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The Szilard engine (SZE) is the quintessence of Maxwell’s demon, which can extract the work from a

heat bath by utilizing information. We present the first complete quantum analysis of the SZE, and derive

an analytic expression of the quantum-mechanical work performed by a quantum SZE containing an

arbitrary number of molecules, where it is crucial to regard the process of insertion or removal of a wall as

a legitimate thermodynamic process. We find that more (less) work can be extracted from the bosonic

(fermionic) SZE due to the indistinguishability of identical particles.
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Maxwell’s demon is a hypothetical being of intelligence
that was conceived to illuminate possible limitations of the
second law of thermodynamics [1,2]. Szilard conducted a
classical analysis of the demon, considering an idealized
heat engine with a one-molecule gas, and directly associ-
ated the information acquired by measurement with a
physical entropy to save the second law [3]. The basic
working principle of the Szilard engine (SZE) is schemati-
cally illustrated in Fig. 1. If one acquires the information
concerning which side the molecule is in after dividing the
box, the information can be utilized to extract work, e.g.,
via an isothermal expansion. The crucial question here is
how this cyclic thermodynamic process is compatible with
the second law. Now it is widely accepted that the mea-
surement process including erasure or reset of demon’s
memory requires the minimum energy cost of at least
kB ln2 (kB is the Boltzmann constant), associated with
the entropy decrease of the engine, and that this saves the
second law [4–7].

Although the SZE deals with a microscopic object,
namely, an engine with a single molecule, its fully quantum
analysis has not yet been conducted except for the mea-
surement process [8,9]. In this Letter we present the first
complete quantum analysis of the SZE. The previous lit-
erature takes for granted that insertion or removal of the
wall costs no energy. This assumption is justified in clas-
sical mechanics but not so in quantum mechanics [10]
because the insertion or removal of the wall alters the
boundary condition that affects the eigenspectrum of the
system. As shown below, a careful analysis of this process
leads to a concise analytic expression of the total net work
performed by the quantum SZE. If more than one particle
is present in the SZE, we encounter the issue of indistin-
guishability of quantum identical particles. Indeed, how
much work is extracted from the quantum SZE strongly
depends crucially on whether it consists of either bosons
or fermions. We also show that the crossover from
indistinguishability to distinguishability occurs as the tem-
perature increases. We assume that the measurement is

performed perfectly. The case of imperfect measurement
is discussed in terms of mutual information in Ref. [7].
To define the thermodynamic work in quantum mechan-

ics, let us consider a closed system described as Hc n ¼
Enc n, where H, c n, and En are the Hamiltonian of the
system, its nth eigenstate, and eigenenergy, respectively.
The internal energy U of the system is given as U ¼P

nEnPn, where Pn is the mean occupation number of
the nth eigenstate. In equilibrium Pn obeys the canonical
distribution. From the derivative of U, one obtains dU ¼P

nðEndPn þ PndEnÞ. Analogous to the classical thermo-
dynamic first law, TdS ¼ dUþ dW, where S and W are
the entropy and work done by the system, respectively, the
quantum thermodynamic work (QTW) can be identified as
dW ¼ �P

nPndEn [11,12]. Note that
P

nEndPn should be

FIG. 1 (color online). Schematic diagram of the thermody-
namic processes of the classical SZE. Initially a single molecule
is prepared in an isolated box. (A) A wall depicted as a vertical
gray bar is inserted to split the box into to two parts. The
molecule is represented by the dotted circles to indicate that at
this stage we do not know in which box the molecule is. (B) By
the measurement, we find where the molecule is. (C) A load is
attached to the wall to extract a work via an isothermal expan-
sion at a constant temperature T.
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associated with TdS since the entropy S is defined as
S ¼ �kB

P
nPn lnPn.

