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The antiferromagnetic to valence-bond-solid phase transition in the two-dimensional J-Q model (an

S ¼ 1=2 Heisenberg model with four-spin interactions) is studied using large-scale quantum Monte Carlo

simulations. The results support a continuous transition of the ground state, in agreement with the theory

of ‘‘deconfined’’ quantum criticality. There are, however, large corrections to scaling, of logarithmic or

very slowly decaying power-law form, which had not been anticipated. This suggests that either the

SUðNÞ symmetric noncompact CPN�1 field theory for deconfined quantum criticality has to be revised or

that the theory for N ¼ 2 (as in the system studied here) differs significantly from N ! 1 (where the field

theory is analytically tractable).
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Valence-bond solid (VBS) states of two-dimensional
(2D) quantum spin systems have been studied for more
than two decades [1] and have recently come into renewed
focus with the theory of ‘‘deconfined’’ quantum criticality
(DQC) [2,3], which describes the transition between an
antiferromagnetic (AFM) and a VBS ground state in terms
of deconfinement of spinons. In addition to the interest in
such AFM-VBS transitions in condensed-matter physics,
there are also intriguing connections to deconfinement in
gauge theories in particle physics [4]. To test the validity of
the DQC scenario, and to obtain quantitative results for,
e.g., predicted unusual critical exponents, unbiased nu-
merical studies of quantum spin Hamiltonians with
AFM-VBS transitions are necessary.

The ‘‘J-Q’’ model was introduced recently [5] as an
SU(2) symmetric spin system realizing the 2D AFM-VBS
transition, following earlier work on related U(1) symmet-
ric models [6,7]. It combines the standard Heisenberg
antiferromagnet with four-spin interactions, which lead to
local correlated bond singlets (valence bonds) and reduce
the amplitudes of the longer valence bonds required [8] in
an AFM state. The J-Q model is free from ‘‘sign prob-
lems’’ [9], which prohibit quantum Monte Carlo (QMC)
studies of frustrated spin systems such as the J1-J2
Heisenberg model [10], on which much of the past com-
putational (exact diagonalization) research on VBS sates
was focused. While series expansions [11] around various
candidate states can give some insights, QMC methods
[12], when applicable, are the only unbiased tools for
studying 2D quantum phase transitions (in contrast to
one dimension, where the density-matrix-renormaliza-
tion-group method [13] is applicable) [14]. Being sign
problem free, the J-Q model (and generalizations of it
[15]) have opened up new avenues for exploring magneti-
cally quantum-disordered states and quantum phase
transitions.

In this Letter, a large-scale, high-precision QMC study
of the AFM-VBS transition in the J-Q model is presented

in order to further test the he DQC theory, and to settle
discrepancies between previous studies [5,16,17]. The
main point of contention is the order of the transition. In
the DQC theory, it was argued that AFM-VBS transitions
are generically continuous [2] and that the critical point for
SUðNÞ spins corresponds to a noncompact (NC) CPN�1

field theory [3]. This is at odds with the long-standing
Landau-Ginzburg paradigm, where a direct transition be-
tween two states breaking unrelated symmetries should be
first order (except at fine-tuned multicritical points).
Ground state [5,15] and finite-temperature [16] QMC stud-
ies of the J-Q model show scaling behavior in good
agreement with the DQC theory, including a dynamic
exponent z ¼ 1, a rather large anomalous dimension
�spin � 0:35, and an emergent U(1) symmetry in the

VBS phase (which in the theory is associated with spinon
deconfinement). On the other hand, a QMC finite-size
analysis by Jiang et al. would, if correct, require a first-
order transition [17]. A weakly first-order AFM-VBS sce-
nario has been elaborated by Kuklov et al. [18,19], based
on results for a lattice model claimed to realize the NCCP1

action, but other studies of the action have reached differ-
ent conclusions [3].
Here it will be shown that the claimed first-order signals

in the study by Jiang et al. [17] can be attributed to over-
interpretations of QMC data affected by significant sys-
tematical and statistical errors. The results to be presented
below were obtained with the stochastic series expansion
(SSE) method [20,21], which is a finite-temperature QMC
method free from systematical errors. There are no indi-
cations of a first-order transition, even in systems of space-
time volume 20 times larger than in [17]. However, the data
are now of high enough quality to detect logarithmically
weak deviations from the scaling forms expected at a z ¼ 1
critical point. Logarithmic corrections are well known
consequences of marginal operators at criticality, which,
although they have not been predicted theoretically in this
case (in large-N treatments of the NCCPN�1 theories
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[2,22,23]), cannot a priori be ruled out for N ¼ 2. A first-
order transition would lead to much more dramatic devia-
tions from z ¼ 1.

