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Many-body fermion systems are important in many branches of physics, including condensed matter,

nuclear, and now cold atom physics. In many cases, the interactions between fermions can be approxi-

mated by a contact interaction. A recent theoretical advance in the study of these systems is the derivation

of a number of exact universal relations that are predicted to be valid for all interaction strengths,

temperatures, and spin compositions. These equations, referred to as the Tan relations, relate a micro-

scopic quantity, namely, the amplitude of the high-momentum tail of the fermion momentum distribution,

to the thermodynamics of the many-body system. In this work, we provide experimental verification of the

Tan relations in a strongly interacting gas of fermionic atoms by measuring both the microscopic and

macroscopic quantities in the same system.
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In 2005, Shina Tan derived a number of universal rela-
tions for an interacting Fermi gas with short-range, or
contact, interactions [1]. These powerful relations connect
microscopic quantities, such as the momentum distribution
of the fermions, to macroscopic quantities, such as the total
energy of the system [1,2,4,5]. Furthermore, the relations
are universal in that they do not depend on the details of the
interparticle potential, nor do they depend on the state of
the system, which could be an exotic Fermi superfluid, a
normal Fermi liquid, or even a simple two-body state such
as a diatomic molecule. At the heart of the universal
relations is a single quantity, which Tan termed the contact.
The contact is defined as the amplitude of the high-k tail of
the momentum distribution nðkÞ, which was previously
predicted to scale as 1=k4 for an interacting Fermi gas
[3]. Remarkably, it can be shown that the contact encap-
sulates all of the many-body physics [4]. Two recent works
derived additional universal relations, which allowed the
contact for a strongly interacting Fermi gas to be extracted
from measurements of the closed channel fraction [5,6]
and inelastic Bragg scattering [7]; these results were in
good agreement with theoretical predictions for the BCS-
BEC crossover. Here, we present a series of measurements
that not only measure the contact in the BCS-BEC cross-
over with multiple techniques, but moreover test the Tan
relations by comparing measurements of both microscopic
and macroscopic quantities in the same system. We di-
rectly verify the universal relations by exploiting the fact
that while the value of the contact depends on the many-
body state and on parameters such as temperature, number
density, and interaction strength, the universal relations do
not.

Our measurements are done in an ultra cold gas of
fermionic 40K atoms confined in a harmonic trapping
potential. We cool the gas to quantum degeneracy in a
far-detuned optical dipole trap as described in previous

work [8]. The trap is axially symmetric and parameterized
by a radial trap frequency, which varies for these data from
!r ¼ 2�� 230 to 2�� 260 Hz, and an axial trap fre-
quency, which varies from !z ¼ 2�� 17 to 2�� 21 Hz.
We obtain a 50=50 mixture of atoms in two spin states,
namely, the jf;mfi ¼ j9=2;�9=2i and j9=2;�7=2i states,
where f is the total atomic spin and mf is the projection

along the magnetic-field axis. Our final stage of evapora-
tion occurs at a magnetic field of 203.5 G, where the
s-wave scattering length, a, that characterizes the interac-
tions between atoms in the j9=2;�9=2i and j9=2;�7=2i
states is approximately 800 a0, where a0 is the Bohr radius.
At the end of the evaporation, we have 105 atoms per spin
state at a normalized temperature T

TF
¼ 0:11� 0:02, where

the Fermi temperature TF corresponds to the Fermi energy,

EF ¼ kbTF ¼ @!ð6NÞ1=3. Here, N is the atom number in

one spin state, ! ¼ ð!2
r!zÞ1=3, and kb is the Boltzmann

constant. After the evaporation, we increase the interaction
strength adiabatically with a slow magnetic-field sweep to
a Fano-Feshbach scattering resonance.
Following Tan [1], we define the integrated contact per

particle for the trapped gas from the momentum distribu-
tion of the fermions, nðkÞ, using [9]

C ¼ lim
k!1

k4nðkÞ: (1)

Here, k is the wave number in units of the Fermi wave

number, kF ¼
ffiffiffiffiffiffiffiffiffi

2mEF

p
@

, and nðkÞ for a 50/50 spin mixture is

normalized such that
R1
0

nðkÞ
ð2�Þ3 d

3k ¼ 0:5. We directly mea-

sure nðkÞ using ballistic expansion of the trapped gas,
where we turn off the interactions for the expansion. We
accomplish this by rapidly sweeping the magnetic field to
209 G where a vanishes, and then immediately turning off
the external trapping potential [10] and taking an absorp-
tion image of the cloud after 6 ms of expansion. The probe
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light for the imaging propagates along the axial direction
of the trap, and thus we measure the radial momentum
distribution. Assuming the momentum distribution is
spherically symmetric, we obtain nðkÞ with an inverse
Abel transform.

