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We show that the time evolution of an open quantum system, described by a possibly time dependent

Liouvillian, can be simulated by a unitary quantum circuit of a size scaling polynomially in the simulation

time and the size of the system. An immediate consequence is that dissipative quantum computing is no

more powerful than the unitary circuit model. Our result can be seen as a dissipative Church-Turing

theorem, since it implies that under natural assumptions, such as weak coupling to an environment, the

dynamics of an open quantum system can be simulated efficiently on a quantum computer. Formally, we

introduce a Trotter decomposition for Liouvillian dynamics and give explicit error bounds. This

constitutes a practical tool for numerical simulations, e.g., using matrix-product operators. We also

demonstrate that most quantum states cannot be prepared efficiently.
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One of the cornerstones of theoretical computer science
is the Church-Turing thesis [1,2]. In its strong formulation
it can be captured in the following way [3,4]: ‘‘A probabi-
listic Turing machine can efficiently simulate any realistic
model of computation.’’ As such, it reduces any physical
process—that can intuitively be thought of as a computa-
tional task in a wider sense—to what an elementary stan-
dard computer can do. Needless to say, in its strong
formulation, the Church-Turing thesis is challenged by
the very idea of a quantum computer, and hence by a
fundamental physical theory that initially was thought to
be irrelevant for studies of complexity. There are problems
a quantum computer could efficiently solve that are be-
lieved to be intractable on any classical computer.

In this way, it seems that the strong Church-Turing thesis
has to be replaced by a quantum version [2]. Colloquially
speaking, the quantum Church-Turing thesis says that any
process that can happen in nature that one could think of as
being some sort of computation is efficiently simulatable.

Strong quantum Church-Turing thesis: Every quan-
tum mechanical computational process can be simulated
efficiently in the unitary circuit model of quantum
computation.

Indeed, this notion of quantum computers being devices
that can efficiently simulate natural quantum processes,
being known under the name ‘‘quantum simulation,’’ is
the topic of an entire research field initiated by the work of
Feynman [5]. Steps towards a rigorous formulation have
been taken by Lloyd [6] and many others [7].

Quite surprisingly, a very important class of physical
processes appears to have been omitted in the quest for
finding a sound theory of quantum simulation, namely,
dissipative quantum processes. Such processes are particu-
larly relevant since, in the end, every physical process is
to some extent dissipative. If one aims at simulating a

quantum process occurring in a lab, one cannot, however,
reasonably require the inclusion of all modes of the envi-
ronment to which the system is coupled into the simu-
lation. Otherwise, one would always have to simulate all
the modes of the environment, eventually of the entire
Universe, rendering the task of simulation obsolete and
futile. We argue that the most general setting in which
one can hope for efficient simulatability is the one of
Markovian dynamics [8] with arbitrary piecewise continu-
ous time dependent control [9]. In any naturally occurring
process the Liouvillian L determining the equation of
motion

d

dt
�ðtÞ ¼ Ltð�ðtÞÞ (1)

of the system state � is k-local. This means that the system
is multipartite and L can be written as a sum of
Liouvillians each acting nontrivially on at most k subsys-
tems. In fact, all natural interactions are two-local in this
sense. Since we are interested in processes which can be
viewed as a computation, we assume that the subsystems
are of fixed finite dimension. This is arguably the broadest
class of natural physical processes that should be taken
into account in a dissipative Church-Turing theorem and
includes the Hamiltonian dynamics of closed systems as a
special case.
In this work, we show the following.
(i) Every time evolution generated by a k-local time

dependent Liouvillian can be simulated by a unitary quan-
tum circuit with resources scaling polynomially in the
system size N and simulation time �.
(ii) As a corollary, we obtain that the dissipative model

for quantum computing [11] can be reduced to the circuit
model—proving a conjecture that was still open.
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(iii) Technically, we show that the dynamics can be
approximated by a Trotter decomposition, giving rise to a
circuit of local channels, actually being reminiscent of the
situation of unitary dynamics. In particular, in order to
reach a final state that is only � distinguishable from the
exactly time evolved state, it will turn out to be sufficient to
apply a circuit of Km local quantum channels, where

m ¼
�
max

�
2cK2�2

�
;
�b

ln2

��
(2)

is the number of time steps, K � Nk is the number of local
terms in the Liouvillian, and b and c are constants inde-
pendent of N, �, K, and �. Some obstacles of naive
attempts to simulate dissipative dynamics are highlighted,
and the specific role of the appropriate choice of norms is
emphasized.