Turning now to a quantitative discussion of the calcu-
lations, the J-Q Hamiltonian [5] can be written as

H ¼ �J
X

hiji
Cij �Q

X

hijkli
CijCkl; (1)

where Cij is a bond-singlet projector for S ¼ 1=2 spins;

Cij ¼ 1=4� Si � Sj. In the J term ij are nearest neighbors

on the square lattice, while ij and kl in the Q term are on
opposite edges of a 2� 2 plaquette. Lattices of N ¼ L2

spins with periodic boundaries are used. Assuming z ¼ 1
(based on previous work [5,16]), the inverse temperature
� ¼ Q=T is taken proportional to L for finite-size scaling;
� ¼ L and � ¼ L=4 will be considered for L up to 256.
Calculations for T=Q � 0:035 are also carried out for
systems sufficiently large, up to L ¼ 512, to give results
in the thermodynamic limit.

The focus here will be on magnetic properties. The
staggered magnetizationms is computed along the z (quan-
tization) axis. To extract the critical coupling ratio ðJ=QÞc,
and to address the issue of a possible first-order transition,
consider first the Binder cumulant [24],

U2 ¼ 5

2

�
1� 1

3

hm4
szi

hm2
szi2

�
; (2)

which is defined so that U2 ! 0 and U2 ! 1 in an AFM
disordered and ordered state, respectively, when L ! 1
(stemming from a Gaussian distribution of j ~msj around
j ~msj ¼ 0 and a � function at j ~msj> 0, respectively). The
factors in (2) correspond to msz being one component of a
three-dimensional vector ~ms. At a continuous transition,
curves of U2 versus J=Q for different system sizes should
intersect at the critical coupling, where normally 0<U2 <
1 [24]. At a first-order transition, on the other hand, U2 !
�1 when L ! 1 [24], following from a distribution with
peaks at both j ~msj> 0 and j ~msj ¼ 0 when the ordered and
disordered phases coexist (with weight transferring rapidly

between the peaks as the transition is crossed for large
finite L). It should be noted thatU2 can be negative also at a
continuous transition [24,25]—only a divergence signals a
first-order transition.
As seen in Fig. 1, in the J-Q model there are no signs of

U2 becoming negative. The curves intersect at a point
which moves very slowly toward larger J=Q with increas-
ing system size. The critical coupling for L ! 1 can be
extracted by extrapolating the crossing points for systems
of size L and L=2, as shown in Fig. 2.
Figure 2 also shows results for the size-dependent criti-

cal coupling suggested by Kuklov et al. [18] and used by
Jiang et al. [17]. It is based on the winding numbers,

Wa ¼ 1

L

Xn

p¼1

JaðpÞ; (3)

where JaðpÞ, a ¼ x; y, is the spin current in lattice direc-
tion a at location p in a SSE configuration containing n
operators [20]. In the case of the J-Qmodel, these currents
take the values JaðpÞ 2 f0;�1;�2g. The ‘‘temporal’’
winding number is essentially the magnetization;

W� ¼ 2Mz; Mz ¼
XN

i¼1

Szi : (4)

The squared winding numbers are related to two important
thermodynamic quantities: the spin stiffness,

�s ¼ 1

2�
ðhW2

x i þ hW2
y iÞ; (5)

and the uniform magnetic susceptibility,

� ¼ �

N
hM2

z i ¼ �

4N
hW2

�i: (6)

For L ! 1 and T ! 0, in a magnetically disordered (here
VBS) phase �s ! 0 and � ! 0, while in the AFM phase
�s > 0 and �> 0. A possible definition of the transition
point (for finite L and �) is the coupling at which the
probability P0 of all the winding numbers being zero is
1=2 (or any fixed fraction) [18]. Figure 2 shows results
obtained by interpolating P0 for several J=Q values. They
extrapolate to the same ðJ=QÞc � 0:0445 as the Binder
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FIG. 1 (color online). Binder cumulant for the sublattice mag-
netization as function of the coupling ratio for different system
sizes at inverse temperature � ¼ L.
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FIG. 2 (color online). Critical couplings extracted from the
crossing of U2ðLÞ and U2ðL=2Þ and from the winding number
criterion P0 ¼ 1=2 in systems with � ¼ L and L=4.
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cumulant crossings, but the corrections are larger. Note
also that the size dependence varies significantly with the
aspect ratio �=L. The results do not agree well with those
of Jiang et al. [17], although �s and � agree reasonably
well for the system sizes available for comparisons. It is
possible that P0 is more sensitive to the Trotter approxi-
mation used in [17]. Note also the nonmonotonic size
dependence in Fig. 2. An lnðLÞ=L3 convergence of
ðJ=QÞc was cited in [17] as a sign of a first-order transition.
The data fits were, however, based on only three system
sizes. The behavior for larger lattices is clearly different.

