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We present a universal method to create a tunable, artificial vector gauge potential for neutral particles

trapped in an optical lattice. The necessary Peierls phase of the hopping parameters between neighboring

lattice sites is generated by applying a suitable periodic inertial force such that the method does not rely on

any internal structure of the particles. We experimentally demonstrate the realization of such artificial

potentials, which generate ground-state superfluids at arbitrary nonzero quasimomentum. We furthermore

investigate possible implementations of this scheme to create tunable magnetic fluxes, going towards

model systems for strong-field physics.
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First introduced in electromagnetism, gauge fields play a
central role in the description of interactions in physics,
from particle physics to condensed matter. Currently, there
is a large interest to introduce gauge fields into model
systems in order to study fundamental aspects of physics
[1]. In particular, the emulation of synthetic electric and
magnetic fields for ultracold atomic systems is crucial in
order to extend their proven quantum simulation abilities
further, e.g., to quantum Hall physics or topological insu-
lators. Since the studied atomic systems are neutral, the
forces acting on a charged particle in a magnetic or electric
field are absent here. Thus, the emulation of analog effects
on the center-of-mass motion of each atom requires ‘‘arti-
ficial’’ gauge potentials. In this context, the analogy be-
tween inertial and Lorentz forces triggered the simulation
of homogeneous artificial magnetic fields using rapidly
rotating trapped ultracold gases [2]. Recently, several pro-
posals ([3,4] and references therein) and experimental
realizations focused on the simulation of a gauge vector
potential A either in a bulk system [5,6] or in optical
lattices [7–9]. The realized schemes exploit the Berry
phase which arises when the atomic ground state is split
in several space-dependent sublevels, as in the presence of
an electromagnetic field. Hence, they rely on the coupling
between internal and external degrees of freedom induced
by laser fields.

Here we demonstrate the generation of artificial gauge
potentials for neutral atoms in an optical lattice without any
requirements on the specific internal structure. As the
realized scheme only relies on the trapability of the parti-
cle, it can be very widely applied to many atomic systems,
and also to molecules and other complex particles. It is
particularly interesting for fermionic systems, where, in a
many-body state governed by the Pauli principle, the use of

internal degrees of freedom often leads to conflicts with the
creation of gauge potentials. As an important additional
benefit, the internal degrees of freedom of the particles can
be addressed independently, e.g., by real magnetic fields or
microwave excitations.
In general, the presence of a gauge vector potential

modifies the kinetic part of the Hamiltonian describing
the system. In a lattice, an artificial field can then be
simulated by engineering a complex tunneling parameter
J ¼ jJjei�, where � is the Peierls phase.
The central approach here is to control this phase via a

suitable forcing of the lattice potential, acting at the single-
particle level. We describe the general scheme for the
creation of an artificial gauge potential and experimentally
demonstrate the realization of a tunable vector gauge po-
tential in 1D. We analyze the dynamical processes leading
to the relaxation toward a superfluid ground state at any
desired, finite quasimomentum. In a 2D lattice the de-
scribed forcing can be used to create artificial magnetic
fluxes smoothly tunable between �� and �. For a maxi-
mal flux of � through an elementary plaquette, strong-field
physics as, e.g., the Hofstadter spectrum, could be emu-
lated. To reach this limit with condensed matter systems,
magnetic fields of several thousand Tesla would be re-
quired, which is up to now beyond experimental
possibilities.
For the general scheme, we consider a system of ultra-

cold atoms in a deep optical lattice described by the
Hubbard-type tight-binding Hamiltonian:

ĤðtÞ ¼ �X

hiji
Jijâ

y
i âj þ

X

i

viðtÞn̂i þ Ĥon-site: (1)

Here âyi , âi, and n̂i denote the creation, annihilation, and
number operator for a particle (boson or fermion) of mass
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m localized at site i at ri; Jij > 0 quantifies the tunneling

between neighboring sites, and Ĥon-site comprises time-
independent on-site terms describing, e.g., interactions or
a trapping potential. The system is driven by fast, off-
resonant time-periodic potential modulations viðtÞ ¼
viðtþ TÞ of zero time average hviiT � 1