(iv) We also show that most quantum states cannot be
prepared efficiently.

(v) In addition, the Trotter decomposition with our
rigorous error bound is a practical tool for the numerical
simulation of dissipative quantum dynamics on classical
computers.

Setting.—We consider general quantum systems consist-
ing of N subsystems of Hilbert-space dimension d. The
dynamics is described by a quantum master equation (1)
with a k-local Liouvillian of the form

L ¼ X
��½N�

L�; (3)

where ½N� :¼ f1; 2; . . . ; Ng and L� are strictly k-local
Liouvillians. The subscript � means that the respective
operator or superoperator acts nontrivially only on the
subsystem � and we call an operator or superoperator
strictly k-local if it acts nontrivially only on at most k
subsystems. Each of the Liouvillians L� can be written
[10] in Lindblad form [12]

L � ¼ �i½H�; �� þ
Xdk
�¼1

D½L�;��; (4)

where D½X�ð�Þ :¼ 2X�Xy � fXyX; �g and may depend
on time piecewise continuously. In particular, we do not
require any bound on the rate at which the Liouvillians
may change.

The propagators TLðt; sÞ are the family of superopera-
tors defined by

�ðtÞ ¼ TLðt; sÞð�ðsÞÞ (5)

for all t � s. They are completely positive and trace pre-
serving (CPT) and uniquely solve the initial value problem

d

dt
Tðt; sÞ ¼ LtTðt; sÞ; Tðs; sÞ ¼ id; (6)

where id denotes the identity map.

The main result, which is a bound on the error of the
Trotter decomposition, will be somewhat reminiscent of
the Trotter formula for time dependent Hamiltonian dy-
namics derived in Ref. [13]. The main challenge comes
from the fact that we are dealing with superoperators rather
than operators. The key to a meaningful Trotter decom-
position is the choice of suitable norms for these super-
operators. The physically motivated and strongest norm is
the one arising from the operational distinguishability of
two quantum states � and �, which is given by the trace
distance distð�;�Þ :¼ sup0�A�1tr½Að�� �Þ�. The trace
distance coincides up to a factor of 1=2 with the distance
induced by the Schatten 1-norm k � k1, where the Schatten
p-norm of a matrix A is kAkp :¼ ½trðjAjpÞ�1=p. Therefore,
we measure errors of approximations of superoperators
with the induced operator norm, which is the so-called
(1 ! 1)-norm. In general the (p ! q)-norm of a super-
operator T 2 BðBðH ÞÞ is defined as [14]

kTkp!q :¼ sup
kAkp¼1

kTðAÞkq: (7)

The difficulty in dealing with these norms lies in the fact
that for p <1 the p-norm does not respect k-locality, e.g.,
kA � 1n�nk1 ¼ nkAk1. This problem is overcome by us-
ing the Lindblad form of the strictly k-local Liouvillians. In
the end, all bounds can be stated in terms of the largest
operator norm kXtk1 of the Lindblad operators X 2 L� of
the strictly k-local terms. The notation X 2 L� means that
X is one of the operators occurring in the Lindblad repre-
sentation (4) of L�. From now on we assume that this
largest operator norm a is everywhere bounded by a
constant of order 1 and, in particular, independent of N,
i.e., a 2 Oð1Þ.
Main result.—One can always approximate any dissipa-

tive dynamics generated by a k-local Liouvillian acting on
N subsystems, even allowing for piecewise continuous
time dependence, by a suitable Trotter decomposition.
The error made in such a decomposition can be bounded
rigorously.
Theorem 1 (Trotter decomposition of Liouvillian

dynamics). Let L ¼ P
��½N�L� be a k-local Liouvillian

that acts on N subsystems with local Hilbert-space dimen-
sion d. Furthermore, letL be piecewise continuous in time
with the property that a ¼ max� maxX2L�

supt�0 kXtk1
2 Oð1Þ. Then the error of the Trotter decomposition of a
time evolution up to time � into m time steps is�����TLð�;0Þ�

Ym
j¼1

Y
��½N�

TL�

�
�
j

m
;�
j�1

m

������
1!1

�cK2�2eb�=m

m
;

(8)

where c 2 Oðd2kÞ, b 2 OðdkÞ, and K � Nk is the

number of strictly k-local terms L� � 0. TL�
ð� j

m ; �
j�1
m Þ

can be replaced by the propagator TLav
�
ð� j

m ; �
j�1
m Þ ¼

expð�Lav
� =mÞ of the average Liouvillian
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L av
� ¼ m

�

Z �j=m

�ðj�1Þ=m
L�dt (9)

without changing the scaling (8) of the error.
All constants are calculated explicitly in the

Supplemental Material [15]. The supremum in a can be
replaced by suitable time averages over the time steps such
that kXtk1 can be large for small times. Before we turn to
the proof of this result, we discuss important implications.