The L ! 1 critical value ðJ=QÞc � 0:044 is marginally
higher than in previous studies. In particular, fitting the
expected z ¼ 1 form �� T of the susceptibility at T > 0
(L ! 1), Melko and Kaul found ðJ=QÞc � 0:038 [16]. At
higher J=Q they found � ¼ aþ bT, as expected in the
AFM phase. Figure 3 shows �=T down to temperatures
less than half of the lowest T considered in [16]. At J=Q ¼
0:04, while �=T is roughly T independent for 0:05 &
T=Q & 0:2, there is a drop at lower T, consistent with a
spin-gapped phase. Close to the critical point there is no
pure � / T dependence at low T; instead the data exhibit a
slow divergence, �=T � aþ b lnðQ=TÞ. The fanning out
of the data suggests that the logarithmic form is a critical
separatrix between the expected T ! 0 behaviors in the
VBS and AFM phases.

Another indication of logarithmic corrections comes
from the total squared winding number,

hW2i ¼ hW2
x i þ hW2

y i þ hW2
�i ¼ 2��s þ 4N

�
�; (7)

for which Jiang et al. claimed an asymptotic linear diver-
gence at the transition [17], as would be expected when
AFM and VBS phases coexist at a first-order transition.
Figure 4 shows the results of the present study. While hW2i
indeed grows with L, it does so very slowly, consistent with
a logarithmic divergence. There is no plateau followed by a
linear divergence—that conclusion [17] seems to be based
on an overinterpretation of noisy data.

In principle, it is not possible to distinguish between a
logarithm and a conventional scaling correction �L�!

with a very small !> 0. Figure 4 shows fits with ! ¼
0:1 along with the logarithmic form—when! ! 0 the two
forms coincide exactly. This comparison shows that if the
corrections are conventional, then ! & 0:1. This is true
also for the uniform susceptibility (Fig. 3).
Consider now the stiffness [not combined with � as in

(7)]. At a conventional z ¼ 1 critical point �s � 1=L. In
the present case the drift in crossing points of �SL curves
for different L is larger than what is normally [26] ex-
pected, but can be compensated by a logarithm,
�sL= lnðL=L0Þ, as shown in Fig. 5. For L � 48 the curves
intersect at a point, giving ðJ=QÞc ¼ 0:0447� 0:002, in
agreement with all the other results discussed above.
Scaling fits away from the critical point give a correlation
length exponent � � 0:6, but this is without considering

possible corrections also to the conventional L1=� scaling.
It is difficult to include logarithmic corrections in quanti-
ties where the leading exponent is not known, in contrast to
�s and � where z ¼ 1 governs the leading behavior.
The conclusion of this study is that the AFM-VBS

transition in the J-Q model is continuous, but with signifi-
cant corrections to the z ¼ 1 scaling that have not been
discussed previously. The corrections appear to be loga-
rithmic, although conventional scaling corrections �L�!

with !< 0:1 cannot be ruled out based on the numerical
data alone. Regarding the possibility of a very weakly first-
order transition, it should be noted that rigorous proofs of
continuous phase transitions are only available for a small
number of exactly solvable models, yet accumulated nu-
merical evidence of scaling (and experiments on natural
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FIG. 3 (color online). The uniform susceptibility divided by
the temperature in the neighborhood of the critical point. The
solid curve is of the form �=T ¼ aþ b lnðQ=TÞ þ cT2.
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FIG. 4 (color online). Size dependence of the total winding
number at the P0ðLÞ ¼ 1=2 point for �=L ¼ 1 and 1=4. The data
are shown on log-lin (main panels) and lin-lin scales (insets).
The solid and dashed curves are fits to forms aþ b lnðLÞ and
c� dL�0:1, respectively.
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systems), along with nonrigorous analytical calculations,
has established a consensus that critical points are ubiq-
uitous. The system volumes �L2 used here for the J-Q
model are similar to those in contemporary classical
Monte Carlo simulations [27]. In the absence of any con-
crete signals of first-order behavior, the transition must
therefore be regarded as continuous.

The scaling corrections will hopefully stimulate further
field-theoretical work to explain them. Scaling anomalies
that could be logarithmic have been seen in Monte Carlo
studies of the NCCP1 action [3], but it has also been
claimed that this action always leads to a first-order tran-
sition [19] (in which case a different field theory for the
J-Q model would have to be found). Marginal operators
leading to logarithms appear in systems at their upper
critical dimension, but this is not applicable here.
Logarithmic corrections have been previously found in
gauge field theories with fermions [28]. On the other
hand, conventional power-law corrections due to irrelevant
operators are always expected, but here the subleading
exponent ! would have to be very small, which has not
been anticipated (although the dangerously irrelevant op-
erator causing the VBS has a small scaling dimension [15]
and is a potential source of a small !). Studies of the
SUðNÞ generalization of the J-Q model would be useful
to determine whether N ¼ 2 is a special case. QMC cal-
culations have already been carried out for N ¼ 3 and 4
[15], but the quantities discussed here have not yet been
investigated.

A consequence of the findings presented here is that the
anomalous VBS transition in U(1) symmetric systems [7]
should be reevaluated. Scaling deviations very similar to
(but stronger than) those in the J-Q model were found,
which in [18,19] was interpreted as a first-order transition.
Considering scaling corrections, this class of models as
well may in the end have continuous transitions [6].
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