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Optical solitons or solitonlike states shed light to blueshifted frequencies through a resonant emission

process. We predict a mechanism by which a second propagating mode is generated. This mode, called

negative resonant radiation, originates from the coupling of the soliton mode to the negative-frequency

branch of the dispersion relation. Measurements in both bulk media and photonic-crystal fibers confirm

our predictions.
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Introduction.—Resonant radiation (RR), often also re-
ferred to as dispersive-wave or Cherenkov radiation, is a
nonlinear optical process by which a soliton propagating in
an optical fiber in the presence of higher-order dispersion
sheds light through a resonantlike process to a shifted
frequency [1–5]. This process and the precise frequency
of the RR is determined by a wave vector-matching con-
dition between the dispersive resonant radiation and the
soliton, i.e.,

kð!RRÞ ¼ kð!INÞ þ ð!RR �!INÞ=vþ KNLð!INÞ; (1)

where k ¼ !nð!Þ=c is the wave vector at frequency !,
!IN and!RR are the soliton (or input) and RR frequencies,
v is the soliton velocity, and KNL ¼ !INn2I=c is a non-
linear correction term (n2 is the nonlinear Kerr coefficient)
that may be small or even negligible at low intensities, I
[5]. A very similar process occurs also in bulk media. The
stationary 1D fiber soliton is now replaced by the station-
ary three-dimensional X wave [6]. X waves may form
spontaneously in Kerr media at high enough powers in
much the same way that solitons form spontaneously in a
fiber [7,8]. A blueshifted peak will also be observed that
will form one of the two X wave tails: the whole X wave,
including the RR, is therefore described by Eq. (1) [9],
which indeed reflects the nondispersive nature of the wave
packet considered, i.e., the soliton in one dimension and
the X wave in three dimensions. A simple interpretation of
Eq. (1) is derived by noting that RR generation in both one
and three dimensions can be interpreted within a Born-
approximation scattering event, whereby the input pump
pulse creates a scattering potential through the Kerr effect
and then the pump light is self-scattered from this potential
[10–12]. Equation (1) therefore reads as the momentum
conservation relation that governs this scattering process.

Resonant-radiation frequency conversion describes an
energy transfer between specific modes identified by
Eq. (1) and the dispersion curve [4,5,9]. In 1D geometry,

the soliton lies in the anomalous dispersion region and
transfers energy to RR in the normal dispersion region,
while in three dimensions it is possible to excite RR within
the same dispersion region due to the intrinsic spatiotem-
poral dispersion of the X-wave states. However, to date
only the positive frequency branch of the dispersion has
been considered when it actually also has a branch at
negative frequencies. This branch is usually neglected or
even considered meaningless when in reality, as we show
here, it may be of physical relevance and may host mode
conversion to a new frequency. The fact that a mode on the
negative branch of the dispersion relation may be excited
has a number of important implications beyond the simple
curiosity of the effect in itself. Indeed, light always oscil-
lates with both positive and negative frequencies, but the
negative-frequency part is directly related to its positive
counterpart and seems redundant [13]. On the other hand,
light particles (photons) have positive energies and are
associated with positive frequencies only [14]. A process
such as that highlighted here, which mixes positive and
negative frequencies, will therefore change the number of
photons, leading to amplification or even particle creation
from the quantum vacuum [15,16].
In this Letter, we show how, alongside the usual

resonant-radiation spectral peak observed in many experi-
ments, a second, further blueshifted peak is also predicted.
This new peak may be explained as the result of the
excitation of radiation that lies on the negative-frequency
branch of the dispersion relation. We first explain why this
radiation should be observed and then provide experimen-
tal evidence of what we call ‘‘negative-frequency resonant
radiation’’ in both bulk media and photonic-crystal fibers.
Theory.—In order to show how the negative-frequency