Figure 1(a) shows an example nðkÞ for a strongly inter-
acting gas with a dimensionless interaction strength
ðkFaÞ�1 of �0:08� 0:04. The measured nðkÞ exhibits a
1=k4 tail at large k, and we extractC from the average value
of k4nðkÞ for k > kC, where we use kC ¼ 1:85 for
ðkFaÞ�1 >�0:5 and kC ¼ 1:55 for ðkFaÞ�1 <�0:5.
These values for kC are chosen empirically such that for
k � kC, the momentum distributions are in the asymptotic
limit to within our statistical measurement uncertainties.
One issue for this measurement is whether or not the
interactions are switched off sufficiently quickly to accu-
rately measure nðkÞ. The data in Fig. 1(a) were taken using
a magnetic-field sweep rate of _B ¼ 1:2 G

�s to turn off the

interactions for the expansion. In the inset to Fig. 1a, we
show the dependence of the measured C on _B. Using an
empirical exponential fit [line in Fig. 1(a) inset], we esti-
mate that for our typical _B of 1.2 to 1:4 G

�s , C is system-

atically low by about 10%. We have therefore scaled C
measured with this method by 1:1.

The contact is also manifest in rf spectroscopy, where
one applies a pulsed rf field and counts the number of
atoms that are transferred from one of the two original
spin states into a third, previously unoccupied, spin state
[11]. We transfer atoms from the j9=2;�7=2i state to the
j9=2;�5=2i state. It is predicted that the number of atoms
transferred as a function of the rf frequency, �, scales as

��3=2 for large �, and that the amplitude of this high
frequency tail is C

23=2�2 [12–14]. Here, � ¼ 0 is the single-

particle spin-flip resonance, and � is given in units of
EF=h. This prediction requires that atoms transferred to
the third spin-state have only weak interactions with the
other atoms so that ‘‘final-state effects’’ are small [14–21],
as is the case for 40K atoms. In Fig. 1(b), we plot a

measured rf spectrum, �ð�Þ, multiplied by 23=2�2�3=2.
The rf spectrum is normalized so that its integral equals

0:5. We observe the predicted 1=�3=2 behavior for large �,

and obtain C by averaging 23=2�2�3=2�ð�Þ for � > �C,
where we use �C ¼ 5 for ðkFaÞ�1 >�0:5 and �C ¼ 3
for ðkFaÞ�1 <�0:5. These values for �C are chosen such
that for � � �C, �ð�Þ is in its asymptotic limit.
The connection between �ð�Þ and the high-k tail of nðkÞ

can be seen in the Fermi spectral function, which can be
probed using photoemission spectroscopy for ultra cold
atoms [8]. Recent photoemission spectroscopy results on
a strongly interacting Fermi gas [22] revealed a weak,
negatively dispersing feature at high k that persists to
temperatures well above TF. This feature was attributed
to the effect of interactions, or the contact, consistent with
a recent prediction [23]. Atom photoemission spectros-
copy, which is based upon momentum-resolved rf spec-
troscopy, also provides a method for measuring nðkÞ. By
integrating over the energy axis, or equivalently, summing
data taken for different rf frequencies, we obtain nðkÞ. This
alternative method for measuring nðkÞ yields results similar
to the ballistic expansion technique, but avoids the issue of
magnetic-field sweep rates.
In Fig. 2, we show the measured contact for different

values of 1=kFa. We restrict the data to values of 1=kFa
where our magnetic-field sweeps are adiabatic [24].
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FIG. 1. Extracting the contact from the momentum distribution
and rf line shape. (a) Measured momentum distribution for a
Fermi gas at 1

