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We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic

fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is

equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of

large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system

and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for

noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced

tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore,

the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.
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The application of strong magnetic fields to two-
dimensional electron gases has led to the discovery of
seminal quantum many-body phenomena, such as the in-
teger and fractional quantum Hall effect [1]. Ultracold
atoms constitute a unique experimental system for study-
ing such systems in a clean and well-controlled environ-
ment and for exploring new physical regimes, not
attainable in typical condensed matter systems [2,3].
However, charge neutrality of atoms prevents direct appli-
cation of the Lorentz force with a magnetic field. An
equivalent effect can be provided by the Coriolis force in
a rotating atomic gas, which led to the observation of
quantized vortices in a Bose-Einstein condensate [4]. The
regime of fast rotation, in which the atomic gas occupies
the lowest Landau level, was achieved in Refs. [5] but the
amplitude of the effective gauge field remained too small
to enter the strongly correlated regime that requires a
number of vortices on the order of the particle number
[2,6]. An alternative route consists in applying Raman
lasers to the gas in order to realize a Berry’s phase for a
moving particle [7,8]. The effective gauge fields generated
in such a setup resulted in the observation of a few vortices,
but were still far from the strong-field regime.

In this Letter, we demonstrate the creation of strong
effective magnetic fields for ultracold atoms in a two-
dimensional optical lattice. Inspired by the proposal of
Jaksch and Zoller [9] and subsequent work [10–12], our
technique is based on atom tunneling assisted by Raman
transitions [see Fig. 1(a)]. Because of the spatial variation
of the Raman coupling, the wave function of an atom
tunneling from one lattice site to another acquires a non-
trivial phase, which can be interpreted as an effective
Aharonov-Bohm phase. In our setup, the magnetic flux
per four-site plaquette is staggered with a zero mean,
alternating between �=2 and ��=2 [see Fig. 1(b)] [13].
We study the nature of the ground state in this optical

lattice from its momentum distribution and show, in par-
ticular, that the frustration associated with the effective
magnetic field can lead to a degenerate ground state for
single particles, similar to the prediction of Ref. [14]. We
also study the quantum cyclotron dynamics of single atoms
restricted to a four-site plaquette and obtain direct evidence
for time-reversal symmetry breaking of the Hamiltonian.
Our experimental setup consists of an ultracold gas of

87Rb atoms held in a two-dimensional square lattice, form-
ing an array of 1D Bose gases. The lattice was created by
two standing waves of laser light at �s ¼ 767 nm (‘‘short’’
lattices) and a third one with twice the wavelength

FIG. 1 (color). Experimental setup. (a) The experiment con-
sists of a 2D array of 1D potential tubes with spacing jdxj ¼
jdyj ¼ �s=2. While bare tunneling occurs along the y direction

with amplitude J, it is inhibited along x owing to a staggered
potential offset �. A pair of Raman lasers with wave vectors k1;2

and frequency difference !1 �!2 ¼ �=@, induces a resonant
tunnel coupling of magnitude K whose phase depends on posi-
tion. This realizes an effective flux �� per plaquette with
alternating sign along x. (b) Spatial distribution of the phase of
the Raman-induced tunnel coupling realized in the experiment.
The gray shaded area highlights the magnetic unit cell.
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(‘‘long’’ lattice, �l ’ 2�s) to generate a staggered potential
with amplitude � as shown in Fig. 1(a). A pair of Raman
lasers then induced tunneling along the staggered direc-
tion. Let us consider the Raman-assisted tunneling of an
atom from a site of low energy atR ¼ mdx þ ndy to a site

of high energy atRþ dx. Assuming!1 >!2, one obtains
KðRÞ ¼ Ke�i�k�R, where �k ¼ 2�=�Kðek1

� ek2
Þ de-

notes the wave vector [15]. The system is then effectively
described by the noninteracting Hamiltonian

Ĥ ¼ �X

R

ðKe�i�k�RâyRâRþdx
þ JâyRâRþdy

Þ þ H:c:; (1)

where the sign of the phase factor is positive for even sites
of x and negative otherwise.

