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We study current-induced domain-wall motion in a narrow ferromagnetic wire. We propose a way to

move domain walls with a resonant time-dependent current which dramatically decreases the Ohmic

losses in the wire and allows driving of the domain wall with higher speed without burning the wire. For

any domain-wall velocity we find the time dependence of the current needed to minimize the Ohmic

losses. Below a critical domain-wall velocity specified by the parameters of the wire the minimal Ohmic

losses are achieved by dc current. Furthermore, we identify the wire parameters for which the losses

reduction from its dc value is the most dramatic.
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Introduction.—In recent years there has been intense
interest in applications of domain-wall (DW) motion in
ferromagnetic nanowires [1,2]. This interest is mostly
based on the possibility to store and exchange information
by means of moving domain walls which separate the
regions of magnetization parallel and antiparallel to the
wire. These regions with parallel and antiparallel magne-
tization can be thought of as two bits, zero and one, of
binary information storage.

DWs can be moved by a magnetic field [1,3] or electric
current [2,4]. For technological applications the current
driving is preferred as a magnetic field is difficult to apply
locally to small wires. Thus, in this Letter we consider the
current-driven DW devices. To achieve their highest per-
formance it is important to minimize the losses on Joule
heating in the wire, which are due to the resistance of the
wire itself and the entire circuit. They are proportional to
the time-averaged current square, hJ2i. Their minimization
has a twofold advantage. First, one can increase the maxi-
mum current which still does not destroy the wire by
excessive heating and therefore move the DWs with a
higher velocity, since the DW velocity increases with the
applied current. Second, it creates the most energy efficient
memory devices and also increases their reliability.

To achieve these goals we propose to utilize a ‘‘reso-
nant’’ time-dependent current, which allows us to gain a
significant reduction of Ohmic losses. We show that all thin
wires can be characterized by three parameters obtained
from dc-driven DW motion experiments: critical current
jc, drift velocity at the critical current Vc, and the material
dependent parameter a > 0, which, in particular, depends
on Gilbert damping � and nonadiabatic spin torque con-
stant �. The parameter a is just a ratio of the slopes of the
drift velocity VdðJÞ at large and small dc currents; see the
upper inset of Fig. 1. Our main results are summarized in
Fig. 2. We find the minimal power hJ2i needed to drive a
DW with drift velocity Vd. Figures 2(a) and 2(b) show
the dependence of power hJ2i on Vd for the optimal
time-dependent current—red solid curves, and for dc

current—black dashed curves, for two cases: (a) a < 1
and (b) a > 1. In Fig. 2(a) the minimal power is given by
dc current for Vd < Vc, but above Vc there is a significant
reduction in the heating power compared to dc current.
Figure 2(b) shows that the power hJ2i is reduced in com-
parison with the dc case for Vd > Vcvrc. The (dimension-
less) resonant critical velocity vrc � 1 and can be extracted
from the dc-current measurements. For Permalloy using
[5] we estimated a � 0:5, see Fig. 2(a), where for Vd * Vc

the power is less than 50% of that for the dc current.
Figures 2(c) and 2(d) show the limiting cases of a � 1

(c) and a � 1 (d). We note that for small � and �,

FIG. 1 (color online). A sketch of a current-driven domain
wall in the ferromagnetic wire. The upper inset shows the
dependence of drift velocity Vd of DW on dc current J for
B> 0 and B< 0, see Eq. (2b). The slope at J < jc is given by
A, while at J � jc it is Aþ B. The lower inset shows the power
of Ohmic losses pdcðVd=VcÞ ¼ J2=j2c for dc current. For B < 0
the power has a discontinuity at Vd=Vc ¼ 1.
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a � �=�. If a � 1 (� � �), Fig. 2(c), for dc current the
excessive heating power�1=a2 essentially limits the high-
est achievable drift velocity Vd by Vc, whereas the resonant
ac current can move DWs with much higher Vd (and still
rather low power). In the opposite case a � 1, (� � �),
Fig. 2(d), the power saving starts to be considerable at very
small velocity Vd. If � ¼ 0 the dc-current power is finite
even at Vd ! 0, while for the resonant ac current the power
linearly approaches zero at small Vd. Therefore, our ap-
proach gives a dramatic power reduction even in the least
favorable cases � � � and � � �, thus opening new
doors for using materials with much wider range of � for
fast DW motion.

