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The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei,

heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to

extract the free symmetry energy and the internal symmetry energy at subsaturation densities and

temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on

mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by

correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical

approach that takes the formation of clusters into account predicts symmetry energies that are in very good

agreement with the experimental data. A consistent description of the symmetry energy is given that joins

the correct low-density limit with quasiparticle approaches valid near the saturation density.
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The symmetry energy [1] in the nuclear equation of state
governs phenomena from the structure of exotic nuclei to
astrophysical processes. The structure and the composition
of neutron stars depend crucially on the density depen-
dence of the symmetry energy [2]. As a general represen-
tation of the symmetry energy coefficient we use the
definition

Esymðn; TÞ ¼ Eðn; 1; TÞ þ Eðn;�1; TÞ
2

� Eðn; 0; TÞ; (1)

where Eðn; �; TÞ is the energy per nucleon of nuclear
matter with density n, temperature T, and asymmetry � ¼
ðN � ZÞ=A with Z and N the proton and neutron numbers,
and A ¼ N þ Z. At low density the symmetry energy
changes mainly because additional binding is gained in
symmetric matter due to formation of clusters and pasta
structures [3].

Our empirical knowledge of the symmetry energy near
the saturation density n0 is based primarily on the binding
energies of nuclei. The Bethe-Weizsäcker mass formula
leads to values of about Esymðn0; 0Þ ¼ 28–34 MeV for the

symmetry energy at zero temperature and saturation den-
sity n0 � 0:16 fm�3, if surface asymmetry effects are
properly taken into account [4].

In contrast with the value of Esymðn0; 0Þ, the variation of
the symmetry energy with density and temperature is in-
tensely debated. Many theoretical investigations have been
performed to estimate the behavior of the symmetry energy

as a function of n and T. A recent review is given by Li
et al. [5]; see also [6,7]. Typically, quasiparticle approaches
such as the Skyrme Hartree-Fock and relativistic mean-
field (RMF) models or Dirac-Brueckner Hartree-Fock
(DBHF) calculations are used. In such calculations the
symmetry energy tends to zero in the low-density limit
for uniform matter. However, in accordance with the mass
action law, cluster formation dominates the structure of
low-density symmetric matter at low temperatures.
Therefore, the symmetry energy in this low-temperature
limit has to be equal to the binding energy per nucleon
associated with the strong interaction of the most bound
nuclear cluster. A single-nucleon quasiparticle approach
cannot account for such structures. The correct low-density
limit can be recovered only if the formation of clusters is
properly taken into account, as has previously been shown
in Ref. [8] in the context of a virial expansion valid at very
low densities and in Ref. [9].
In this Letter we employ a quantum-statistical (QS)

approach which includes cluster correlations in the me-
dium. It interpolates between the exact low-density limit
and the very successful RMF approaches near the satura-
tion density. We show that this picture is in agreement with
recent experimental findings on Esym at very low densities.

Suitable approaches to account for cluster formation are
the nuclear statistical equilibrium (NSE) model [10],
cluster-virial expansions [8], and generalized Beth-
Uhlenbeck approaches [11]. A thermal Green function

PRL 104, 202501 (2010)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
21 MAY 2010

0031-9007=10=104(20)=202501(4) 202501-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.202501
http://link.aps.org/viewpoint-for/10.1103/PhysRevLett.104.202501


approach that allows a generalization of the NSE model by
introducing a quasiparticle description also for the bound
states was already formulated some decades ago [12], but
only recently analyzed with respect to the consequences
for nuclear matter [13]. In this QS approach the cluster
correlations are described in a generalized Beth-Uhlenbeck
expansion. The advantage of this method is that the me-
dium modifications of the clusters at finite density are
taken into account. In Ref. [9] the thermodynamic proper-
ties of nuclear matter were derived using this approach.
The formulation of Ref. [9] is valid in the density and
temperature range where the formation of light clusters
with A � 4 dominates and heavier clusters are not yet
important. The method requires a sufficiently accurate
model for the quasiparticle properties, for which we em-
ploy a RMF model with density dependent couplings [14]
which gives a good description both of nuclear matter
around normal density and of ground state properties of
nuclei across the nuclear chart. In order to extend the
applicability of this RMF model to very low densities, it
has been generalized in Ref. [9] to account also for cluster
formation and dissolution.