The phase factors in KðRÞ can be interpreted as
Aharonov-Bohm phases. For the propagation of the
Raman beams shown in Fig. 1(a) along x and �y and
�K ¼ �l, we obtain a phase factor of �k �R¼�

2 ðmþnÞ.
Therefore the phase accumulated on a closed path around a
plaquette is equal to� ¼ �=2, alternating in sign along the
x direction. A different value of the flux � could be
achieved by choosing a different wavelength for the
Raman lasers or by using a different angle between them,
allowing for a fully tunable flux per plaquette in our setup.

Our experiment started by loading a Bose-Einstein con-
densate of about 5� 104 atoms into a staggered 2D optical
lattice as shown in Fig. 1(a) with�=h ¼ 4:4ð1Þ kHz, result-
ing in an array of tubes with no coherence along x [15]. We
then switched on the Raman lasers on resonance with
strength V0

K ¼ 0:49ð1ÞEr to restore the coherence. In the
limit V0

K � �, the amplitude of Raman-induced tunnel

coupling is K ’ JxV
0
K=ð2

ffiffiffi
2

p
�Þ, with Jx being the bare

tunnel coupling along x. For our experimental parameters,
this yields a value of K ¼ 2�� 59ð2Þ Hz, in agreement
with an independent measurement of K ¼ 2�� 61ð3Þ Hz
[15]. After holding the atoms in this configuration for 10ms,
we observed a momentum distribution with restored phase
coherence as shown in Fig. 2(b). This can be attributed to a
redistribution of entropy present in the random phases
between the 1D condensates into their longitudinal modes.

To understand the momentum distribution, we calcu-
lated the band structure of this lattice in the tight-binding
approximation according to Ref. [14]. In the presence of
the gauge field, the Hamiltonian remains periodic.
However, the magnetic unit cell contains two nonequiva-
lent sites, leading to a splitting of the tight-binding band
structure into two subbands [15–17]. The frustration intro-
duced by the position-dependent phase factors in KðRÞ
causes the phase of the atomic wave function to be nonuni-
form, leading to a condensation at nonzero momenta. In the
case J=K ¼ 1, we obtain a nondegenerate ground state.
However, the wave function itself consists of two momen-
tum components; therefore, we observe two diffraction
peaks within the first magnetic Brillouin zone, one being
shifted by �k ¼ ðks=4; ks=4Þ with respect to the minimum

of the dispersion relation [15]. Because of the unit cell
containing more than one lattice site, the size of the mag-
netic Brillouin zone is reduced compared to the one of the
square lattice [see Fig. 3(a)]. Therefore the ground-state
momentum distribution exhibits several peaks in the short-
lattice Brillouin zone, whose measured positions are in
good agreement with the quasimomenta of the Bloch states
of lowest energy [see Fig. 2(b)].
When varying the ratio J=K by adjusting the y-lattice

depth, we observed the positions and number of peaks in
the momentum distribution to remain unchanged for
J=K & 1:4 [see Fig. 2(d)]. Above this value, additional
peaks appear [see Fig. 2(c)], which correspond to the
population of two degenerate ground states. This behavior
agrees with the band-structure calculation, which shows

a bifurcation at J=K ¼ ffiffiffi
2

p
, above which the energy

minimum is split into two degenerate ground states [see
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FIG. 2 (color). Momentum distribution measured after a time
of flight of 20 ms for (a) simple cubic lattice, (b) J=K ¼ 1:0ð1Þ
and (c) J=K ¼ 2:5ð1Þ. The latter two are compared with theo-
retical profiles obtained by an exact diagonalization of
Hamiltonian (1) on a 31� 31 lattice with harmonic confinement
[15]. Red squares in the theoretical profiles indicate the magnetic
Brillouin zone and the crosses mark the center. (d) Projection
along y of the momentum peaks located at kx ¼ þks=4, as a
function of J=K. For J=K <

