
High-Temperature Fractional Quantum Hall States

Evelyn Tang,1 Jia-Wei Mei,1,2 and Xiao-Gang Wen1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Institute for Advanced Study, Tsinghua University, Beijing, 100084, People’s Republic of China

(Received 14 December 2010; published 6 June 2011)

We show that a suitable combination of geometric frustration, ferromagnetism, and spin-orbit

interactions can give rise to nearly flatbands with a large band gap and nonzero Chern number. Partial

filling of the flatband can give rise to fractional quantum Hall states at high temperatures (maybe even

room temperature). While the identification of material candidates with suitable parameters remains open,

our work indicates intriguing directions for exploration and synthesis.
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Landau symmetry breaking [1,2] has been the standard
theoretical concept in the classification of phases and
transitions between them. However, this theory turned
out to be insufficient when the fractional quantum Hall
(FQH) state [3,4] was discovered. These highly entangled
quantum states are not distinguished by symmetries but
characterized by new topological quantum numbers such
as robust ground state degeneracy [5,6] and robust non-
Abelian Berry’s phases [7] of the ground states [8]. The
new kind of order revealed in these topological quantum
numbers is named topological order [8,9]. Recently, it was
realized that topological order can be interpreted as pat-
terns of long-range quantum entanglement [10–12]. This
entanglement has important applications for topological
quantum computation: the robust ground state degeneracy
can be used as quantum memory [13]. Fractional defects
from the entangled states which carry fractional charges
[4] and fractional statistics [14–16] (or non-Abelian statis-
tics [17,18]) can be used to perform fault tolerant quantum
computation [19,20].

Presently, highly entangled gapped phases in FQH sys-
tems [3,4] are only realized at very low temperatures. Here
we present a proposal to realize these states at high tem-
peratures (even room temperature). The ideal is to combine
spin-orbit coupling, ferromagnetism, and geometric frus-
tration. Both spin-orbit coupling and ferromagnetism can
have high energy scales and can appear at room tempera-
ture. In some cases, combining them leads to energy bands
with nonzero Chern numbers and filling such an energy
band will give rise to integer quantum Hall states. Further,
in geometrically frustrated systems—lattices on which
hopping is frustrated—some of these topologically non-
trivial energy bands can be very flat [21,22]. These would
mimic Landau levels in free space. When such a flatband
with a nonzero Chern number is partially filled (such as
1=3 or 1=2 filled), FQH states can appear. Here we study a
simple example of this idea on the geometrically frustrated
kagome lattice.

Several aspects of these ideas have been active in recent
research. Spin-orbit coupling can lead to a topological

insulator in various geometrically frustrated systems
[23–26], and noncollinear magnetic order can lead to
integer quantum Hall states [24,27]. Alternatively, inter-
actions in geometrically frustrated systems can break
time-reversal symmetry [28–36] which again can give
rise to integer quantum Hall states. Here we show that
an extension of these ideas may set the stage for FQH
states and other highly entangled states with fractional
statistics and fractional charges—possibly even at room
temperature.
Nearly flatband; nonzero Chern number.—We consider

nearest and next-nearest-neighbor hopping on a kagome
lattice with spin-orbit interactions in the Hamiltonian
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where cyi� creates an electron with spin � on site ri (see
Fig. 1). Here hiji denotes nearest neighbors and hhijii next-
nearest neighbors. The second and fourth terms are
time-reversal invariant and describe spin-orbit interactions.
Rij is the distance vector between sites i and j and Eij

the electric field from neighboring ions experienced
along Rij.

To obtain FQH states we need to break time-reversal
symmetry. This is likely to happen spontaneously from
exchange effects in the flatband that cause ferromagnetism
[28–30]. Alternatively, one can apply an external magnetic
field or couple the system to a ferromagnet. In the extreme
limit the electron spins are totally polarized within the
partially filled band—the case we examine here. Hence,
we consider spin-orbit coupling that also conserves Sz; i.e.,
the electric field on each site is in the 2D plane. First
studying just nearest-neighbor hopping (t2 ¼ �2 ¼ 0), in
momentum-space Eq. (1) is
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where a1 ¼ x̂, a2 ¼ ðx̂þ ffiffiffi
3

p
ŷÞ=2, a3 ¼ a2 � a1, and

kn ¼ k � an. We use units where the hopping parameter
t1 ¼ 1. The þð�Þ sign refers to spin up (down) electrons;
from here we focus on just the spin up electrons.