Model.—DW in a ferromagnetic wire can be modeled by
a Hamiltonian which contains exchange and dipolar inter-
actions. In a thin wire, the latter can be approximated by
two anisotropies: along the wire (�) and transverse to it
(K). A sketch of a wire with a DW of width � is shown in
Fig. 1. The dynamics of magnetization S in a wire is
described by Landau-Lifshitz-Gilbert (LLG) equation
with the current J [6,7],

_S ¼ S�He � J@Sþ �JS� @Sþ �S� _S; (1)

where He ¼ �H =�S is the effective magnetic field given
by the HamiltonianH of the system, � is Gilbert damping
constant, � is nonadiabatic spin torque constant, and @ ¼
@=@z. Furthermore, it can be shown [8] that in a thin wire
the DW is a rigid spin texture for not too strong applied
currents and its dynamics can be described in terms of
only two collective coordinates (corresponding to the two
softest modes of the DW motion): namely, the position of
the DW along the wire z0 and the rotation angle � of the
magnetization in the DW around the wire axis.

To describe the DW dynamics we need to find the
equations of motion. For the two softest modes of the
DW, z0ðtÞ and �ðtÞ, they can be found as an expansion in
small current J up to a linear in J order. Because of the

translational invariance _z0 and _� cannot depend on z0. In
addition, to the first order in small transverse anisotropy K,
_� and _z0 are proportional to the first harmonic sinð2�Þ.
Then the most general equations of DW motion are

_� ¼ C½J � jc sinð2�Þ�; (2a)

_z0 ¼ AJ þ B½J � jc sinð2�Þ�; (2b)

where JðtÞ is, in general, a time-dependent current whose
frequency is not too high to create spin waves and other
excitations in the wire. Coefficients A, B, C, and critical
current jc can be calculated for a particular model [9] in
terms of �, � and other microscopic parameters by means
of deriving Eqs. (2) from the LLG Eq. (1). However, we
emphasize that Eqs. (2), with coefficients A, B, C, and jc
determined directly from dc-current experiment for each
particular wire, have more general validity than just being
derived from LLG, e.g., due to the complicated influence
of disorder and internal DW dynamics [10]. Namely, the
value of jc is defined as the endpoint of the linear regime of
the time-averaged (drift) velocity Vd ¼ h _z0ðJÞi; see the
upper inset of Fig. 1. The linear slope of VdðJÞ below jc
determines constant A. The slope of VdðJÞ at large J gives
Aþ B. Constant C one can obtain, e.g., from the measure-
ments of the DW electromotive force [11,12] for dc
current.
dc current.—For the dc current applied to the wire the

DW dynamics governed by Eqs. (2) can be obtained ex-
plicitly [8]. For J < jc and A � 0 the DWmoves along the
wire but does not rotate around its axis. It only tilts on
angle �0 from the transverse-anisotropy easy axis (y axis)
given by condition sinð2�0Þ ¼ J=jc. The drift velocity is
given by Vd ¼ AJ; see Eq. (2b). At J ¼ jc the magnetiza-
tion angle becomes perpendicular to the easy axis, �0 ¼
�=2. For J > jc the DW both moves and rotates, and

Eqs. (2) give Vd ¼ AJ þ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � j2c

p
[8].

The influence of the spin structure on the current is
negligible. The largest losses in the system are the Ohmic
losses of the current. The power of Ohmic losses is propor-
tional to J2. Therefore, at J < jc the current is J ¼ Vd=A
and the power of Ohmic losses is P dc ¼ J2 ¼ V2

d=A
2. It is

instructive to introduce the dimensionless variables for
time, drift velocity, current, and power. Using Vc ¼ Ajc ’
K� we find [13]

�¼Cjct; vd¼Vd=Vc; j¼ J=jc; p¼P=j2c: (3)

Using Eq. (3) we find pdc ¼ v2
d for vd < 1.

For currents above jc the dimensionless power pdc is

given in terms of dimensionless drift velocity vd ¼ jþ
ðB=AÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 � 1
p

as pdcðvdÞ ¼ j2, see the lower inset of
Fig. 1. Thus, it is quadratic in vd, and at vd � 1 it
approaches pdc ¼ A2v2

d=ðBþ AÞ2 þ B=ðBþ AÞ. For B>
0 right above vd ¼ 1, it is approximated by pdc ¼ 1þ
ðA=BÞ2ðvd � 1Þ2. For B< 0 the power has a discontinuity
at vd ¼ 1.

FIG. 2 (color online). Minimal power of Ohmic losses �p ¼
hJ2i=j2c as a function of drift velocity Vd shown by solid line for
(a) a ¼ 0:5 (b) a ¼ 2. The dashed line depicts �p for dc current. A
sketch of hJ2iðVdÞ shown by solid line in (c) for � � � (a � 1)
and (d) for � � � (a � 1).
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Minimization of Ohmic losses by time-dependent
current.—In this part we minimize the Ohmic losses while
keeping the DW moving with a given drift (average)
velocity. Equations of motion (2) are correct even when
the current depends on time. In general, the DWmotion has
some period T and current jð�Þmust be a periodic function
with the same T to minimize the Ohmic losses.