ffiffiffi
2

p
the peaks are located at ky ¼

ks=4, while for J=K >
ffiffiffi
2

p
the peaks are split due to the emergent

ground-state degeneracy (see insets). The solid lines correspond
to the minima of the lowest Bloch band for a translationally
invariant system [15].
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Fig. 3(b)]. We find the measured and predicted peak posi-
tions of these two ground states to be in good agreement
[see Fig. 2(d)]. The nature of the bifurcation is identical to
the one predicted in Ref. [14] where it is induced by a
variation of the magnetic flux amplitude at a fixed value of
J=K ¼ 1. As shown in Fig. 3(d), the atomic density is
uniform for J=K ¼ 1, while in the case J=K ¼ 2:5 it is
strongly modulated for both single-particle ground states

[see Fig. 3(e)]. For J >
ffiffiffi
2

p
K the bare coupling dominates

and the phases of the atomic wave function tend to align
along the y direction, thereby frustrating the phase relation
imposed by the Hamiltonian. As a consequence, the den-
sity in every second stripe along y is suppressed. Contrary
to the case of a triangular lattice with frustrated hopping
studied in [18], the atom fraction in each single-particle
ground state does not fluctuate, as shown in Fig. 3(c), and
we observe an equal population in both states as predicted
for interacting [14] or finite size systems [19].

In order to directly reveal time-reversal symmetry break-
ing of the Hamiltonian, we probed the local structure of the
lattice with the artificial gauge field at the level of a four-
site square plaquette, which allows us to isolate plaquettes
with equal sign of the flux. This was achieved by applying
superlattice potentials along both the x and y directions,
and in order to avoid coupling to axial modes along the
potential tubes, an additional lattice along the z direction
(�z ¼ 844 nm) was used in these measurements. The four
sites of a single plaquette are denoted as A, B, C, D [see
inset Fig. 4(a)]. The relative phases of the long and
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FIG. 3 (color). Dispersion relation of the lowest Bloch band,
calculated in the tight-binding approximation [15] for
(a) J=K ¼ 1 and (b) J=K ¼ 2:5 and plotted for the first magnetic
Brillouin zone. The red crosses mark the positions of the
corresponding momentum peaks together with the ones shifted
due to the intrinsic structure of the wave function. (c) Histogram
of the measured fraction of atoms in peaks corresponding to the
lower momentum state for J=K ¼ 2:5. The measurement was
performed over 172 identical experimental runs. (d)–(e) Spatial
distribution of the phase and atomic density (color brightness)
for the ground-state wave function [15]. The vortices with differ-
ent chirality in the phase distribution for J=K ¼ 1 (d) are
illustrated by the rotation of the white arrows. While in this
case the atomic density is uniform, it exhibits a charge density
wave for J=K ¼ 2:5 (e). For the second degenerate ground state
we observe similar behavior but the density pattern is shifted by
one lattice site.

FIG. 4 (color). Time-reversal symmetry breaking and cyclo-
tron orbits. (a) Phase evolution of the double-slit pattern along y
(integrated along x), as a function of time for @! ¼ � (blue) and
@! ¼ �� (gray). The inset shows the Fourier transformation for
@! ¼ � depicting two frequency components at 0.24(6) kHz
and 0.62(13) kHz, in good agreement with theory (vertical lines).
(b) Cyclotron orbits of the average particle position obtained
from the mean atom positions hXi=dx (c) and hYi=dy (d)

for J=h ¼ 0:50ð2Þ kHz, K=h ¼ 0:27ð1Þ kHz, and �=h ¼
5:05ð2Þ kHz. Each data point is an average over three measure-
ments. The inset in (b) shows the theoretical curve calculated for
� ¼ 0:80� �=2 and a 1=e-damping time of 13 ms obtained
from damped sine fits to hXi=dx and hYi=dy.
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short lattices were adjusted so that the plaquettes were
symmetric along y and tilted along x, with an energy offset
�=h ¼ 6:0ð1Þ kHz. We first loaded single atoms in the