Although the process of inserting a wall is accompanied
by neither heat nor work in the classical SZE, it is not the
case with the quantum SZE. This process can be modeled
as that of increasing the height of the potential barrier. In
quantum mechanics, energy levels then vary, contributing
to the QTW. This process can be performed isothermally so
that the temperature is kept constant during the whole
process in conformity with the original spirit of the SZE.
If the insertion is performed in an adiabatic process defined
as dQ ¼ P

nEndPn ¼ 0, one can easily show that the
temperature is either changed or not well defined at the
end. The former is obvious considering the classical ther-
modynamic adiabatic process. If the wall is inserted in a
quantum adiabatic manner, dPn ¼ 0 is always satisfied.
Given that the temperature is defined from the ratio of

probabilities as Pn=Pm ¼ e�ðEn�EmÞ=kBT , it is well defined
only if all energy differences are changed by the same ratio
[13]. However, this cannot be achieved in the SZE because
each energy level shifts in a different manner [14].

To describe the quantum SZE it is indeed sufficient to
know only the isothermal process for a whole cycle. If the
external parameter X is varied from X1 to X2 isothermally,
the QTW is obtained as

W ¼ kBT
X
n

Z X2

X1

@ lnZ

@En

@En

@X
dX (1)

¼ kBT½lnZðX2Þ � lnZðX1Þ�; (2)

where Z ¼ P
ne

��En is the partition function with
� ¼ 1=kBT.

It is worth mentioning that the isothermal process in-
duces thermalization of the molecule with the reservoir at
every moment, which destroys all the coherence among
energy levels. Therefore, it is not necessary to describe the
dynamics of our system in terms of the full density matrix;
it is sufficient to know its diagonal part, i.e., the probabil-
ities Pn. However, this thermalization has nothing to do
with the measurement of the location of the molecule since
it proceeds regardless of which box the molecule is in.

Let us now consider a quantum SZE in a general situ-
ation. As shown in Fig. 2, the whole thermodynamic cycle
consists of four processes, namely, insertion, measurement,
expansion, and removal for four distinct states (I)–(IV). N
ideal identical molecules are prepared in a potential well of
size L as shown in Fig. 2(I). A wall is then isothermally
inserted at a certain position l. The partition function, at the
moment when the wall insertion is completed but the
measurement is not performed yet, is given as ZðlÞ ¼P

N
m¼0 ZmðlÞ, where ZmðlÞ denotes the partition function

for the case in which m particles are on the left and N �
m on the right. The amount of work required for the
insertion process is thus expressed as

Wins ¼ kBT½lnZðlÞ � lnZðLÞ�: (3)

Then, the measurement is performed without any expendi-
ture of work. The amount of work extracted via the subse-
quent isothermal expansion is given as Wexp ¼
kBT

P
N
m¼0 fm½lnZmðlmeqÞ � lnZmðlÞ�, where fm ¼ ZmðlÞ=

ZðlÞ represents the probability of having m particles on
the left at the measurement. The wall moves until it reaches
an equilibrium position lmeq determined by the force balance,

Fleft þ Fright ¼ 0, where the generalized force F is defined
as

P
nPnð@En=@XÞ, as illustrated in Fig. 2(IV).We note that

lmeq is not simply ðm=NÞL unlike classical ideal gases.

The wall is then removed isothermally. In reality the
wall is not impenetrable, and has a finite potential height,
namely, X1. During the expansion process, X1 is assumed
to be large enough to satisfy �t � �, where �t and � are a
tunneling time between the two sides and an operational
time of thermodynamic processes, respectively, ensuring
that m is well defined. During the wall removal, however,
�t gradually decreases and becomes comparable with � for
a certain strength, X0, where any eigenstate is delocalized
over both sides due to tunneling. It implies that the parti-
tion function is given by ZðlmeqÞ ¼ P

N
n¼0 ZnðlmeqÞ rather than

ZmðlmeqÞ. The integral (1) for each m can be split into two

parts:
RX0

X1½@ lnZmðlmeqÞ=@X�dX and
R
0
X0
½@ lnZðlmeqÞ=@X�dX.

