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We show that there is a close correspondence between the physical properties of holographic metals

near charged black holes in anti–de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the

lattice Anderson model. The latter phase has a ‘‘small’’ Fermi surface of conduction electrons, along with

a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids

are states of matter at nonzero density realizing the near-horizon, AdS2 � R2 physics of Reissner-

Nordström black holes.
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There has been a flurry of recent activity [1–10] on the
holographic description of metallic states of nonzero den-
sity quantum matter. The strategy is to begin with a
strongly interacting conformal field theory (CFT) in the
ultraviolet (UV), which has a dual description as the
boundary of a theory of gravity in anti–de Sitter (AdS)
space. This CFT is then perturbed by a chemical potential
(�) conjugate to a globally conserved charge, and the
infrared (IR) physics is given a holographic description
by the gravity theory. For large temperatures T � �, such
an approach is under good control, and has produced a
useful hydrodynamic description of the physics of quan-
tum criticality [11]. Much less is understood about the low
temperature limit T � �: a direct solution of the classical
gravity theory yields boundary correlation functions de-
scribing a non-Fermi liquid metal [4], but the physical
interpretation of this state has remained obscure. It has a
nonzero entropy density as T ! 0, and this raises concerns
about its ultimate stability.

This Letter will show that there is a close parallel
between the above theories of holographic metals, and a
class of mean-field theories of the ‘‘fractionalized Fermi
liquid’’ (FFL) phase of the lattice Anderson model.

The Anderson model (specified below) has been a popu-
lar description of intermetallic transition metal or rare-
earth compounds: it describes itinerant conduction elec-
trons interacting with localized resonant states represent-
ing d (or f) orbitals. The FFL is an exotic phase of the
Anderson model, demonstrated to be generically stable in
Refs. [12,13]; it has a ‘‘small’’ Fermi surface whose vol-
ume is determined by the density of conduction electrons
alone, while the d electrons form a fractionalized spin
liquid state. The FFL was also found in a large spatial
dimension mean-field theory by Burdin et al. [14], and is
the ground state needed for a true ‘‘orbital-selective Mott
transition’’ [15]. The FFL should be contrasted from the
conventional Fermi liquid (FL) phase, in which there is a
‘‘large’’ Fermi surface whose volume counts both the con-
duction and d electrons: the FL phase is the accepted de-
scription of many ‘‘heavy fermion’’ rare-earth intermetal-

lics. However, recent experiments on YbRh2ðSi0:95Ge0:05Þ2
have observed an unusual phase for which the FFL is an
attractive candidate [16].
Here, we will describe the spin liquid of the FFL by the

gapless mean-field state of Sachdev and Ye [17] (SY). We
will then find that physical properties of the FFL are
essentially identical to those of the present theories of
holographic metals. Similar comments apply to other gap-
less quantum liquids [18] which are related to the SY state.
This agreement implies that nonzero density matter de-
scribed by the SY (or a related) state is a realization of the
near-horizon, AdS2 � R2 physics of Reissner-Nordström
black holes.
We begin with a review of key features of the present

theory of holographic metals. The UV physics is holo-
graphically described by a Reissner-Nordström black
hole in AdS4. In the IR, the low-energy physics is captured
by the near-horizon region of the black hole, which has a
AdS2 � R2 geometry [4]. The UV theory can be written as
a SUðNcÞ gauge theory, but we will only use gauge-
invariant operators to describe the IR physics. We use a
suggestive condensed matter notation to represent the IR,
anticipating the correspondence we make later. We probe
this physics by a ‘‘conduction electron’’ ck� (where k is a
momentum and � ¼" , # a spin index), which will turn out
to have a Fermi surface at a momentum k � jkj ¼ kF. The
IR physics of this conduction electron is described by the
effective Hamiltonian [4,7]

H ¼ H0 þH1½d; c� þHAdS (1)

H0 ¼
X
�

Z d2k

4�2
ð"k ��Þcyk�ck�; (2)

with ck� canonical fermions and "k their dispersion, and

H1½d; c� ¼
X
�

Z d2k

4�2
½Vkd

y
k�ck� þ V�

kc
y
k�dk��; (3)

with Vk a ‘‘hybridization’’ matrix element. The dk� are
nontrivial operators controlled by the strongly coupled IR
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CFT associated with the AdS2 geometry, and described by
HAdS; their long imaginary-time (�) correlation underHAdS

is given by [4,7,19] (for 0< �< 1=T)

hdk�ð�Þdyk�ð0ÞiHAdS
�

�
�T

sinð�T�Þ
�
2�k

; (4)

where �k is the scaling dimension of dk� in the IR CFT.
The T > 0 functional form in Eq. (4) is dictated by con-
formal invariance. This dk� correlator implies a singular
self-energy for the conduction electrons; after accounting
for it, many aspects of ‘‘strange metal’’ phenomenology
can be obtained [8]. The marginal Fermi liquid phenome-
nology [20] is obtained for �k ¼ 1.