Implication 1 (Dissipative Church-Turing theorem).
Time dependent Liouvillian dynamics can be simulated
efficiently in the standard unitary circuit model.

Using the Stinespring dilation [16], each of the Km

propagators TL�
ð� j

m ; �
j�1
m Þ can be implemented as a uni-

taryUj
� acting on the subsystem� and an ancilla system of

size at most d2k. These unitaries can be decomposed fur-

ther into circuits ~Uj
� of at most n ¼ Oðlog�ð1=�SKÞÞ gates

from a suitable gate set using the Solovay-Kitaev algorithm

[17] with �< 4 such that kUj
� � ~Uj

�k1 � �SK. Note

that for pure states, we have 1
2 kUjc ihc jUy � ~Ujc i�

hc j ~Uyk1 � kU� ~Uk1 � �SK and the 1-norm is nonin-
creasing under partial trace. The full error is bounded by
the error from the Trotter approximation (8) plus the one
arising from the Solovay-Kitaev decomposition, in
(1 ! 1)-norm bounded by Km�SK.

At this point a remark on the appropriate degree of
generality of the above result is in order. The proven result
applies to dynamics under arbitrary piecewise continuous
time dependent k-local Liouvillians. It does not include
non-Markovian dynamics as often resulting from strong
couplings. However, not only this result, but no dissipative
Church-Turing theorem, can or should cover such a situ-
ation: Including highly non-Markovian dynamics would
mean to also include extreme cases such as an evolution
implementing a swap gate that could write the result of an
incredibly complicated process happening in the huge
environment into the system. In such an intertwined situ-
ation it makes only limited sense to speak of the time
evolution of the system alone in the first place. On the
other hand, in practical simulations of non-Markovian
dynamics, where the influence of memory effects is
known, pseudomodes can be included [18], thereby render-
ing the above results again applicable.

It has been shown recently [19] that the set of states that
can be reached from a fixed pure reference state by k-local,
time dependent Hamiltonian dynamics is exponentially
smaller than the set of all pure quantum states. In fact, a
more general statement holds true (see Supplemental
Material [15]).

Implication 2 (Limitations of efficient state genera-
tion). Let S�

� be the set of states resulting from the time
evolution of an arbitrary initial state � under all possible
(time dependent) k-local Liouvillians up to some time �.
For times � that are polynomial in the system size, the

relative volume of S�
� (measured in the operational metric

induced by the 1-norm) is exponentially small.
Finally, Theorem 1 also provides a rigorous error bound

for the simulation of local time dependent Liouvillian dy-
namics on a classical computer. Even though classical simu-
lation of quantum mechanical time evolution is generally
believed to be hard in time, we have the following result.
Implication 3 (Simulation on classical computers).

For fixed simulation time and efficiently evaluable initial
states [20], dissipative dynamics can be simulated effi-
ciently in the system size on classical computers, e.g.,
using a variant of time-dependent density matrix renormal-
ization group.
This establishes a mathematically sound foundation for

simulation techniques based on Trotter decomposition that
have previously been used without proving that the approxi-
mation is actually possible; see, e.g., Ref. [21]. Recently,
CPT maps like the local channels in the Trotter decompo-
sition (8) have even been implemented in the lab [22].
Proof of theorem 1.—We now turn to the proof of the

main result. First we will find (1 ! 1)-norm estimates
(i) for T and (ii) for T� which will be used frequently. In
the next step (iii) we derive a product formula, which we
use iteratively (iv) to prove the Trotter decomposition.
Finally, (v) we show how the second claim of the theorem
concerning the approximation with the average Liouvillian
can be proven. Throughout the proof we consider times
t � s � 0.
(i) Because any CPT map T maps density matrices to

density matrices, we have kTk1!1 � 1. In Ref. [14] it is
shown that

kTk1!1 ¼ sup
A¼Ay;kAk1¼1

kTðAÞk1 (10)

for any CPT map T. Any self-adjoint operator A ¼ Aþ �
A� can, by virtue of its spectral decomposition, be written
as the difference of a positive and negative part A	 � 0.
Since T is CPT, kTðA	Þk1 ¼ trðTðA	ÞÞ ¼ kAk1, hence
kTk1!1 � 1, and finally kTk1!1 ¼ 1.
(ii) For any Liouvillian K the propagator TKðt; sÞ is

invertible and the inverse T�
Kðt; sÞ ¼ ðTKðt; sÞÞ�1 is the

unique solution of

d

dt
T�ðt; sÞ ¼ �T�ðt; sÞKt; T�ðs; sÞ ¼ id: (11)