T

R
T
0 dtviðtÞ with

period T. The case of a homogeneous inertial force F ¼
�m €x, which is created by shaking the lattice along the
periodic orbit xðtÞ in space [see Fig. 1(a)], is described by
vi ¼ �ri � F. Under the conditions described in Ref. [10],
one can show that the driven system is to good approxi-
mation described by the effective time-independent
Hamiltonian:

Ĥ eff ¼ �X

ij

jJeffij jei�ij âyi âj þ Ĥon�site: (2)

The important terms here are the complex tunneling pa-

rameters jJeffij jei�ij ¼ Jijheið�j��iÞ=@iT (see Fig. 1), where

�iðtÞ ¼ �R
t
t0
dt0viðt0Þ þ hRt

t0
dt0viðt0ÞiT . For sinusoidal

forcing, such a dynamic modification of tunneling is re-
stricted to �ij ¼ 0 or � [11–14]. It has recently been

observed in several experiments [15–18]. We will now
show that by suitable driving, the Peierls phases �ij can

in fact be smoothly tuned to any value � 2 ½0; 2�½. This
allows one to engineer vector potentials that can give rise
to both artificial electric and magnetic fields. Similar ideas
have recently been presented for a Bose-Fermi mixture in a
triangular lattice [19].

The Peierls phase �ij can be varied smoothly, even

though h�iiT ¼ 0. Indeed, heið�j��iÞiT can be complex
provided the forcing breaks two symmetries that are also
known to prevent ratchet-type rectification in classical [20]
and quantum [21] lattice systems, namely, (a) reflection
symmetry for a suitable time �, i.e., viðt��Þ¼við�t��Þ

and (b) shift (anti)symmetry, i.e., viðt� T=2Þ ¼ �viðtÞ.
This requires forcing with more than one frequency. The
forcing function used in our experiment [see Fig. 1(b)]

induces a monotonically increasing Peierls phase �ij ¼
argðheim _x�ðrj�riÞiTÞ with the amplitude of the force.
The Peierls substitution directly links this phase to a

gauge vector potentialA via �ij ¼
R
ri
rj
dr �A=@ (integrated

along a straight path), which allows us to create artificial
electric or magnetic fields. The modification of the Peierls

phase in time results in an artificial electric force FE ¼
� _A. The term ‘‘artificial’’ stresses here that the generated
field is not an usual electric field (as known from
Maxwell’s theory). Our artificial electric field, however,
affects the particles quasimomentum, in the same manner.
It will be shown at the end of this Letter that our scheme
allows the emulation of a vector potential that gives rise to
a finite artificial magnetic flux through the elementary
plaquettes of 2D lattices.
To demonstrate the power of this scheme, we have

emulated a vector potential for a rubidium Bose-Einstein
condensate (BEC) in a one-dimensional lattice. The
trapped particles are accelerated via frequency modulation
of one of the lattice beams, a technique which is experi-
mentally straightforward. The resulting inertial force is
comprised of a train of sinusoidal pulses separated by
periods of rest of periodicity T ¼ T1 þ T2 ¼ 1 ms as de-
picted in Fig. 1(b). The zero mean value of this force
prevents the transfer of a net acceleration to the lattice.
This leads to a renormalized tunneling matrix element of
the form,

JeffðKÞ
Jbare

¼ T2

T
eiKðT1=TÞ þ T1

T
J0ðKÞe�½iKðT2=TÞ� (3)

where T1=T2 is the asymmetry parameter; K is the forcing
amplitude [22], and J0ðKÞ the zero-order Bessel function.
From Eq. (3), the induced Peierls phase � in the effective
tunneling element can be calculated. For T2=T ! 0, one
recovers the harmonic driving introduced in [14] which
only allows us to control the magnitude and sign of Jeff . In
the opposite limit of small T1=T, the tunneling amplitude
jJeff j is only marginally affected whereas the phase �
depends linearly on the forcing amplitude K. In order to
avoid unwanted excitations of the system induced by
strong forcing, we have chosen an intermediate value
T1=T2 ¼ 2:1 for the experiment realized here. Note, how-
ever, that for such an asymmetry parameter, the Peierls
phase depends nonlinearly on K [see Fig. 2(b)]. The in-
troduced gauge potential A ¼ @�=d manifests itself
via a shift of the dispersion relation by �=d as depicted
in Fig. 1(d). This follows directly from the effective
Hamiltonian (2), whose eigenstates are Bloch waves with
the dispersion relation EðkÞ ¼ �2jJeffj cosðkd� �Þ.
The gauge potential therefore allows for the genera-
tion of superfluid ground states (with group velocity
vg ¼ dE=dk ¼ 0) at finite and tunable quasimomentum

