|83 Selected for a Viewpoint in Physics
PHYSICAL REVIEW LETTERS

PRL 106, 110505 (2011)

week ending
18 MARCH 2011

£
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We present and experimentally demonstrate a communication protocol that employs shared entangle-
ment to reduce errors when sending a bit over a particular noisy classical channel. Specifically, it is shown
that given a single use of this channel, one can transmit a bit with higher success probability when the sender
and receiver share entanglement compared to the best possible strategy when they do not. The experiment is
realized using polarization-entangled photon pairs, whose quantum correlations play a critical role in both
the encoding and decoding of the classical message. Experimentally, we find that a bit can be successfully
transmitted with probability 0.891 =+ 0.002, which is close to the theoretical maximum of (2 + 271/2)/3 =
0.902 and is significantly above the optimal classical strategy, which yields 5/6 = 0.833.
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Two parties that share an entangled quantum system can
achieve communication tasks which would otherwise be
impossible: Sending two bits of classical information using
only one qubit [1], unconditionally secure communication
[2], transferring quantum information from one quantum
system to another using two classical bits [3], and reducing
communication complexity in distributed computations [4].

It is much less studied how entanglement can assist in
sending classical information over a classical channel. The
main result in this context is that entanglement cannot
increase the capacity of any classical channel [3,5] in the
sense of Shannon [6]. However, it has recently been shown
that the number of different messages that can be sent
error-free with a single use of a noisy classical channel
(i.e. the one-shot zero-error capacity) can be increased
when the sender and receiver share entanglement [7].
Another interpretation of this result is that for a fixed
number of possible messages and a fixed number of chan-
nel uses, entanglement can be used to increase the proba-
bility of successful decoding, which raises interesting
general questions about when entanglement can assist in
this way.

In this Letter we describe an example of such an
entanglement-enhanced classical communication protocol
that, compared to the example given in [7], exhibits a larger
absolute gap in the assisted and unassisted success proba-
bilities, involves a much simpler classical channel, a
smaller entangled state and, most significantly, is experi-
mentally feasible. We go on to describe an experimental
implementation which clearly demonstrates the advantage
gained from using entanglement. This represents an appli-
cation of entanglement in a new setting, where it is sur-
prising that one can benefit from quantum effects.

We first briefly discuss error-correcting codes for clas-
sical channels with and without entanglement assistance.
For a specific classical channel, which we label N g, we
show that the maximum success probability for sending
1 bit with a single use of this channel is 5/6 = 0.833, even
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if the parties have shared randomness at their disposal. By
employing a pair of maximally entangled qubits, this
probability can be increased to (2 +271/2)/3 =~ 0.902.
Using entangled photons we then implement this protocol
experimentally, achieving a success probability of 0.891 *
0.002. This is close to the theoretical value and signifi-
cantly better than the best classical strategy.

Classical vs entanglement-assisted codes.—The task we
are studying is this: Alice wants to be able to send one of M
possible messages to Bob, by making one use of a noisy
classical channel N (and no other signals). The channel
has a finite set of input symbols, and a finite set of output
symbols, and is described by the conditional probabilities of
the output symbols given the input symbol. Given a uniform
prior distribution on the messages, we want to maximize the
probability that Bob determines the message correctly.

If we have a purely classical protocol which depends on
some random variable R, its success probability will be the
mean of the success probabilities of the protocols for fixed
values of R. Therefore, it is no larger than the best success
probability attained by some fixed value of R and we can
eliminate the dependence on R without detriment (note that
this is true even if R is shared randomness, i.e., its value is
known to both parties). Therefore, there is an optimal
classical protocol which is deterministic: Alice maps
each message to some input symbol, and Bob has a decod-
ing rule that maps output symbols to messages (if the
channel is of the form IN®f, corresponding to k indepen-
dent uses of a given channel IV, then such a protocol is
called a block code of block length k for the channel N').

On the other hand, we will see that shared entanglement
can increase the probability of success beyond any classi-
cal protocol. The most general form of an entanglement-
assisted protocol to send one of M messages using a
classical channel is illustrated in Fig 1: Alice and Bob
possess systems A and B in some entangled state p,p
(note that a separable state can be simulated by shared
randomness). The message ¢ determines which
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FIG. 1. General form of an entanglement-assisted coding pro-
tocol for sending classical message ¢ with a single use of a
classical channel N and an entangled state p,g. Double lines
represent classical communication.

measurement Alice performs on her system A and the
measurement outcome determines the input x she makes
to the channel. This does not imply that the channel input
can not also depend on ¢, but this dependence can be
absorbed into the definition of the measurement. The
channel output y then determines the measurement Bob
does on his system, B, and its outcome determines his
decoding ¢ of the message (again, the definition of the
measurement can incorporate any dependence on y). For
more details, see [7].