kFa
¼ �0:08� 0:04. Here, the wave number k is

given in units of kF, and we plot the normalized nðkÞ multiplied
by k4. The dashed line corresponds to 2:2, which is the average
of k4nðkÞ for k > 1:85. (Inset) The measured value for C depends
on the rate of the magnetic-field sweep that turns off the
interactions before time-of-flight expansion. (b) rf line shape
measured for a Fermi gas at 1

kFa
¼ �0:03� 0:04. Here, � is the

rf detuning from the single-particle Zeeman resonance, given in
units of EF=h. We plot the normalized rf line shape multiplied by
23=2�2�3=2, which is predicted to asymptote to C for large �.
Here, the dashed line corresponds to 2:1, from an average of the
data for � > 5.
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FIG. 2. The contact. We measure the contact, C, as a function
of ðkFaÞ�1 using three different methods. Filled circles corre-
spond to direct measurements of the fermion momentum distri-
bution nðkÞ using a ballistic expansion, in which a fast magnetic-
field sweep projects the many-body state onto a noninteracting
state. Open circles correspond to nðkÞ obtained using atom
photoemission spectroscopy measurements. Stars correspond to
the contact obtained from rf spectroscopy. The values obtained
with these different methods show good agreement. The contact
is nearly zero for a weakly interacting Fermi gas with attractive
interactions (left hand side of plot) and then increases as the
interaction strength increases to the unitarity regime where
ðkFaÞ�1 ¼ 0. The line is a theory curve obtained from Ref. [5].
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Figure 2 shows C extracted using the three different tech-
niques described above to probe two distinct microscopic
quantities, namely, nðkÞ and �ð�Þ. We find that the ampli-
tude of the 1=k4 tail of nðkÞ and the coefficient of the

1=�3=2 tail of �ð�Þ yield consistent values for C. The error
bars shown in Fig. 2 include both statistical and estimated
systematic uncertainties, which are roughly equal in mag-
nitude. In extracting C from the rf measurements, the
largest source of systematic error comes from residual
interactions with atoms in third spin state [14]. For the
ballistic expansion measurements, the systematic uncer-
tainty is dominated by the effect of the finite _B. For
comparison with the data, the solid line in Fig. 2 shows a
prediction for C that was reported in Ref. [5]. This zero
temperature prediction consists of the BCS limit, interpo-
lation of Monte Carlo data near unitarity, and the BEC
limit, and uses a local density approximation.

Remarkably, the Tan relations predict that the contact is
also directly connected to the thermodynamics of the gas.
The total energy of the trapped gas per particle, E, is the
sum of three contributions, the kinetic energy T, the exter-
nal potential energy V, and the interaction energy I. To test
the Tan relations, we measure the potential energy, V, and
release energy, T þ I, of the cloud.

We measure V by imaging the spatial distribution of the
atom cloud [25]. We allow the cloud to expand for 1.6 ms
to lower the optical density and then image along one of the
radial directions. Because the expansion time is 30 times
shorter than the axial trap period, the density distribution in
the axial direction reflects the in-trap density distribution.
The potential energy per particle, in units of EF, is then
V ¼ 3

EF

1
2m!2

zhz2i, where hz2i is the mean squared width of

the cloud in the axial direction, and we have assumed that
the potential energy is distributed equally in x, y, and z.

To measure T þ I, we turn off the trap suddenly and let
the cloud expand for t ¼ 16 ms (with interactions) before
imaging along one of the radial directions; this is similar to
measurements reported in Ref. [26]. The total release
energy is the sum of the release energy in the two radial
directions and the release energy in the axial direction. For
the radial direction, the release energy per particle, in units

of EF, is simply Tr þ Ir ¼ 2
EF

1
2m

hy2i
t2

where t is the expan-

sion time and hy2i is the mean squared width of the
expanded cloud in the radial direction. For the axial direc-
tion, the expansion is slower, and the expanded cloud may
not be much larger than the in-trap density distribution.
This is especially true near the Feshbach resonance where
the cloud expands hydrodynamically [27]. Accounting for

this, the axial release energy is Tz þ Iz ¼ 1
EF

1
2m

hz2i�z20
t2

,

where z20 is the mean squared axial width of the in-trap

density distribution.
We extract the mean squared cloud widths from surface

fits to the images, where we fit to a finite temperature
Fermi-Dirac distribution. Rather than being theoretically
motivated, we simply find empirically that this functional

form fits well to our images. In order to extract the energy,
we perform a weighted fit where each point in the image is
weighted by the square of the distance from the center of
the cloud. To eliminate systematic error due to uncertainty
in the trap frequencies and imaging magnification, we
measure the release energy and potential energy of a very
weakly interacting Fermi gas at T