The important characteristics of the above holographic
description of metals, which we will need below, are (i) a
conduction electron self-energy which has no singular
dependence on k� kF, (ii) a dependence of the self-energy
on frequency (!) and T which has a conformal form
[obtained by a Fourier transform of Eq. (4)], and (iii) a
nonzero ground state entropy associated with the AdS2 �
R2 geometry.

Let us now turn to the lattice Anderson model. To
emphasize the correspondence to the holographic theory,
we continue to use ck� for the conduction electrons, while
dk� are canonical fermions representing the d orbitals
(these will be connected to the dk� below). Then the
Hamiltonian is HA ¼ H0 þH1½d; c� þHU, where the first
two terms are still specified by Eqs. (2) and (3), and

HU ¼ X
i

½Undi"ndi# þ ð"d �U=2��Þdyi�di��

�X
i�j

tijd
y
i�dj�; (5)

where di� is the Fourier transform of dk� on the lattice
sites i at spatial positions ri with di� ¼ R

k dk�e
ik	ri ,

ndi� ¼ dyi�di� is the d number operator, and tij are hopping

matrix elements for the d electrons. We consider HA as the
UV theory of the lattice Anderson model; it clearly differs
greatly from the UV AdS4 SUðNcÞ CFT considered above.
We will now show that, under suitable conditions, both
theories have the same IR limit.

We need to study the IR limit of HA to establish this
claim. We work in the limit of U larger than all other
parameters, when the occupation number of each d site is
unity. As is well known [21,22], to leading order in the tij
and Vk, we can eliminate the coupling to the doubly
occupied and empty d sites by a canonical transformation
U, and derive an effective low-energy description in terms
of a Kondo-Heisenberg Hamiltonian. Thus HA !
UHAU�1, where the di� are now mapped as di� ¼
Udi�U�1 which yields [22,23]

HA ¼ H0 þH1½d; c� þHJ (6)

d i� ¼ �a
��

2

Z d2k

4�2

�
UVke

�ik	ri

U2=4� ð"d � "kÞ2
�
ck�Ŝ

a
i : (7)

Here �a (a ¼ x, y, z) are the Pauli matrices and the Ŝai are
operators measuring the spin of the d local moment on site

i. The Ŝai operators should be considered as abstract op-
erators acting on the local moments: they are fully defined

by the commutation relations ½Ŝai ; Ŝbj � ¼ i�abc�ijŜ
c
i and the

length constraint
P

aŜ
a2
i ¼ 3=4. The IR physics directly

involves only the metallic ck� fermions (which remain

canonical), and the spin operators Ŝai . The Schrieffer-
Wolff transformation [22] implies that dk� is a composite
of these two low-energy (and gauge-invariant) operators,
and is not a canonical fermion. The canonical transforma-

tion U also generates a direct coupling between the Ŝai
which is

HJ ¼
X
i<j

JijŜ
a
i Ŝ

a
j (8)

where Jij ¼ 4jtijj2=U. Also note that after substituting

Eq. (7) into H1 we obtain the Kondo exchange between
the conduction electron and the localized spins: here, we
have reinterpreted this Kondo interaction as the projection
of the d electron to the IR via Eq. (7).

More generally, we can view the correspondence d� cŜ
in Eq. (7) as the simplest operator representation consistent
with global conservation laws. We need an operator in the
IR theory which carries both the electron charge and spin
S ¼ 1=2. The only simpler correspondence is d� c, but
this can be reabsorbed into a renormalization of the c
dispersion.
We now focus on the FFL phase of HA in Eq. (6). In this

phase the influence ofH1 can be treated perturbatively [12]
in Vk, and so we can initially neglect H1. Then the ck�
form a small Fermi surface defined by H0, and the spins of
HJ are required [12] to form a spin liquid. As discussed
earlier, we assume that HJ realizes the SY gapless spin
liquid state. Such a state was formally justified [17] in the
quantum analog of the Sherrington-Kirkpatrick model, in
which all the Jij are infinite-range, independent Gaussian