We note that at very low densities and temperatures
below T ’ 1 MeV new phases may occur. In fact, the
formation of a solid phase using Overhauser orbitals in-
cluding a triple point [15] or Bose-Einstein condensation
[16] has been suggested. However, in this Letter we are
concerned with experimental data which probe nuclear
matter at considerably higher temperatures. The low-T
behavior is an interesting issue for future studies.

In the following we focus on finite temperatures and on
the subsaturation region n < n0. Experimental information
is derived from heavy-ion collisions of charge asymmetric
nuclei, where transient states of different density can be
reached, depending on the incident energy and the central-
ity of the collision. In the Fermi energy domain symmetry
energy effects have been investigated using judiciously
chosen observables [5,17–20].

Recently, the experimental determination of the symme-
try energy at very low densities produced in heavy-ion

collisions of 64Zn on 92Mo and 197Au at 35 MeV per
nucleon has been reported [21]. Results of this study are
given in the first four columns of Table I. Note that, as a
result of an energy recalibration and reevaluation of the
particle yields in different velocity bins, these values are
slightly different than those reported in Ref. [21]. The
surface velocity vsurf , i.e., the velocity before the final
Coulomb acceleration, was used as a measure of the time
when the particles leave the source under different con-
ditions of density and temperature. Only values of vsurf <
4:5 cm=ns are included here, since the system does not
reach equilibrium for higher vsurf ; see Table I of Ref. [21].
The yields of the light clusters A � 4 were determined as a
function of vsurf . Temperatures were determined with the
Albergo method [22] using a H-He thermometer based on
the double yield ratio of deuterons, tritons, 3He, and 4He,
and are given in Table I as the average for the two
reactions.
The free neutron yield is obtained from the free proton

yield and the yield ratio of 3H to 3He. To determine the
asymmetry parameter of the sources the total proton and
neutron yields including those bound in clusters are used.
The proton chemical potential is derived from the yield
ratio of 3H to 4He. The corresponding free proton and free
neutron densities are calculated, and the total nucleon
density is obtained by accounting also for the bound nu-
cleons according to their respective yields [21]. The total
nucleon densities are of the order of 1=100th to 1=20th of
saturation density, as seen in Table I.
An isoscaling analysis [23] has been employed (as a

function of vsurf) to determine the free symmetry energy
Fsym via the expression � ¼ 4Fsym�ðZ=AÞ2=T. Here � is

the isoscaling coefficient determined from yield ratios of
Z ¼ 1 ejectiles of the two reactions and �ðZ=AÞ2 is the
difference of the squared asymmetries of the sources in the
two reactions. With �ðZ=AÞ2 and the temperature deter-
mined as above, the free symmetry energy is extracted.
Using the free symmetry energy derived in this way

from the measured yields, the internal symmetry energy
can be calculated if the symmetry entropy is known. The

TABLE I. Temperatures, densities, and free and internal symmetry energies for different values of the surface velocity as derived
from heavy-ion collisions (columns 2–6), from the QS approach (columns 7–8), and self-consistently with clusters (columns 9–12); see
text.

Vsurf

(cm=ns)
T

(MeV)

n
(fm�3)

Fsym

(MeV)

SNSEsym

(kB)
Esym

(MeV)

FQS
sym

(MeV)

EQS
sym

(MeV)

TSC

(MeV)

nSC

(fm�3)

FSC
sym

(MeV)

ESC
sym

(MeV)