TF
¼ 0:11, where we ex-

pect T þ I ¼ V ¼ 0:40EF. We then use the ratio of 0:40EF

to our measured values as a multiplicative correction factor
that we apply to the data. This correction is within 5% of
unity. For the point with 1

kFa
> 0, we add the binding energy

of the molecules, �1=ðkFaÞ2, to the release energy, T þ I.
The energies V and T þ I are shown versus ðkFaÞ�1 in the
inset of Fig. 3, where the error bars include both statistical
and systematic sources of uncertainty, which are roughly
equal in magnitude.
We can now test the predicted universal relations con-

necting the 1=k4 tail of the momentum distribution with the
thermodynamics of the trapped Fermi gas. We first con-
sider the adiabatic sweep theorem [1],

2�
dE

d½�1=ðkFaÞ� ¼ C; (2)

which relates the contactC to the change in the total energy
of the system when the interaction strength is changed
adiabatically. The inset to Fig. 3 shows E obtained by
summing the measured values for T þ I and V. To test
the adiabatic sweep theorem, we find the derivative,

dE
d½�1=ðkFaÞ� , simply by calculating the slope for pairs of

neighboring points in the inset of Fig. 3. In the main part
of Fig. 4, we compare this point-by-point derivative, multi-
plied by 2�, to C obtained from the weighted averages of
the data shown in Fig. 2 ( � ). Comparing these measure-
ments of the left and right sides of Eq. (2), we find good
agreement and thus verify the adiabatic sweep theorem for
our strongly interacting Fermi gas.
A second universal relation that we can directly test is

the generalized virial theorem [1],

E� 2V ¼ T þ I � V ¼ � C

4�kFa
; (3)

which is predicted to be valid for all values of the inter-
action strength ðkFaÞ�1. This generalized virial theorem
reduces to E� 2V ¼ 0 for the ideal gas, where I ¼ 0, as
well as for the unitarity gas, where ðkFaÞ�1 ¼ 0. The result
for the unitarity gas was previously verified in Ref. [28].
Here, we test Eq. (3) for a range of interaction strengths. In
Fig. 4, we plot the measured difference T þ I� V versus
ðkFaÞ�1 along with C

4�kFa
, where we use our direct mea-

surements of C. We find that these independent measure-
ments of the left and the right sides of Eq. (3) agree to
within the error bars, which include both statistical and
systematic sources of uncertainty. It is interesting to note
that the measured energy difference T þ I � V is small (in
units of EF) so that even a Fermi gas with a strongly
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attractive contact interaction nearly obeys the noninteract-
ing virial equation.

In conclusion, we have measured the integrated contact
for a strongly interacting Fermi gas and demonstrated the
connection between the 1=k4 tail of the momentum distri-
bution and the high frequency tail of rf spectra. Combining
a measurement of C vs ðkFaÞ�1 with measurements of the
potential energy and the release energy of the trapped gas,
we verify two universal relationships [1], namely, the
adiabatic sweep theorem and the generalized virial theo-
rem. These universal relations represent a significant ad-
vance in the understanding of many-body quantum systems
with strong short-range interactions. Furthermore, these

relations could be exploited to develop novel experimental
probes of the many-body physics of strongly interacting
quantum gases.
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FIG. 3. Testing the adiabatic sweep theorem. (Inset) The mea-
sured potential energy, V, and release energy, T þ I, per particle
in units of EF are shown as a function of 1=kFa. (Main) Taking a
discrete derivative of the inset data, we find that 2� dE

d½�1=ðkFaÞ� (�)
agrees well with the average value of C obtained from the
measurements shown in Fig. 2 (�).

FIG. 4. Testing the generalized virial theorem. The difference
between the measured release energy and potential energy per
particle T þ I� V is shown as filled circles. This corresponds to
the left-hand side of Eq. (3). Open circles show the right-hand
side of Eq. (3) obtained from the average values of the contact
shown in Fig. 2. The two quantities are equal to within the
measurement uncertainty.
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