The spectrum consists of three energy bands and is

gapless at �1 ¼ 0, � ffiffiffi
3

p
. At all other points the spectrum

is gapped and the top and bottom bands have unit Chern
number with opposite sign while the middle band has zero
Chern number. The Chern number is defined as [37]

c ¼ 1

2�

Z
BZ

d2kF12ðkÞ; (3)

where F12ðkÞ is the associated field strength given by
F12ðkÞ ¼ @

@k1
A2ðkÞ � @

@k2
A1ðkÞ with the Berry connection

A�ðkÞ ¼ �ihnkj @
@k�

jnki. In the above jnki is a normalized

wave function of the respective band.
Focusing on the lowest band which has a nonzero Chern

number, we look for where this band is very flat compared
to the band gap and the energy scale of interactions. We
denote W as the maximum bandwidth of the lowest band,
�12 as the minimum band gap between the two lowest
bands, and U as the strength of electron-electron interac-
tions. When U � W, interaction effects dominate kinetic
energy and partially filling the flatband would favor the
Laughlin state [4]. Since band mixing could destroy band
flatness, ideally �12 � U. Hence we aim to maximize the
ratio �12=W in order to obtain FQH states. As the middle
band has zero Chern number, any mixing between only two
of the bands would not change the Chern number of the
lowest band. If the lowest band remains flat even with
mixing then �13, the minimum band gap between the
lowest and highest bands (and consequently the ratio
�13=W) is also of interest.

We find that W � �12 always—as the bandwidth van-
ishes so does the band gap between the two lower bands
(topological symmetry in real space [38]), see Fig. 2. Here
we show the band structure for �1 ¼ 1 whereW ¼ 1:3 and
�13=W ¼ 3:7. As �12=W � 1 always, the spectrum does
not have a clear separation of energy scales. When inter-
actions are on the order of W, the bands will mix. This
scenario is quite different from Landau levels in free space
that are flat and well separated, which could be due to
limitations of this simplest model.
For a more realistic scenario we include second-nearest-

neighbor hopping which adds terms in the Hamiltonian
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In this larger parameter space the band maxima and min-
ima are no longer fixed at the same symmetry points. We
find that the largest values of �12=W (and �13=W) occur
when �1 and �2 are of the same sign—in which case the
results are symmetric under changing signs of both �’s in
this spin polarized case. In Fig. 3, �12=W is plotted as a
function of t2 for three values of �1 ¼ �2. We see that at

FIG. 2 (color online). Results for nearest-neighbor hopping as
a function of �1 (nearest-neighbor spin-orbit coupling). The
bandwidth of the lowest band W vanishes at �1 ¼

ffiffiffi
3

p
; however,

W � �12 always where �12 is the band gap between the two
lowest bands. Here we show the band structure for �1 ¼ 1 where
W ¼ 1:3 and �13=W ¼ 3:7. The spectrum does not have a clear
separation of energy scales between �12, W and U, the interac-
tion strength, which could be due to limitations of the nearest-
neighbor hopping model.

FIG. 1. The kagome lattice is a triangular Bravais lattice with a
3-point basis labeled l ¼ 1, 2, 3; a1 ¼ x̂ and a2 ¼ ðx̂þ ffiffiffi

3
p

ŷÞ=2
are the basis vectors. In the metallic kagome lattice Fe3Sn2, spin-
orbit coupling arises from the electric field due to the Sn ion at
the center of the hexagon.
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negative values of t2 a lower spin-orbit coupling is needed,
while for positive values of t2 higher values of spin-orbit
coupling would maximize the band gap to bandwidth ratio.

We present two examples where �12=W and �13=W
reach high values at t2 ¼ �0:3. In case 1, setting t2 ¼
�0:3, �1 ¼ 0:28, and �2 ¼ 0:2, we obtain a very flat low-
est band separated from the two higher bands by a large
gap (see Fig. 4). The values of �12=W and �13=W are 52
and 99, respectively. In another example, all three bands
are fairly flat (particularly the lowest one) and mutually
well separated. The parameters used are t2 ¼ �0:3, �1 ¼
0:6, and �2 ¼ 0. In case 2, we obtain �12=W ¼ 8:7 and
�13=W ¼ 24, respectively (see Fig. 5).

Calculating the Chern number c of the lowest flatband in
these two cases, we find it is 1. This is expected as slowly
turning off t2 and �2 does not close the band gap—and we
have previously seen that in the absence of next-nearest-
neighbor hopping, the lowest band always has unit Chern
number. When � � U � W is satisfied, partial filling of
this flatband would favor the FQH state.