It is then shown that the former vanishes as far as the
quasistatic process, � ! 1 (i.e., X0, X1 ! 1), is con-
cerned. This leads us to

FIG. 2. Schematic diagram of the quantum SZE containing
three molecules. (I) Three molecules are prepared in a closed
box with size L. (II) A wall, depicted by a vertical gray bar, is
isothermally inserted at location l. The process ðIÞ ! ðIIÞ is
called ‘‘insertion.’’ (III) The information on the number of
molecules, m, on the left is acquired by the measurement. The
process ðIIÞ ! ðIIIÞ is called ‘‘measurement.’’ (IV) The wall
moves and undergoes an isothermal expansion until it reaches
its equilibrium location denoted by lmeq. The process ðIIIÞ ! ðIVÞ
is called ‘‘expansion.’’ Finally the wall is isothermally removed
to complete the cycle. The process ðIVÞ ! ðIÞ is called ‘‘re-
moval.’’
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Wrem ¼ kBT
XN
m¼0

fm½lnZðLÞ � lnZðlmeqÞ�: (4)

Note that the summation over m must be made in ZðlÞ of
Eq. (3) for the insertion process irrespective of tunneling
since no measurement has been performed yet.

Combining all the contributions the total work per-
formed by the engine during a single cycle is given by

Wtot ¼ Wins þWexp þWrem ¼ �kBT
XN
m¼0

fm ln

�
fm
f�m

�
;

(5)

where f�m ¼ ZmðlmeqÞ=ZðlmeqÞ. Equation (5) has a clear

information-theoretic interpretation in the context of the
so-called relative entropy [15] or Kullback-Leibler diver-
gence even though f�m is not normalized, namely,

P
mf

�
m �

1. It has been shown that the average dissipative work upon
bringing a system from one equilibrium state at a tempera-
ture T into another one at the same temperature is given by
the relative entropy of the phase space distributions be-
tween forward and backward processes [16]. With filtering
or feedback-control-like measurement processes of the
SZE that determine m, the work is represented as a form
equivalent to Eq. (5) [17].

It is straightforward to apply Eq. (5) to the original SZE
consisting of a single molecule of mass M. For simplicity
let us consider an infinite potential well of size L, and l ¼
L=2. One finds f�0 ¼ f�1 ¼ 1 since in these cases the wall

reaches the end of the box so that ZðlmeqÞ ¼ ZmðlmeqÞ
(m ¼ 0; 1) is satisfied. Note that f�m ¼ 1 is always true
form ¼ 0 and N. Together with f0 ¼ f1 ¼ 1=2, we obtain
Wtot ¼ kBT ln2, implying the work performed by the quan-
tum SZE is equivalent to that of the classical SZE.
However, consideration of individual processes reveals an
important distinction between the classical and quantum
SZEs. For the quantum SZE one obtains Wins ¼ ��þ
kBT ln2, Wexp ¼ �, and Wrem ¼ 0 for each process, where

� ¼ ln½zðLÞ=zðL=2Þ�, zðlÞ ¼ P1
n¼1 e

��EnðlÞ, and EnðlÞ ¼
h2n2=ð8Ml2Þ with h being the Planck constant. In the
low-temperature limit, � is simply given as E1ðL=2Þ �
E1ðLÞ. If the insertion process were ignored in the classical
SZE, the second law would be violated because � � kBT
in the low-temperature limit. In fact, � for the expansion
process is compensated by the work required for inserting
the wall. In the end, a tiny difference of work between these
two processes results in the precise classical value,
kBT ln2. As the temperature increases, the classical results
of individual processes are recovered, i.e., Wins ! 0,
Wexp ! kBT ln2, and Wrem ¼ 0 since � approaches

kBT ln2 in this limit.
For the quantum SZE with more than one particle,

dramatic quantum effects come into play. Let us consider
a two-particle SZE confined in a symmetric potential well
and a wall at l ¼ L=2. One also finds f�0 ¼ f�2 ¼ 1 for the

same reason mentioned above. Since for m ¼ 1 the wall
does not move in the expansion process, implying l ¼ l1eq,

one obtains f1 ¼ f�1. We thus end up with

Wtot ¼ �2kBTf0 lnf0; (6)

