shown in Fig. 2(b) for �1 ¼
4�1 and �2 ¼ �1=10. The difference with the 2-level
case is striking. For s < 0 (i.e., trajectories more active
than typical) �ðsÞ follow the LD function of the 2-level
problem. Close to s ¼ 0, however, �ðsÞ leaves the 2-level
curve and approaches a constant, �ðs � 0Þ � ��1�

2
2.

This indicates a rapid crossover between two distinct
dynamical phases as we cross s ¼ 0. Figure 2(c) shows the
corresponding change in kðsÞ. The active side is that of s <
0, and trajectories have large K. The inactive side is s > 0,
and trajectories have small K. The active phase is that of
the 2-level system j0i, j1i where photon emission is plen-
tiful. In the inactive phase the atom predominantly occu-
pies the j2i state and photon emission is scarce. The
crossover in kðsÞ is reminiscent of a (smoothed) dynamical
first-order transition, such as that seen in the trajectories of
certain glassy systems [5]. The dynamical crossover is also
apparent in the Mandel parameter, Fig. 2(c). The active
phase is antibunched, Qðs � 0Þ ¼ �2=3, while the inac-
tive phase does not fluctuate, Qðs � 0Þ ¼ 0. The peak in
QðsÞ around s ¼ 0 is a signature of the crossover between
phases: here fluctuations are maximal as trajectories are
(mesoscopic, i.e., finite time) mixtures of the two coexist-
ing phases. Typical trajectories correspond to s ¼ 0, but
the crossover structure of the LD function �ðsÞ has an
effect on the tails of the distribution PtðKÞ, as shown in
Fig. 2(d). It has a fat tail for k < hKi=t [originating from
� & 0 for s � 0], and a thin tail for large k [originating
from � � �2-level for s � 0].

Micromaser.—We now consider the problem of a micro-
maser [16], a resonant single-mode cavity coupled to a

finite temperature bath and pumped by excited 2-level
atoms which are sent into the cavity with a constant rate,
Fig. 3(a). The steady state of the cavity can change from
unimodal to bimodal depending on the pump rate and
atom-cavity coupling [16]. We now show that this static
bistability has an associated dynamic bistability [17].
Our dynamical order parameter K is now the number of

atoms which leave the cavity and are in the ground state.
The superoperator W s (4) follows from the Lindblad
master equation for the cavity after tracing out the atom
and the thermal bath [16]. There are four sets of Lindblad
operators, NL ¼ 4, two from the atom-cavity interaction,

L1 ¼
ffiffiffi
r

p sinð�
ffiffiffiffiffiffi
aay

p
Þffiffiffiffiffiffi

aay
p a and L2 ¼

ffiffiffi
r

p
cosð�

ffiffiffiffiffiffiffiffiffi
aay

p
Þ, and two

from the cavity-bath interaction, L3 ¼
ffiffiffiffi
�

p
a and L4 ¼ffiffiffiffi

�
p

ay. Here a, ay are the raising/lowering operators of
the cavity mode, r is the atom beam rate, � and � are the
thermal relaxation and excitation rates, and � encodes the
atom-cavity interaction [16]. Events are recorded when
quantum jumps under the action of L1 occur.
The LD function �ðsÞ can be obtained by assuming that

the corresponding eigenmatrix rs of W s (see below) is
diagonal in aya [16]. It is shown in Figs. 3(b) and 3(c) for

two values of the ‘‘pump parameter’’ � � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð�� �Þp

[16]. For � ¼ 2	 the stationary state of the cavity is close
to being bistable, undergoing a sudden change from a low
average photon occupation hNi at � & 2	 to a large hNi at
� * 2	 [16]. In this case the LD function is singular at s ¼
0, and kðsÞ has a discontinuous jump, Fig. 3(c). This is a
first-order dynamic, or space-time, phase transition [5],

FIG. 2 (color online). (A) Laser driven 3-level system. Here
�1 ¼ 4�1 and �2 ¼ �1=10. (B, C) The LD function �ðsÞ and
dynamical order parameter kðsÞ display crossover behavior near
s ¼ 0 between active and inactive dynamical regimes. The
active side is antibunched, Q< 0. The inactive side is non-
fluctuating Q ¼ 0. The peak in Q near s ¼ 0 signals the dy-
namical crossover. (D) The fat tail for k < k0 in PtðKÞ is a
manifestation of the inactive regime; the thin tail for k > k0 is a
manifestation of the active regime. (E) Representative trajecto-
ries from inactive and active subensembles. At s ¼ 0 there is
(mesoscopic) coexistence of the two dynamical regimes and
typical trajectories are intermittent or ‘‘blinking.’’