The channel.—The particular noisy classical channel
N we consider in this Letter takes a two-bit input,
(b}, by). Tt produces an output (z, b) consisting of a trit ¢
which is selected at random from the set {1, 2, P} (each with
probability 1/3), and a bit b which is equal to b, when
t = 1,b, whent = 2, and is the parity b; ® b, whent = P.
The conditional probability matrix Pr[(z, b)|(b,, b,)] of
N is shown in Fig. 2(a). In Fig. 2(b), the four input
symbols are represented as the circular vertices of a graph
whose edges (with square labels) correspond to the six
output symbols. In terms of this picture, when an input is
made, the output is chosen uniformly at random from the
three edges in the graph which connect to it.

A classical code to send a bit with one use of Ny uses
two of the four possible inputs to represent the two mes-
sages “0” and ““1”. For example, we might use (0, 1) to
encode “0” and (1, 0) for “1”. The optimal decoding map
is easy to see: If the output is (1, 0) or (2, 1) then the input
was certainly (0, 1) so Bob decodes “0”. Likewise, he
decodes (1, 1) and (2, 0) to message ““1”°, and this is also
always correct. OQutput (P, 0) never occurs. If the output is
(P, 1) then the two messages are equally probable, so the
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FIG. 2. The conditional probability matrix of Ny (a) and a
graph representing its structure (b). The inputs (outputs) are
labeled as circles (squares).

best Bob can do is guess. He will be right with probability
1/2, and this output occurs with probability 1/3 so he is
wrong with probability 1/6. The symmetry of the channel
[which is evident in Figure 2(b)] means that any other
assignment (or code) is equivalent to this one under relab-
eling of the channel outputs, and has the same probability
of successful decoding, namely, 5/6 = 0.833.

The entanglement-assisted protocol.—Shared entangle-
ment allows us to improve on the optimal classical strategy
described in the last section. The protocol assumes that
the two parties each have one photon from a maximally
polarization-entangled state of two photons |[PT) =
(|HH) + |VV))/V/2. For the protocol to proceed, each
party performs a measurement in one out of two bases on
their photon. Each measurement has two possible out-
comes, projecting on quantum states |6) = cosf|H) +
sinf|V). We will represent each such measurement by
(160), 16,)) to denote the (orthogonal) outcomes 0 and 1
for each measurement, respectively.

For Alice, measurement O is (|77/4), |37/4)) and mea-
surement 1 is (|0), |77/2)). Bob’s measurement O is (|77/8),
|577/8)) and measurement 1 is (|377/8), |777/8)). Note that
these are the measurement settings that give rise to a
maximal violation of a Clauser-Horne-Shimony-Holt
Bell’s inequality [8]. Alice performs measurement g = 0
or 1 and obtains outcome a while Bob makes measurement
v = 0 or 1 and obtains outcome S. Here o and 3 are bit
values corresponding to the measurement outcomes. The
marginal distributions of « and  are uniform, independent
of the inputs, and the correlations will be such that the
relation [9]

a® B =qu (2)

holds with probability @ = (1 +271/2)/2 [10]. To send
the bit g, Alice performs measurement ¢, randomly

TABLE I. The rows of this table track the protocol from left to
right for the three possible values of #: Bob obtains (7, b) from the
channel, b’s dependence on the message g and Alice’s measure-
ment outcome « being fixed by ¢ as described in the channel
section; Based on ¢, Bob determined his measurement choice v.
He gets the outcome S—in this column we assume that the
relation (2) does hold. Substituting the choice Bob makes for v
in this relation determines S as a function of « and ¢. The next
column shows the function of b and 8 Bob calculates to get his
decoding of the message ¢. When the relation (2) holds, this
function is equal to ¢ for all ¢. If the relation does not hold, then
if + = 1 (with probability 1/3) he is still correct. Therefore the
probability of successful decoding is 1/3 +2w/3 =
(2 +271/2)/3. The last two columns show the settings of the
Pockels cells used to implement Bob’s measurement in the
experiment (1 is “ON”’, 0 is “OFF”).

t b Bob Chooses v = B q Xon  Zon
1 q Irrelevant n/a b n/a nj/a
2 a 1 g®a bOB 1@b b
P goa 0 a be b b
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obtaining some outcome «. She then uses (¢, «) as the
input to N . In Table I and its caption we describe Bob’s
part of the protocol and how the success probability of
(2 +271/2)/3 = 0.902 can be achieved [11].

Experimental realization.—The setup of our experiment
is shown in Fig. 3. We implement the classical channel,
N g, with its four inputs and six outputs by using an
electronic circuit (CPLD logic chip Xilinx Xc2c64a) that
is controlled by a random trit. This random trit, 7, is
generated at 200 kHz by LabView’s pseudorandom number
generator (RNG). We generate the entangled resource state
for our communication protocol by using type-II sponta-
neous parametric down-conversion. A 0.7 mW diode laser
at 404 nm pumps a 25 mm periodically-poled KTiOPO,
(PPKTP) crystal in a Sagnac configuration, emitting
entangled photons which are subsequently single-mode
fiber coupled [12,13]. Typically we observe a coincidence
rate of 15 kHz directly at the source.