The distribution of the field strength F12ðkÞ in the
Brillouin zone is plotted in Fig. 6. We observe there are
no singularities or very sharp features but F12ðkÞ varies
fairly smoothly especially in the first case with the flatter
band. The presence of singularities—e.g., localized at the
Dirac point—would have signaled a new (and much larger)
length scale in the system. In our case, both the magnetic
length scale (arising from spin-orbit interactions) and the
variation of field strength F12ðkÞ are on the order of the
lattice constant a.
Thus, the interaction energy scale is generated from the

lattice constant a: U� e2="a where � is the dielectric
constant. For a 1=3 filled flatband, analogous to results
from FQH states in semiconductor-based systems [39], the
gap for this � ¼ 1=3 state is roughly 0:09e2="a ¼ 500 K.

(We choose " ¼ 3 and a ¼ 10 �A; a is defined as the square
root of the unit cell area.) As the interaction energy scale is
a hundred times larger than in semiconductors, we may see
the FQH effect at room temperature. As band gaps �12 and
�13 are easily much higher than room temperature, a fully
filled band could give the integer quantum Hall state at
unusually high temperatures too.
Materials realization.—We see that a suitable combina-

tion of geometric frustration, ferromagnetism, and spin-
orbit interactions can give rise to nearly flatbands with a
large band gap and nonzero Chern number. The ferromag-

FIG. 3 (color online). With the inclusion of next-nearest-
neighbor hopping, we obtain much higher band gap to band-
width ratios. We choose three values of �1 ¼ �2 ¼ 0:3, 0.5, and
0.7, and sweep �12=W with t2. For lower values of spin-orbit
coupling, the ratio peaks at negative t2; for relatively higher
values of spin-orbit coupling the converse is true.

FIG. 4 (color online). A very flat lowest band—well-separated
from the two higher bands—is obtained with the parameters t2 ¼
�0:3, �1 ¼ 0:28, and �2 ¼ 0:2 (case 1). The band gap to
bandwidth ratios are high: �12=W ¼ 52 and �13=W ¼ 99, re-
spectively.

FIG. 5 (color online). Three fairly flatbands are mutually well
separated with band gap to bandwidth ratios of �12=W ¼ 8:7
and �12=W ¼ 24. Parameters used are t2 ¼ �0:3, �1 ¼ 0:6, and
�2 ¼ 0 (case 2).

FIG. 6 (color online). Distribution of the field strength F12ðkÞ
[Eq. (3)] in the Brillouin zone for the flatbands in cases 1 and 2
discussed above. They do not contain sharp features—especially
case 1 with the flatter band—hence the magnetic length scale
remains on the order of the lattice constant a.
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netism can arise from an external magnetic field, a ferro-
magnetic substrate for a thin film sample, and/or exchange
effects. If the flatband is close to the Fermi energy, partial
filling of the flatband can be controlled by doping and give
rise to FQH states at high temperatures.

The choice of parameters in our calculations is based on
known values of spin-orbit coupling. For example, in
Herbertsmithite (a common copper-based 2D kagome lat-
tice) the spin-orbit interaction is 8% of the kinetic energy
[40]. Other compounds with 4d or 5d orbitals (instead of
3d as in Cu) may experience a larger spin-orbit interaction.
For instance, the strength of spin-orbit coupling in iridium-
based kagome compounds can be on the order of magni-
tude of the kinetic energy; hence, the substitution with 4d
or 5d atoms in metallic kagome lattices could result in
hopping parameters similar to the ones used in our work.
Alternatively, making thin films of frustrated lattices with
4d or 5d atoms may lead to a flatband with strong spin-
orbit coupling, where exchange effects in this flatband
could cause ferromagnetism.

Most existing kagome compounds are Cu-based insula-
tors. Some 2D kagome lattices show metallic behavior, for
instance Fe3Sn2 [41,42] which shows ferromagnetism
along the c axis above 60 K and in the kagome plane
below 60 K. Also, as spin-orbit interactions can be simu-
lated in cold atom systems [43,44], it is possible to realize
our hopping model in such systems. This would provide a
method to obtain FQH states in cold atom systems.

In short, flatbands with nonzero Chern number arise in
the examples we have given and in other geometrically
frustrated systems with suitable levels of spin-orbit inter-
action. By partially filling these bands, e.g., via doping, one
can expect the emergence of FQH states at high tempera-
tures. While the identification of exact material candidates
remains open, our work indicates intriguing directions for
synthesis and development.

This research is supported by NSF Grant No. DMR-
1005541.

Note added.—Recently, we learned that Neupert et al.
[45] also discussed the possibility of the FQH effect in
interacting two-band lattice systems, while Sun et al. [46]
found flatbands with nonzero Chern numbers on various
lattices (including the kagome lattice) after including some
complex hopping.
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