FIG. 3 (color online). Dynamical phase transition in the micro-
maser. (A) Cavity mode driven by pumped atoms and interacting
with thermal bath. (B, C) LD function �ðsÞ for the number of
atomic transitions, K. When the cavity is close to static bista-
bility, � ¼ 2	, the LD function has a first-order singularity at
s ¼ 0. There are two distinct dynamical phases, a more active
one with large K, and a less active one with small K. Typical
trajectories are at coexistence between these phases. The dy-
namical transition is still present far from static bistability, � ¼
1:2	, but the transition point is at s < 0; i.e., dynamical coex-
istence will be only manifest in rare trajectories. (D) Cavity
photon distribution in active and inactive phases, and at coex-
istence (i.e., the stationary density matrix).
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between an active phase at s < 0 and an inactive (or less
active) one at s > 0. Figure 3(d) shows that the active phase
corresponds to that of large hNi and the inactive one to
small hNi. The transition point is s ¼ 0 so that normal
dynamics occurs under dynamic phase coexistence. The
dynamical transition remains even far from static bista-
bility, but the transition point moves away from s ¼ 0,
Fig. 3(b).

Mapping of rare trajectories to typical ones.—The LD
function �ðsÞ encodes properties of rare quantum trajecto-
ries, and by exploiting the analogy with thermodynamics
we can describe subensembles of trajectories as dynamical
or space-time phases [5]. @t� ¼ W sð�Þ however is not a
physical time evolution, but we can show that there is an
alternative trace-preserving evolution which generates the
same s ensemble. Thus, rare trajectories in one system
correspond to typical trajectories of a related system, and
transitions controlled by s, such as the ones discussed
above, can be realized as transitions controlled by physical
parameters.

The superoperator W s has the LD function �ðsÞ as its
largest real eigenvalue, with ‘‘right’’ and ‘‘left’’ Hermitian
eigenmatrices rs and ls, respectively [18]. These eigenma-
trices obey W ðrsÞ ¼ �ðsÞrs and ðlsÞW s ¼ ls�ðsÞ and we
normalize them such that Tr½rs� ¼ 1 and Tr½ls� ¼ Tr½I�.
Given a matrix �sðtÞ, which evolves according to @t�s ¼
W sð�sÞ, there is an associated density matrix ~�ðtÞ �
l1=2s �sðtÞl1=2s =Tr½ls�sðtÞ�, whose corresponding evolution,

@t ~� ¼ ~W ð~�Þ, is of the Lindblad form (1), with the follow-
ing Hamiltonian and Lindblad operators:

~H ¼ 1
2l
�1=2
s

�
fH; lsg þ i

2
½Ly

�L�; ls�
�
l�1=2
s ; (6)

~L� ¼ ½
�1e
�s=2 þ ð1� 
�1Þ�l1=2s L�l

�1=2
s : (7)

This dynamics is trace preserving, ðIÞ ~W ¼ 0, and the set
of trajectories of quantum jumps due to ~L1 coincides with
the s ensemble of W s. The tilde process is that of a
physical dynamics. Its typical trajectories correspond to
rare trajectories of the original process W [19].

The explicit construction of the trace-conserving system
gives interesting insights into the structure of trajectories
away from s ¼ 0. For the 2-level system above we have
~H ¼ e�s=3�ð~aþ ~ayÞ and ~L1 ¼ e�s=6

ffiffiffiffi
�

p
~a. This is of the

same form as the s ¼ 0 problem with all rates multiplied

by e�s=3. That is, rare trajectories (s � 0) are typical
trajectories of the same system but with time rescaled as

t ! es=3t. This confirms � ¼ 4� as a special symmetry
point of the 2-level problem. For the 3-level system above
on the inactive side, s > 0, the mapped system is another 3-

level problem with an additional strong laser on the j~1i �
j~2i line. This coupling introduces an effective detuning for

the laser on the j~0i � j~1i transition, suppressing the exci-

tation of state j~1i and subsequent photon emission.

The ‘‘statistical mechanics of trajectories’’ method pre-
sented here reveals unanticipated richness in the dynamics
of simple open quantum systems. We expect it to be even
more fruitful in the study of nonequilibrium quantum
many-body problems.
We thank A. Armour and M. Müller for discussions.
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