(a) (c)

(b) (d)

FIG. 1 (color). Periodic driving of the 1D lattice. (a) Time-
periodic movement of the lattice in real space. (b) Resulting
periodic inertial force of zero mean. T1=T2 is the asymmetry
parameter. (c) Realized complex tunneling elements on a 1D
lattice, with spacing d. (d) Effective single-particle dispersion
relation. A complex phase induces a shift of EeffðkÞ toward
kmin ¼ �=d (solid line).
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k ¼ A=@. As will be detailed later on, we experimentally
observe the relaxation of the condensate quasimomentum
toward the minimum of the effective dispersion relation.
Therefore, the imprinted Peierls phase can be directly read
out from the quasimomentum distribution revealed in the
time of flight after a sudden switch off of the lattice and the
external potential.

As a central result, Fig. 2(b) shows the experimental data
together with the theoretical predictions from Eq. (3). After
increasing the forcing amplitude slowly (within up to
120 ms) to the desired value, the corresponding quasimo-
mentum distribution was recorded. From the obtained
time-of-flight images, examples of which are shown in
Fig. 2(c), we extract the Peierls phases � [22]. We observe
an excellent agreement between experiment and theory,
thus proving the controlled generation of an arbitrary
vector gauge potential encoded into the Peierls phase � 2
½0; 2�½. In addition, the experimental images demonstrate
the large degree of coherence maintained in the atomic
sample throughout the shaking process. As an additional
feature, Fig. 2(a) shows that the Peierls phase allows us

now to invert the sign of the effective tunneling element
without crossing jJeffj ¼ 0 via the rotation in the complex
plane.
In the following, we will discuss the details of the

relaxation of the system toward nonzero quasimomenta
superfluid states, allowing for the described direct mea-
surement of the Peierls phase. Note that for an homoge-
neous and noninteracting system, the initial Bloch wave at
ki ¼ 0 remains an eigenstate of the effective Hamiltonian.
Thus, no transfer to states with k � 0 is expected after the
shaking is turned on. However, since we are working with
interacting bosons and an external harmonic confinement,
more effects come into play.
When the gauge potential is ramped up from 0 to Af, the

condensate acquires a nonzero group velocity, reflecting
the presence of an artificial electric force FE ¼ � _A. This
velocity induces a displacement of the condensate’s center-
of-mass position xc in the harmonic potential of frequency
f [22]. The resulting restoring force induces oscillations
both in position and momentum space [see Fig. 3(a)]. In
Fig. 3(b), we report a time-resolved measurement of the
condensate quasimomentum after a quench to a final
Peierls phase of ��=4. The oscillations around the final
quasimomentum result from an excitation of the dipole
mode: The measured frequency of 3:6� 0:4 Hz perfectly
matches the expected dressed condensate frequencyffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

f for particles having an effective mass m� in the
lattice of 10� 1Erec depth with a tunneling amplitude of
0:3Jbare (ftheo ¼ 3:5� 0:5 Hz). The coupling to nonzero
quasimomenta results thus from the underlying harmonic
trapping potential.
In addition, this center-of-mass dynamics is subjected to

several damping mechanisms induced by the trap anhar-
monicity or the lattice discreteness, which leads to a cou-
pling to other collective modes and therefore to the
relaxation of the BEC toward the new equilibrium state.
Therefore, the duration of the ramp from 0 to Af has to be

compared with the time scale of those relaxation mecha-
nisms. In Fig. 3 we compare time-resolved measurements
of the quasimomentum distribution for a slow ramp
[Fig. 3(d)] of A to a final Peierls phase � ¼ 3�=2, with a
sudden quench [Fig. 3(f)]. As the gauge field is slowly
increased, the BEC follows the shift of the dispersion
relation minimum, as depicted in Fig. 3(c). For the quench,
on the contrary, for which the shift of the dispersion
relation occurs within 1 ms, the system cannot follow
and thus relaxes into the nearest minimum of the effective
band structure [see Fig. 3(e)]. For the chosen value, this
minimum lies on the left with respect to the original k ¼ 0
peaks and we thus find the BEC at k ¼ ��=2d. This
demonstrates clearly that in the presence of these relaxa-
tion mechanisms, the forcing does not induce a net particle
current in the lattice, unlike for ratchets, but allows the
engineering of ground-state superfluids at arbitrary non-
zero quasimomenta.