0.75 3.31 0.00206 5.64 0.5513 7.465 6.607 8.011 3.26 0.00493 9.211 9.666

1.25 3.32 0.00165 6.07 0.5923 8.036 6.087 7.502 3.45 0.00511 9.295 9.647

1.75 3.61 0.00234 6.63 0.4137 8.124 6.877 7.896 3.54 0.00510 9.284 9.612

2.25 4.15 0.00378 7.81 0.1557 8.456 8.184 8.305 3.66 0.00495 9.193 9.524

2.75 4.71 0.00468 8.28 �0:0162 8.204 8.967 8.321 4.02 0.00510 9.274 9.386

3.25 5.27 0.00489 9.30 �0:1358 8.584 9.395 7.785 4.65 0.00574 9.683 9.227

3.75 6.24 0.00549 10.69 �0:2936 8.858 10.729 7.623 5.75 0.00684 10.487 8.978

4.25 7.54 0.00636 11.83 �0:4197 8.665 11.397 7.807 7.46 0.00866 11.982 8.964
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values of the symmetry entropy SNSEsym for given parameters

of temperature and density within the NSE model are
shown in Table I, column 5. They are calculated with the
equivalent expression of Eq. (1) as the difference between
the entropies of pure proton or neutron and symmetric
nuclear matter. In contrast with the mixing entropy that
leads to a larger entropy for uncorrelated symmetric matter
in comparison with pure neutron matter, the formation of
correlations, in particular, clusters, will reduce the entropy
in symmetric matter; see also Fig. 9 of Ref. [9]. For
parameter values for which the yields of free nucleons in
symmetric matter are small, the symmetry entropy may
become positive, as seen in Table I for low temperatures.
The fraction of nucleons bound in clusters can decrease,
e.g., due to increasing temperature or the dissolution of
bound states at high densities due to the Pauli blocking.
Then, the symmetric matter recovers its larger entropy so
that the symmetry entropy becomes negative, as seen in
Table I also in the QS and self-consistent (SC, see below)
calculations.

The results obtained in this way for the internal symme-
try energy Esym ¼ Fsym þ TSNSEsym are shown in Table I,

column 6. We note that in Ref. [21] the symmetry entropy
was estimated using results of the virial expansion of
Ref. [8] leading to different internal symmetry energies.
However, this approximation is unreliable at the densities
considered here.

In Table I, we also give results of the QS model [9] for
the free and internal symmetry energies (columns 7 and 8)
at given T and n. In Fig. 1(a) the experimentally obtained
free symmetry energy is compared to the results of the
RMF calculation without clusters and the QS model with
clusters [9]. There are large discrepancies between the
measured values and the results of calculations in the
mean-field approximation when cluster formation is ne-
glected. On the other hand, the QS model results corre-
spond nicely to the experimental data. In Fig. 1(b) we
compare the internal symmetry energy derived from the
experimental data with the RMF and QS results. Again, it

is clearly seen that the quasiparticle mean-field approach
(RMF without clusters) disagrees strongly with the experi-
mentally deduced symmetry energy while the QS approach
gives a rather good agreement with the experimental data.
In Fig. 2 we present results for different approaches of

extracting the internal symmetry energy and compare with
the experimental values. In Fig. 2(a) we show theoretical
results for T at or close to zero. Awidely used momentum-
dependent parametrization of the symmetry energy (MDI)
at temperature T ¼ 0 MeVwas given in Refs. [5,24] and is
shown for different assumed values of the stiffness parame-
ter x. For these parametrizations the symmetry energy
vanishes in the low-density limit. We compare this to the
QS result at T ¼ 1 MeV (at lower T crystallization or Bose
condensation may occur as discussed above). In this ap-
proach the symmetry energy is finite at low density. The
T ¼ 1 MeV curve will also approach zero at extremely
low densities of the order of 10�5 fm�3 because the tem-
perature is finite. The RMF, T ¼ 0 curve is discussed
below. Also note that the underlying RMF model for the
quasiparticle description with n0 ¼ 0:149 fm�3,
Esymðn0Þ ¼ 32:73 MeV gives a reasonable behavior at

high density similar to the MDI, x ¼ 0 parametrization.
We thus see that our approach successfully interpolates
between the clustering phenomena at low density and a
realistic description around normal density.
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FIG. 2 (color online). Comparisons of the scaled internal sym-
metry energy EsymðnÞ=Esymðn0Þ as a function of the scaled total

density n=n0 for different approaches and the experiment.
(a) The symmetry energies for the commonly used MDI parame-
trization of Chen et al. [24] for T ¼ 0 and different asy stiff-
nesses, controlled by the parameter x [dotted, dot-dashed, and
dashed (black) lines], for the QS model including light clusters
for temperature T ¼ 1 MeV [solid (green) line], and for the
RMF model at T ¼ 0 including heavy clusters [long-dashed
(orange) line]. (b) The internal scaled symmetry energy in an
expanded low-density region. Shown are again the MDI curves
and the QS results for T ¼ 1, 4, and 8 MeV compared with the
experimental data with the NSE entropy (solid circles) and the
results of the self-consistent calculation (open circles) from
Table I.