random variables with variance J2=Ns (Ns is the number of
sites, i). However, it has also been shown [14,24] that
closely related mean-field equations apply to frustrated
antiferromagnets with nonrandom exchange interactions
in the limit of large spatial dimension [25,26]. We will
work here with the SY equations as the simplest represen-
tative of a class that realize gapless spin liquids. The SY
state ofHJ is described by a single-site action S, describing
the self-consistent quantum fluctuation of the spin Ŝað�Þ in
imaginary time. We express the spin in terms of a unit-

length vector nað�Þ ¼ 2Ŝað�Þ and then we obtain the co-
herent state path integral

Z ¼
Z

Dnað�Þ�½na2ð�Þ � 1� expð�SÞ

S ¼ i

2

Z
d�Aa dn

a

d�
� J2

2

Z
d�d�0Qð�� �0Þnað�Þnað�0Þ:

(9)
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The first term in S is the spin Berry phase, with Aa any
function of na obeying �abcð@Ab=@ncÞ ¼ na. The func-
tion Q is to determined self-consistently by the solution of

Qð�� �0Þ ¼ hnað�Þnað�0ÞiZ: (10)

The Eqs. (9) and (10) define a strong-coupling problem
for which no complete solution is known. However, these
equations have been extensively studied [17,27–29] in the
framework of a 1=N expansion in which the SU(2) spins
are generalized to SUðNÞ spins, and some scaling dimen-
sions are believed to be known to all orders in 1=N [29].
Note that the SUðNÞ is a global ‘‘flavor’’ symmetry. For the
SUðNÞ case, we can consider general spin representations
described by rectangular Young tableaux with m columns

and qN rows. For such spins, the generators of SUðNÞ, Ŝ��,
(now �, � ¼ 1 . . .N) can be written in terms of ‘‘slave’’

fermions fs� (with s ¼ 1 . . .m) by [30] Ŝ�� ¼ P
m
s¼1 f

y
s�fs�

along with the constraint
P

N
�¼1 f

y
s�fs

0� ¼ �s0
s qN. When

expressed in terms of such fermions, the original lattice
model HJ defines a UðmÞ gauge theory [30]. It is worth
emphasizing that the fs� are the only gauge-dependent
operators considered in this Letter, and the UðmÞ gauge
transformation acts on the s index. For Z in Eq. (9), the
slave fermion representation enables a solution in the limit
of large N, at fixed q and m. Remarkably, the IR limit of
this solution has the structure of a conformally-invariant
(0þ 1)-dimensional boundary of a 1þ 1 dimensional CFT
[27,28]. In particular, for the fermion Green’s function

Gfð�Þ ¼ hfs�ð�Þfys�ð0Þi we find the conformal form

[17,28,29]

Gfð�Þ �
�

�T

sinð�T�Þ
�
1=2

: (11)

In the large N limit, Qð�Þ / Gfð�ÞGfð��Þ, and therefore

Qð�Þ � �T

sinð�T�Þ : (12)

This implies the nontrivial result that the scaling dimension

of the spin operator Ŝ�� is 1=2. It has been argued that this

scaling dimension holds to all orders in 1=N [29,31], and

so for SU(2) we also expect dim½Ŝa� ¼ 1=2. Other mean-
field theories of HA have been studied [18,24,25,27,31],
and yield related gapless quantum liquids with other scal-
ing dimensions, although in most cases the solution obeys
the self-consistency condition in Eq. (10) only with the
exponent in Eq. (12).

With the knowledge of Eq. (12), we can now compute
the physical properties of the FFL phase of HA associated
with the SY state. These can be computed perturbatively in
Vk, as was discussed by Burdin et al. [14]. They repro-
duced much of the ‘‘marginal Fermi liquid’’ phenomenol-
ogy of Ref. [20], including the linear-T resistivity. Note
that no exponent was adjusted to achieve this (unlike
Ref. [8]); the linear resistivity is a direct consequence of

the scaling dimension s dim½Ŝa� ¼ 1=2.