where f0 ¼ f2 is used.
To get some physical insights let us consider two limit-

ing cases of Eq. (6), which is summarized in Table I (see
[18] for a detailed derivation). For simplicity here the spin
of a particle is ignored. In the low-temperature limit only
the ground state is predominantly occupied, so that there
exists effectively only one available state for each side. It is
clear, as shown in Fig. 3(a), that for bosons f0 should
become 1=3, i.e., Wtot ¼ kBTð2=3Þ ln2, since we consider
two indistinguishable bosons over two places. On the other
hand, two fermions are prohibited to be in the same side or
to occupy the same state due to the Pauli exclusion prin-
ciple, which explains why the work vanishes in the low-
temperature limit. However, the higher the temperature,
the larger the number of available states. Thermal fluctua-
tions wash out indistinguishability since two identical
particles start to be distinguished by occupying different
states. This is why in the high-temperature limit we have
f0 ¼ 1=4, i.e., Wtot ¼ kBT ln2, for both bosons and fermi-
ons, which results from allocating two distinguishable
particles over two places as shown in Fig. 3(b). It is also
shown in Fig. 3 that f0 continuously varies from 1=3 (0) to
1=4, exhibiting the crossover from indistinguishability to
distinguishability for bosons (fermions) as the temperature
increases.
The inset of Fig. 3 clearly shows that one can extract

more work from the bosonic SZE but less work from the

FIG. 3 (color online). f0 as a function of T for bosons (solid
curve), fermions (dashed curve), and classical particles (dash-
dotted line) in the case of the infinite potential well. The
temperature is given in units of E1ðLÞ=kB. (a) Three possible
ways in which two identical bosons are assigned over two states.
(b) Four possible ways in which two distinguishable particles are
allocated over two places. The inset showsWtot=Wc as a function
of T.
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fermionic SZE over the entire range of temperature. [See
[18] for detailed discussions of the WtotðTÞ.] While details
of WtotðTÞ depend on the confinement potential, its low-
temperature limits given in Table I are universal and have a
deep physical meaning associated with the information
content of quantum indistinguishable particles as men-
tioned above.

Finally, we briefly mention possible experimental real-
izations of the quantum SZE. Although several experi-
ments [19–22] or proposals [23,24] associated with the
classical SZE have been presented so far, its fully quantum
version has been elusive. There exist three important in-
gredients for the experimental realization: (i) con-
trollability of the confinement potential, (ii) availability
of a thermal heat bath to perform isothermal processes,
and (iii) measurability of the work performed. For bosons,
the system of trapped cold atoms may be a good candidate
since the confinement potential can be easily controlled.
Although such a system usually lacks a thermal heat bath,
it can be immersed in a different species of atoms trapped
in a wider confinement potential so that they can play a role
of a heat reservoir. For fermions, two-dimensional electron
gases confined in quantum dots made of semiconductor
heterostructures might be a candidate due to its controll-
ability of the confinement potential and the existence of a
heat reservoir of the Fermi sea of electrons. In principle,
the work is determined once both En and Pn are known
during the entire isothermal processes for both bosons and
fermions.

In summary, we have studied the quantum nature of the
SZE. The total work performed by the quantum SZE is
expressed as a simple analytic formula which is directly
associated with the relative entropy in the classical limit.
To correctly describe the quantum SZE the processes of
inserting or removing the wall should be regarded as a
relevant thermodynamic procedure. The quantum SZE
consisting of more than one particle clearly shows the
quantum nature of indistinguishable identical particles.
We believe our findings shed light on the subtle role of
information in quantum physics.

We would like to thank Takuya Kanazawa and Juan
Parrondo for useful discussions. S.W.K. acknowledges
JSPS for supporting his stay at University of Tokyo.

S.W.K. was supported by the NRF grant funded by the
Korea government (MEST) (No. 2009-0084606 and
No. 2009-0087261). T. S. acknowledges JSPS (Grant
No. 208038). S. D. L. acknowledges JSPS FY2009. M.U.
was supported by a Grant-in-Aid for Scientific Research
(Grant No. 22340114) and the Photon Frontier Network
Program of the Ministry of Education, Culture, Sports,
Science and Technology, Japan.

[1] H. S. Leff and A. F. Rex, Maxwell’s Demons 2 (IOP,
Bristol, 2003).

[2] K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81,
1 (2009).

[3] L. Szilard, Z. Phys. 53, 840 (1929).
[4] L. Brillouin, J. Appl. Phys. 22, 334 (1951).
[5] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[6] C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
[7] T. Sagawa and M. Ueda, Phys. Rev. Lett. 102, 250602

(2009).
[8] W.H. Zurek, in Frontiers of Nonequlibrium Statistical

Physics, edited by G. T. Moore and M.O. Scully
(Plenum, New York, 1984), p. 151.