Alice’s message, ¢, is selected randomly by means of a
beam splitter; if her photon is transmitted she performs
measurement 0, and if the photon is reflected she performs
measurement 1. The input to N is determined by which
of the detectors fires, as described in the last section and
illustrated in Fig. 3. Depending on the output y of the
channel, Bob needs to actively choose his measurement
basis and may need to invert his measurement outcome in
order to decode the message. These actions are imple-
mented using two fast RbTiOPO, Pockels cells, aligned
for o, (X) and o, (Z) operation, respectively [13,14]. The
states X,, and Z,, of the Pockels cells, which can each
independently be O or 1, are shown in Table I.

After passing the Pockels cells, Bob’s photon is mea-
sured in the (|7/8), |57/8)) basis, where the output 3 is 0
or 1 depending on whether the photon is detected in the
transmitted or reflected output port of the analyzer module,
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FIG. 3 (color online). Experimental implementation. The
Sagnac-spontaneous parametric down-conversion source gener-
ates maximally entangled photon pairs of the form |® "), which
are coupled into single-mode fibers (SMF). One of the photons is
brought to Alice’s side, where two polarization analyzer modules
(IH/V) and | + /=) basis, respectively) are separated by a
50/50 beam splitter (BS). The classical channel N performs
its mapping dependent on the RNG operated at 200 kHz. This
ensures that every new input to the channel will likely encounter
a different random signal. Depending on the output of N g, fast
Pockels cells perform o, (X) or o, (Z) on Bob’s photon, which is
delayed in a 50 m SMF to account for the feed-forward time.

respectively. Unless =1, Bob uses the outcome of
the measurement in combination with the output b of the
channel to decode the message. If = 1, Bob ignores the
measurement result and directly uses b as the decoded
message ¢ (see Table I). The measurement bases of Alice
and Bob are set by half- and quarter-wave plates (HWPs,
QWPs) followed by polarizing beam splitters (PBSs).

To evaluate the quality of our entangled state, we per-
formed quantum state tomography [15,16]. On Alice’s
side, we analyzed the photons in the transmitted arm of
the BS. We recorded coincidences between this output and
Bob’s polarization analyzer following the (switched off)
Pockels cells. Coincidence measurements were integrated
over 8 s for each of 36 different measurements, comprising
all combinations of the six eigenstates of X, Y, and Z on
Alice’s and Bob’s qubit, respectively. Using a maximum-
likelihood technique [16] we reconstructed the density
matrix shown in Fig. 4.

To characterize the performance of the channel during
the experiment, we record the coincidence events for all
possible input-output combinations. The frequencies of the
outputs for each of the inputs are shown in a “truth table”
in Fig. 4. We can quantify the overlap between the mea-
sured truth table, N, and the ideal truth table, Ny,, using
the so-called inquisition [17], I = Tr(Ney,N§)/Tr(Ng, NE).
For our channel, 7 = 0.9992 = 0.0001, where the uncer-
tainty was calculated by a Monte Carlo simulation with
binomially distributed random-signal frequencies (which
stem from the RNG in the experiment) added in each run.

Experimental Channel Deviation from Ideal
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FIG. 4 (color online). Source and channel characterization.
Top: Experimentally reconstructed density matrix of our two-
photon entangled state p.,: real part (left panel) and imaginary
part (right panel). It has fidelity F = 0.981 = 0.001 with the
ideal |®7) and a tangle of 7 = 0.925 =+ 0.004. The error bars for
these results were calculated by a 200 run Monte Carlo simula-
tion, adding Poissonian noise to the count statistics in each run.
Bottom: Truth tables for the experimental channel (left panel)
and its deviation from an ideal one [right panel—c.f. Fig. 2(a)],
as recorded during our experiment.
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FIG. 5 (color online). Experimental results. The bar chart dis-
plays coincidences recorded (input bit, decoded bit) over a
period of 10 minutes. In total, we recorded 188845 (23429)
bits that were successfully (unsuccessfully) transmitted. These
data yield a success probability P, = 0.891 = 0.002.

Experimental results.—In our experiment, we record all
combinations of coincidence counts between Alice’s four
single-photon counting detectors and the two on Bob’s side.
This allows us to obtain the success probability P, i.e.,
the ratio of successfully received and decoded bits over the
total number of bits sent. The results are shown in Fig. 5.
From the data we obtain P.,, = 0.891 = 0.002, where the
error bar stems from Poissonian count statistics. Imperfect
state creation and feed-forward operations lead to a de-
crease from the ideal, theoretical success probability, Py, =
(2 +27/2)/3 = 0.902. The tomographic data of our en-
tangled resource state allow us to calculate the expected
success probability of our protocol, which we infer as
0.8957 = 0.0004. This shows that our implementation of
the protocol is mostly limited by the quality of our en-
tangled resource state.

Conclusion.—In summary, we have shown how shared
entanglement can be used to improve the performance of a
completely classical communication task, namely, sending
one bit with a single use of a noisy classical channel. This
scheme shows how entanglement can offer a distinct ad-
vantage in a classical error coding scenario involving a
finite number of channel uses. Our results lead to interest-
ing questions for further study: which classical communi-
cation channels can benefit from entanglement and by how
much? For instance, can we find general bounds on the gap
between the error probability with and without entangle-
ment assistance? How do these ideas generalize in the

context of multiterminal communication assisted by multi-
partite entanglement?
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