We are now in a position to compare the IR limit of the
theory of holographic metals to the FFL phase of HA

associated with Eq. (12): (i) ForHA, we can easily compute
the two-point dk� correlator from Eq. (7) as a product of

the ck� and Ŝa correlators. For the latter, we use (12) for
the on-site correlation, and drop the off-site correlations
which average to zero in the SY state (and in large dimen-
sion limits); it is this limit which leads to the absence of a
singular k dependence in the dk� correlator. For the elec-
tron, we use the Fermi liquid result

hci�ð�Þcyi�ð0ÞiH0
� �T

sinð�T�Þ ; (13)

and then we find that the dk� correlator has the form of the
holographic result in Eq. (4) with �k ¼ 1. As expected
from the results for HA, this is the value of �k correspond-
ing to the marginal Fermi liquid [8]. (ii) The SY state has a
finite entropy density at T ¼ 0. This entropy has been
computed in the large N limit [29], and the results agree
well with considerations based upon the boundary entropy
of 1þ 1 dimensional CFTs [27]. The holographic metal
also has a finite entropy density, associated with the hori-
zon of the extremal black hole. However, a quantitative
comparison of the entropies of these two states is not yet
possible. The entropy of the SY state is quantitatively
computed [29] in the limits of large N [where SUðNÞ is a
flavor group] and large spatial dimension, but at fixed m
and q. In contrast, the holographic metal computation is in
the limit of large Nc [where SUðNcÞ is the gauge group].
The above correspondences in the IR limit of the elec-

tron correlations and the thermodynamics support our main
claim that the SY-like spin liquids realize the physics of
AdS2 � R2.
It is interesting to compare our arguments with the

recent results of Kachru et al. [32]. They used an intersect-
ing D-brane construction to introduce pointlike impurities
with spin degrees of freedom which were coupled to a
background CFT. For each such impurity there was an
asymptotic AdS2 and an associated degeneracy of the
ground state; a lattice of impurities led to a nonzero en-
tropy density at T ¼ 0. Thus working from their picture, it
is very natural to associate AdS2 � R2 with a lattice of
interacting spins; with supersymmetry [32], or in a mean-
field theory [17], such a model can have a nonzero entropy
density. The similarity between these theories leads us to
conjecture that a possible true ground state of the quantum
gravity theory of the holographic metal is a spontaneously
formed crystal of spins coupled to the Fermi surface of
conduction electrons. This would then be an example of
quantum ‘‘order from disorder’’ [33], with the quantum
ground state having a lower translational symmetry than
that of the classical gravity theory.
Below, we accept our main claim connecting the holo-

graphic metal to the FFL phase with a SY-like spin liquid,
and discuss further implications.
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From the perspective of HA, it is not likely that the SY
state is stable beyond its large spatial dimension limit [29];
the dk� propagator should acquire a singular k dependence
in finite dimensions. However, the remarkable emergence
of the large dimension SY state in the very different holo-
graphic context suggests a certain robustness, and so per-
haps it should be taken seriously as a description over a
wide range of intermediate energy scales. Ultimately, it is
believed that at sufficiently low energies we must cross
over to a gauge-theoretic description of a stable spin liquid
with zero ground state entropy density [12,13]. Associated
with this stable spin liquid would be a stable FFL phase in
finite dimension, whose ultimate IR structure was de-
scribed earlier [12,13]. It is clearly of interest to find the
parallel instabilities of the holographic metal on AdS2 �
R2. The geometry should acquire corrections which are
compatible with a k-dependent self-energy, and this should
ultimately lift the ground state entropy. Some of the con-
siderations of Refs. [6,10] may already represent progress
in this discussion.

Refs. [12,13] also discussed the nature of the quantum
phase transition between the FFL and FL phases. It was
argued that this was a Higgs transition which quenched
gauge excitations of the FFL spin liquid. Consequently, we
conclude that a holographic Fermi liquid can be obtained
by a Higgs transition in the boundary theory. In string
theory, the Higgs transition involves separation of coinci-
dent D-branes, and it would be useful to investigate such a
scenario here. The transition from FFL to FL involves an
expansion in the size of the Fermi surface from small to
large, so that the Fermi surface volume accounts for all the
fermionic matter. It is no longer permissible to work per-
turbatively in Vk in the FL phase: instead we have to
renormalize the band structure to obtain quasiparticles
that have both a ck� and a dk� character. Present theories
of holographic metals have an extra ‘‘bath’’ of matter
outside the Fermi surface which can be accounted for
perturbatively in Vk—indeed, these were key reasons for
identifying them with the FFL phase. It would be interest-
ing to obtain the Fermi surface expansion in the holo-
graphic context.
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