In the following it is more convenient to measure the
angle from the hard axis instead of easy axis and to scale it
by factor of 2, so that 2� ¼ �� �=2. Also, we introduce
the ratio of slopes of VdðJÞ at large and small currents
a ¼ ðAþ BÞ=A. Then using Eq. (2a) the dimensionless
current becomes

jð�Þ ¼ _�=2� cos�; (4)

where _� ¼ @�=@�. Averaging Eq. (2b) over dimensionless
period T we find

vd ¼ a

2
h _�i � hcos�i; (5)

where h. . .i ¼ 1
T

R
T
0 . . . d� is the time averaging.

To minimize the power of Ohmic losses �p averaged over
time we need to find the minimum of hj2ð�Þi at fixed vd

given by Eq. (5),

�p ¼
�� _�

2
� cos�

�
2 � 2	

�
a

2
_�� cos�� vd

��
: (6)

Here, to account for the constraint given by Eq. (5), we
used a Lagrange multiplier 2	, with 	 being an arbitrary
dimensionless constant. Note that the cross term
�R

_� cos�d�0 and the term �R
_�d�0 can be dropped for

the minimization procedure as they are full derivatives.
Power (6) can be considered as an effective action for a

hypothetical particle of mass 1=2 in a periodic potential
field, and its minimization leads to the equation of motion

€�

2
¼ �@U

@�
; Uð�; 	Þ ¼ �cos2�� 2	 cos�: (7)

It can be reduced to the first order differential equation

_� ¼ 	2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�Uð�; 	Þ

q
; (8)

where d is an arbitrary integration constant. Note that
changing 	 ! �	 inU of Eq. (7) is equivalent to changing
� ! �þ �, so below we consider only positive 	. The
potential has a minimum at � ¼ 0 with Umin ¼ 2	� 1 for
any 	 
 0. For 	 < 1 it has also minimum at � ¼ 	�with
Uð	�Þ ¼ �2	� 1 and the maximum at cos�	 ¼ �	

with Uð	�	Þ ¼ 	2. For 	 > 1 it has maximum at

� ¼ 	� with Uð	�Þ ¼ 2	� 1.
According to Eq. (8) there are two different regimes:

(i) the rocking regime where d <max½Uð�; 	Þ� in which
case � is bounded, and the particle oscillates in potential
well Uð�Þ, see Fig. 3; and (ii) the rotational regime where
d >max½Uð�; 	Þ� in which case the magnetization in the
DW rotates. Below we consider these regimes separately.

Rocking regime.—In this regime the motion of �mimics
pendulum motion. The particle rocks between the two
turning points ��0 and �0 given by the condition d ¼
Uð	�0; 	Þ. At these points _� ¼ 0. Since � is a bounded
function h _�i ¼ 0 and the averaged velocity becomes
vd ¼ �hcos�i. The averaging is done over a period of
one complete oscillation,

T ¼
Z �0

��0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�Uð�; 	Þp ; (9)

and according to Eq. (6) the power is given by

�p ¼ h _�2i=4þ hcos2�i: (10)

Most generally � depends on time. For any �ð�Þ, how-
ever, hcos2�i 
 hcos�i2. Then from Eq. (10) follows �p 

h _�2i=4þ hcos�i2 ¼ h _�2i=4þ v2

d 
 v2
d ¼ pdc. Thus, in the

bounded regime the power of Ohmic losses is minimal for
dc current and is given by �p ¼ v2

d.

Rotational regime.—Next we study the case when d >
max½Uð�; 	Þ�, so that angle � is unbounded. It corresponds
to the rotational motion of the transverse to the wire
component of the DW magnetization. Note that in the
rotational regime the term in Eq. (5) with h _�i should be
kept because � is not bounded. The time it takes for � to
make a full rotation from �� to � defines the period T.
Then the period, drift velocity, and power, according to
Eq. (10), are given by

T ¼ 1

2

Z �

��

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�Uð�; 	Þp ; (11a)

vd ¼ �a

T
� 1

2T

Z �

��

cos�d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�Uð�; 	Þp ; (11b)

�p ¼ 1

2T

Z �

��

d�Uð�; 	Þ þ cos2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�Uð�; 	Þp d�: (11c)