(a)

(b)

(c)

FIG. 2 (color). Creation of complex tunneling matrix ele-
ments. (a) Absolute value of the tunneling parameter obtained
from Eq. (3) for our experimental parameters (T1 þ T2 ¼ 1 ms
and T1=T2 ¼ 2:1). (b) The measured Peierls phases in a 1D
driven optical lattice for different values of the forcing amplitude
K are depicted as circles. The dashed red curve corresponds to
the theoretically expected values [Eq. (3)]. (c) Quasimomentum
distribution of the BEC after 27 ms time of flight for different
values of K. The Peierls phase as a function of K is deduced
from the observed shifts of the interference patterns.
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Our scheme to generate complex tunneling offers fasci-
nating possibilities to emulate gauge fields in higher di-
mensions. In the following, a few examples based on lattice
shaking and modulated superlattices will be described. An
artificial magnetic field is characterized by a finite mag-
netic flux through an elementary plaquette P of the lattice,
given by the sum �P ¼ �ij þ �jk þ � � � þ �li mod 2� 2
ð��;�� taken around P. Homogeneous forcing, imple-
mented by lattice shaking, cannot give rise to a magnetic
flux through plaquettes having pairwise parallel edges like
square or hexagonal. It can, however, lead to a nonzero flux
�� through a triangular plaquette; �� ¼ �ðjF0jdÞ �
2�ðjF0jd=2Þ for F0 the amplitude of the force oriented
parallel to one edge. As depicted in Fig. 4(a), continuously
tunable staggered fluxes are realized (�r ¼ ��� for the
inverted plaquette). Our method enables one to continu-
ously control the degree of frustration from zero (�� ¼ 0)
to maximum (�� ¼ �) in lattice geometries like triangular

or kagome [23,24]. This control can be used to adiabati-
cally prepare and study exotic quantum phases that are
expected to appear in the strongly frustrated limit.
Increasing the flux in a triangular lattice, frustration is
reflected in the fact that the dispersion relation develops
two minima that eventually, for � flux, become degenerate
[see Fig. 4(b)]. In a triangular lattice with � flux, sponta-
neous symmetry breaking has recently been observed in an
experimental simulation of classical magnetism [18]. With
the presented scheme, one is now able to study the influ-
ence of a small symmetry-breaking perturbation and to
observe the many-body dynamics initiated by preparing a
system in the upper minimum.
Tunable magnetic fluxes through, e.g., square or hex-

agonal plaquettes can also be obtained via inhomogeneous
forcing. A simple way of doing this is to create an oscillat-
ing superlattice as will be described elsewhere.
Beyond the engineering of the hopping element, another

essential feature of our scheme is the possibility to address
the atomic internal degrees of freedom independently.
Here, a spin-dependent hexagonal lattice [25] constitutes
a promising system. In such a geometry, the interplay of
next-nearest neighbor coupling, complex tunneling matrix
elements, and spin are particularly interesting in connec-
tion with Haldane’s model, for instance [26,27]. The very
general method presented in this Letter should allow for
large sets of new gauge fields schemes for various particle
classes in optical lattices.
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FIG. 3 (color). Time-resolved measurements. (a), (b) A
quench to a Peierls phase of ��=4 within 1 ms induces an
excitation of the dipole mode, leading to oscillations of the
quasimomentum as depicted in (a) and observed in the time-
resolved measurement of the quasimomentum up to 0.5 s. (b).
The plain curve is a fit to a sinusoid from which one obtains
fexp ¼ 3:6� 0:4 Hz, in perfect agreement with the expected
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the Peierls phase is depicted as a dashed line. (c)–(f) Shift of the
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FIG. 4 (color). Creation of magnetic fluxes in triangular latti-
ces. (a) Staggered magnetic fluxes obtained in a 2D triangular
lattice. (b) Dispersion relation for different values of the mag-
netic flux j�j through a plaquette.
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