ground state of the tilted plaquettes jc 1i ¼ ðjAi þ
jDiÞ= ffiffiffi

2
p

, and subsequently switched on the Raman lasers
with @! ¼ � in order to induce resonant coupling to the B
and C sites. In the limit J � K, the dynamics along y
would be suppressed and the initial state jc 1i couples to
the state jc 2i ¼ ðjBi þ ijCiÞ= ffiffiffi

2
p

, where the relative phase
is induced by the Raman lasers. In our case (J=K � 0:5)
the evolution of the imprinted phase factors is more com-
plex. We measured this evolution through the shape of the
momentum distribution obtained after time of flight [15].
This dynamics is a direct consequence of the complex
phase factor, revealing the time-reversal symmetry break-
ing of the Hamiltonian [see Fig. 4(a)]. For ! ¼ ��=@ the
role of the Raman beams is exchanged leading to a sign
reversal of the phase evolution.

We also investigated this dynamics in real space in order
to exhibit the influence of the gauge field on the particle
flow. By generalizing the site-resolved measurement tech-
nique performed in [20] for an array of double wells to
plaquettes, we measured the atom population per site Nq

(q ¼ A; B;C;D) [15], thus obtaining the average atom
positions hXi ¼ ð�NA þ NB þ NC � NDÞdx=2N and
hYi ¼ ð�NA � NB þ NC þ NDÞdy=2N, with N being the

total atom number. In the initial state jc 1i the atoms
occupy the left wells A and D with equal weights. After
switching on the Raman lasers we observe a coherent
particle flow inside the plaquettes. Besides the particle
current towards the right wells B and C [see Fig. 4(c)],
we observe a deviation of the mean atom position along y
[see Fig. 4(d)]. This behavior is reminiscent of the Lorentz
force acting on a charged particle in a magnetic field. As
shown in Fig. 4(b), the mean atom position follows an orbit
that is a small-scale quantum analog of the classical cy-
clotron orbits for charged particles. This coherent evolu-
tion is damped due to spatial inhomogeneities in the atomic
sample. Having independently calibrated the values of J
and K, we fit from the measured atom dynamics the value
of the magnetic flux � ¼ 0:73ð5Þ � �=2. The difference
from the value � ¼ �=2 expected for a homogeneous
lattice stems from the smaller distance between lattice sites
inside the plaquettes when separated. For the parameters
used in Figs. 4(b)–4(d)] we calculate a distance dy ¼
0:78ð1Þ � �s=2 yielding� ¼ 0:80ð1Þ � �=2, which quali-
tatively explains the measured flux value. Residual devia-
tions might be due to an angle mismatch between the
Raman beams and the lattices beams.

In conclusion, we have demonstrated a new type of
optical lattice that realizes strong effective magnetic fields
and breaks time-reversal symmetry. We have shown that
the atomic sample relaxes to the minima of the magnetic
band structure, realizing an analogue of a frustrated clas-
sical spin system. However, the spatial average of the

magnetic flux is zero; hence, the Bloch band is topologi-
cally trivial [10,17,21]. By using a superlattice potential
with more than two nonequivalent sites [10] or a linear tilt
potential [9], it is possible to create a lattice with a uniform
and nonzero magnetic flux. This system would realize the
Harper Hamiltonian [22] and lead to the fractal band
structure of the Hofstadter butterfly [23]. In particular
the lowest band would exhibit a Chern number of one
and be analogous to the lowest Landau level [8,9,12,24].
Our work constitutes an important step towards the study
of quantum Hall effect with ultracold atomic gases and the
creation of strongly interacting liquids such as the
Laughlin state [25].
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