This system of equations, after minimizing the power �p
with respect to both d and 	 at fixed vd, gives �pðvdÞ. One
can either directly perform a numerical minimization of
Eq. (11) or alternatively try to find the minimization con-
dition for �p analytically. We have followed both routes.
The minimization of Eqs. (11) infers that @ �p=@	jvd

¼ 0

from which one can find [15]

Z �

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�Uð�; 	Þ

q
d� ¼ 2�a	: (12)

FIG. 3 (color online). Potential Uð�Þ in which a ‘‘particle’’ is
moving in the rocking (pendulumlike) and rotational regimes.
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This equation gives the relationship between d and 	.
Solving it together with Eq. (11b) one finds d and 	 in
terms of vd. They are then substituted into �p ¼ 2	vd � d
which follows from Eqs. (11c) and (12). The motion is
unbounded when d >max½Uð�; 	Þ�, see Eq. (8), which
leads to d > 	2 for 	 < 1 and d > 2	� 1 for 	 > 1.

The results for the minimal power of Ohmic losses �pðvdÞ
are presented in Fig. 2. For a < 1, see, e.g., Fig. 2(a), at
vd < vrc ¼ 1 the minimal power �p coincides with the one
given by dc current, whereas at vd > 1 it is significantly
lower than pdc. Immediately above vd ¼ 1 we find that
there is a range of vd where �p ¼ 1þ 2	0ðvd � 1Þ with
	0ðaÞ> 1 given by Eq. (12) with d ¼ 2	� 1. Therefore,
�p is linear in vd right above vrc ¼ 1.
For a > 1, see, e.g., Fig. 2(b), we show [15] that there is

a critical velocity vrc < 1, such that at vd < vrc the power
of Ohmic losses is �p ¼ v2

d ¼ pdc. Above vrc one can

minimize the Ohmic losses by moving DW with resonant
current pulses. Right above vrc there is a certain range of
vd where d ’ 	2, and therefore we find �p ¼ 2	0vd � 	2

0

with 	0ðaÞ< 1 given by Eq. (12) with d ¼ 	2. The critical
velocity is found as vrc ¼ 	0ðaÞ. For a � 1 [correspond-
ing to nonadiabatic spin transfer torque coefficient � � �,
cf. Eq. (1)] we find vrc ’ 2=ð�aÞ and therefore for
vd � vrc we obtain �p ¼ 4vd=ð�aÞ.

We show that at large vd the minimal power is always
smaller than pdc. Note that for d � 1 Eq. (12) gives
d ¼ a2	2. Using it we find that the difference between
them approaches pdc � �p ¼ ð1� 1=aÞ2=2 at vd � 1.

Optimal current.—For vd < vrc the optimal current
coincides with the dc current. Above vrc the resonant
current jðtÞ is plotted in Fig. 4 for different velocities vd

in the case a ¼ 2. At small vd the current is given by
jð�Þ ¼ �2 cosð�ð�ÞÞ� vrc for cosð�ð�ÞÞ<�vrc and by
jð�Þ ¼ vrc for cosð�ð�ÞÞ>�vrc. At vd � 1 the current
is approximated by j � vd=aþ ½ð1� aÞ=a� cos�.

In general, at vd > vrc the current’s maximum jmax

increases from 2� vrc at small enough vd & 1 up to
jmax � vd=a at vd � 1. The current’s minimum increases
monotonically from small positive values jmin ¼ vrc at
vd � 1 up to jmin ¼ jmax � 2j1� aj=a at vd � 1. At
vd & 1 (for a > 1) the time between the current picks
decreases with increasing velocity as T ’ ð�a�
2 arcsinvrcÞ=ðvd � vrcÞ, whereas the pick’s width is given

by � 1:3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� vrcÞ

p
, which is independent of vd.

Therefore, at small vd � vrc the picks are widely sepa-
rated, then as vd increases the time between the picks
decreases. At vd � 1 the optimal current has a large
constant component, which is close to but smaller than
the dc current for the same vd, and has small-amplitude ac
modulations with a period T � �a=vd on top of it.

Summary.—We have studied the current-driven DW dy-
namics in thin ferromagnetic wires. We have found the
ultimate lower bound for the Ohmic losses in the wire for
any DW drift velocity Vd. The explicit time dependence of
current, see Fig. 4, has been found which minimizes the

Ohmic losses. We have shown that the use of these specific
current pulses instead of applying dc current can help to
significantly reduce heating of the wire for any Vd. Even in
the limiting cases of the systems with weak (� � �) or
strong (� � �) nonadiabatic spin transfer torque, where
the power of Ohmic losses is high for dc currents, the
optimized ac current gives significant reduction in heating
power thus greatly expanding the range of materials which
can be used for spintronic devices [1,2].
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