From the representation of T� as a reversely time-ordered
exponential, the inequality

kT�
Kðt; sÞk1!1 � exp

�Z t

s
kKrk1!1dr

�
(12)

follows. This can be proved rigorously with the ideas from
Ref. [23] (see Supplemental Material [15]).
For the case where K is strictly k-local, we use its

Lindblad representation and the inequality kA�Bk1 �
kAk1k�k1kBk1 to establish kKk1!1 2 OðdkÞ and hence

kT�
Kðt; sÞk1!1 � ebðt�sÞ, with b 2 OðdkÞ.
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(iii) In the first step we use similar techniques as the ones
being used for the unitary case [13] where differences of
time evolution operators are bounded in operator norm by
commutators of Hamiltonians. Applying the fundamental
theorem of calculus twice, one can obtain for any two
Liouvillians K and L

TKþLðt; sÞ � TKðt; sÞTLðt; sÞ
¼ TKðt; sÞTLðt; sÞ

Z t

s
T�
L ðr; sÞ

Z r

s

d

du
ðT�

Kðu; sÞ
�LrTKðu; sÞÞT�

Kðr; sÞTKþLðr; sÞdudr
¼

Z t

s

Z r

s
TKðt; sÞTLðt; rÞT�

Kðu; sÞ
� ½Ku;Lr�T�

Kðr; uÞTKþLðr; sÞdudr: (13)

In the next step we take the (1 ! 1)-norm of this equation,
use the triangle inequality, employ submultiplicativity
of the norm, and use (i) and (ii) to obtainR
t
s

R
r
s k½Ku;Lr�k1!1dudr as an upper bound. In the case

where K and L are strictly k-local k½Ku;Lr�k1!1 2
Oðd2kÞ, which follows by the same arguments used in (ii)
to bound kKk1!1. In the case whereL is only k-local with
K terms, k½Ku;Lr�k1!1 is increased by at most the factor
K such that

kTKþLðt;sÞ�TKðt;sÞTLðt;sÞk1!12Oððt�sÞ2ebðt�sÞd2kKÞ:
(14)

(iv) The propagator can be written as

TLð�; 0Þ ¼
Ym
j¼1

TLð�j=m; �ðj� 1Þ=mÞ: (15)

Using the inequality

kT1T2� ~T1
~T2k�kT1kkT2� ~T2kþkT1� ~T1kk ~T2k (16)

and Eq. (14) iteratively, one can establish the result as
stated in Eq. (8).

(v) For any strictly k-local LiouvillianK the propagator
TKðt; sÞ can be approximated by the propagator of the
average Liouvillian,�����TKðt; sÞ � exp

�Z t

s
Krdr

������
1!1

¼ 1

3
bðt� sÞ2: (17)

This can be shown using the techniques described above by
lifting the proof from Ref. [19] to the dissipative case (see
Supplemental Material [15]). A comparison of Eq. (17)
with Eq. (14) shows that the error introduced by using the
average Liouvillian is small compared to the error intro-
duced by the product decomposition and does not change
the scaling of the error.

Conclusion.—In this work we show that under reason-
able assumptions the dynamics of open quantum systems
can be simulated efficiently by a circuit of local quantum
channels in a Trotter-like decomposition. This channel

circuit can further be simulated by a unitary quantum
circuit with polynomially many gates from an arbitrary
universal gate set. As a corollary it follows that the dis-
sipative model of quantum computation is no more power-
ful than the standard unitary circuit model. Furthermore,
the result implies that k-local Liouvillian dynamics can be
simulated efficiently in the system size on a classical
computer. It also shows that systems considered in the
context of dissipative phase transitions [11,24] can be
simulated in both of the above senses. The result can be
seen as a quantum Church-Turing theorem in the sense that
under reasonable and necessary requirements any general
time evolution of an open quantum system can be simu-
lated efficiently on a quantum computer.
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