[9] S. Lloyd, Phys. Rev. A 56, 3374 (1997).
[10] C.M. Bender, D. C. Brody, and B.K. Meister, Proc. R.

Soc. A 461, 733 (2005).
[11] T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004).
[12] M. Esposito and S. Mukamel, Phys. Rev. E 73, 046129

(2006).
[13] H. T. Quan, Y.-X. Liu, C. P. Sun, and F. Nori, Phys. Rev. E

76, 031105 (2007).
[14] For example, if the wall is located at the node of the wave

function, the corresponding energy level never changes as
the height of the wall increases even though other levels
move substantially.

[15] V. Vedral, Rev. Mod. Phys. 74, 197 (2002).
[16] R. Kawai, J.M. R. Parrondo, and C. Van den Broeck, Phys.

Rev. Lett. 98, 080602 (2007).
[17] J.M. R. Parrondo, C. Van den Broeck, and R. Kawai, New

J. Phys. 11, 073008 (2009).
[18] See supplemental material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.106.070401 for the
derivation of Table I and the details of WtotðTÞ.

[19] V. Serreli, C.-F. Lee, E. R. Kay, and D.A. Leigh, Nature
(London) 445, 523 (2007).

[20] G. N. Price, S. T. Bannerman, K. Viering, E. Narevicius,
and M.G. Raizen, Phys. Rev. Lett. 100, 093004 (2008).

[21] J. J. Thorn, E. A. Schoene, T. Li, and D.A. Steck, Phys.
Rev. Lett. 100, 240407 (2008).

[22] S. Toyabe, T. Sagawa, M. Ueda, Eiro Muneyuki, and
Masaki Sano, Nature Phys. 6, 988 (2010).

[23] M.O. Scully, M. S. Zhubairy, G. S. Agarwal, and H.
Walther, Science 299, 862 (2003).

[24] S.W. Kim and M.-S. Choi, Phys. Rev. Lett. 95, 226802
(2005).

TABLE I. Total work measured in units of kBT of the quantum
SZE with l ¼ L=2 containing two bosons or two fermions at the
low- and the high-temperature limits (see [18] for detailed
derivation).

Bosons Fermions

T ! 0 ð2=3Þ ln3 0

T ! 1 ln2 ln2

PRL 106, 070401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 FEBRUARY 2011

070401-4

http://dx.doi.org/10.1103/RevModPhys.81.1
http://dx.doi.org/10.1103/RevModPhys.81.1
http://dx.doi.org/10.1007/BF01341281
http://dx.doi.org/10.1063/1.1699951
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1103/PhysRevLett.102.250602
http://dx.doi.org/10.1103/PhysRevLett.102.250602
http://dx.doi.org/10.1103/PhysRevA.56.3374
http://dx.doi.org/10.1098/rspa.2004.1351
http://dx.doi.org/10.1098/rspa.2004.1351
http://dx.doi.org/10.1103/PhysRevLett.93.140403
http://dx.doi.org/10.1103/PhysRevE.73.046129
http://dx.doi.org/10.1103/PhysRevE.73.046129
http://dx.doi.org/10.1103/PhysRevE.76.031105
http://dx.doi.org/10.1103/PhysRevE.76.031105
http://dx.doi.org/10.1103/RevModPhys.74.197
http://dx.doi.org/10.1103/PhysRevLett.98.080602
http://dx.doi.org/10.1103/PhysRevLett.98.080602
http://dx.doi.org/10.1088/1367-2630/11/7/073008
http://dx.doi.org/10.1088/1367-2630/11/7/073008
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.070401
http://link.aps.org/supplemental/10.1103/PhysRevLett.106.070401
http://dx.doi.org/10.1038/nature05452
http://dx.doi.org/10.1038/nature05452
http://dx.doi.org/10.1103/PhysRevLett.100.093004
http://dx.doi.org/10.1103/PhysRevLett.100.240407
http://dx.doi.org/10.1103/PhysRevLett.100.240407
http://dx.doi.org/10.1038/nphys1821
http://dx.doi.org/10.1126/science.1078955
http://dx.doi.org/10.1103/PhysRevLett.95.226802
http://dx.doi.org/10.1103/PhysRevLett.95.226802