0 1 2 3 4 5
V

surf
   [cm/ns]

0

5

10

15

20

fr
ee

 s
ym

m
et

ry
 e

ne
rg

y 
  F

sy
m

   
[M

eV
]

experiment
RMF without clusters
QS with clusters

0 1 2 3 4 5
V

surf
   [cm/ns]

0

5

10

15

20

in
te

rn
al

 s
ym

m
et

ry
 e

ne
rg

y 
  E

sy
m

   
[M

eV
]

experiment
RMF without clusters
QS with clusters

(b)(a)

FIG. 1 (color online). Free (a) and internal (b) symmetry
energy as a function of the surface velocity. Experimental results
are compared with results of theoretical calculations neglecting
cluster formation (RMF) and including cluster formation (QS).
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In Fig. 2(b) we compare the theoretical results to the
experimental ones, full (red) circles (Table I, column 6), in
an expanded low-density region. In addition to the MDI
parametrization, we show the QS results [9] for T ¼ 1, 4,
and 8 MeV, which are in the range of the temperatures in
the experiment. The QS results including cluster formation
agree well with the experimental data points, as seen in
detail in Fig. 1. We conclude that medium-dependent
cluster formation has to be considered in theoretical mod-
els to obtain the low-density dependence of the symmetry
energy that is observed in experiments.

The temperatures and densities of columns 2 and 3 in
Table I will be modified if medium effects on the light
clusters are taken into account [25]. We have carried out a
self-consistent determination of the temperatures TSC and
densities nSC taking into account the medium-dependent
quasiparticle energies as specified in Ref. [13] (columns 9
and 10 of Table I). Compared to the Albergo method
results [21], the temperatures TSC are about 10% lower.
Significantly higher values are obtained for the inferred
densities nSC which are more sensitive to the inclusion of
medium effects. We have also calculated the free and
internal symmetry energies corresponding to these self-
consistent values of TSC and nSC according to Ref. [9]
(columns 11 and 12 of Table I). These results are also
shown in Fig. 2(b) as open (purple) circles. The resultant
internal symmetry energies are 15%–20% higher than the
QS model values for T and n given in columns 2 and 3 in
Table I.

We have restricted our present work to that region of
the phase diagram where heavier clusters with A > 4
are not relevant. The generalization of the given approach
to account for clusters of arbitrary size would lead to
an improvement in the low-density, low-temperature
region when nuclear statistical equilibrium is assumed.
Alternatively, one can introduce the formation of heavier
nuclei in the presence of a nucleon and cluster gas, cf.
Refs. [26,27].

The simplest approach to model the formation of heavy
clusters is to perform inhomogeneous mean-field calcula-
tions in the Thomas-Fermi approximation assuming
spherical Wigner-Seitz cells. In Fig. 2(a) preliminary re-
sults for the zero-temperature symmetry energy of such a
calculation is shown by the long-dashed line using the
same RMF parametrization as for the QS approach intro-
duced above; for details see Ref. [28]. The symmetry
energy in this model approaches a finite value at zero
density in contrast with the behavior of the MDI parame-
trizations and conventional single-nucleon quasiparticle
descriptions.

In conclusion, we have shown that a quantum-statistical
model of nuclear matter, which includes the formation of
clusters at densities below nuclear saturation, describes
quite well the low-density symmetry energy which was

extracted from the analysis of heavy-ion collisions. Within
such a theoretical approach the composition and the ther-
modynamic quantities of nuclear matter can be modeled in
a large region of densities, temperatures, and asymmetries
that are required, e.g., in supernova simulations.
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