RR arises, we consider without any loss of generality a
basic dispersion relation that contains higher-order terms
such as in fused silica glass, shown in Fig. 1(a) (red
curves). The dashed curves indicate the negative-frequency
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branches. The phase-matching relation (1) (with KNL ¼ 0)
can be solved graphically: the soliton term is a straight line
(in blue in the figure) that intersects the dispersion relation
in a number of points that define the allowed modes. We
note that around ! ¼ 0 both Eq. (1) and the dispersion
relation should be expected to pass through kð0Þ ¼ 0. This
is not of any concern for what follows as we always work at
high frequencies, well within the region such that our
equations describe the light propagation in the medium
very precisely. Moreover, in the following we shall also
neglect the top-left and bottom-right regions in the (k, !)
plot as these correspond to backward (‘‘bwd’’) propagating
modes that are not excited by the forward propagating
input mode. The point indicated with IN is simply the
input mode, or soliton mode. There is a second positive-
frequency mode, RR, that indicates the resonant-radiation
mode. However, in the derivation of Eq. (1), no assump-
tions are made regarding the value of !, i.e., ! may run
over both positive and negative values. We then see that
there is also a negative-frequency mode (NRR) predicted
by Eq. (1) yet always neglected. The object of this Letter is
precisely this negative-frequency branch mode. All these
various modes are easier to visualize in the comoving

reference frame coordinates, as shown in Fig. 1(b). These
curves are obtained from the original dispersion relation by
transforming via a Doppler shift to the input pump or
soliton comoving coordinate system !0 ¼ �ð!� vkÞ,
with � ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

, and v ¼ vg is the soliton group

velocity. Transforming also Eq. (1) to the comoving frame
using the same relations gives !0 ¼ !0

IN. In other words,

momentum conservation in the laboratory reference frame
corresponds to constant energy (in the sense that all modes
have the same frequency) in the comoving reference frame.
The allowed modes are therefore now found by simply
tracing a horizontal line through the input soliton mode
(that by definition, has zero group velocity in the comoving
frame and thus lies at a local minimum) and, as before,
looking for the intersections with the dispersion relation.
The main point here is that the dispersion curves tell us that
it should be possible, starting from two positive modes, IN
and RR, to excite a third negative mode. Finally, in
Fig. 1(c) we present the same relations in a format that
has been used when describing optical solitons (e.g.,
Ref. [17]). By Taylor expanding the output wave vector
kð!RRÞ around!IN, the first two lowest-order terms cancel
out in Eq. (1), which therefore reduces to Dð!Þ�KNL¼0,
where the dispersion Dð!Þ ¼ Pðkn=n!Þ, with n � 2 and
kn as the dispersion coefficients associated with the Taylor-
series expansion [4,5]. (In Fig. 1, for simplicity, we are
assuming KNL � 0.) In this case, we see that by including
the negative-dispersion branch, as in the preceding figures,
an additional intersection with the ! axis denotes the
existence of the NRR mode.
When trying to assign a physicalmeaning to the negative-

frequency mode, we should recall that in reality any elec-
tromagnetic field is a real-valued quantity that can be
written as a sum of a complex term with its complex
conjugate (both propagating in the same forward
direction): E�cos!t/ exp½þiðkz�!tÞ�þexp½�iðkz�
!tÞ�. However, considering only the modes obtained from
the intersections with Eq. (1) (or equivalently, with !0 ¼
þ!0

IN in the comoving frame) amounts to considering only

the first complex term and neglecting the complex conju-
gate. In order to recover the full field, we obviously also
need to sum the modes obtained from the intersections with
the complex conjugate of Eq. (1) (or equivalently, !0 ¼
�!0

IN): these curves physically represent the momentum

conservation condition, Eq. (1), for a scattering potential
created by the complex-conjugate input pulse (IN�) and are
shown as dashed lines in Fig. 1. The sum of NRR andNRR�
in Fig. 1, therefore, will give a real-valued field with a
positive frequency in the laboratory reference frame.
Nevertheless, as explained above, the origin of this mode
lies in the coupling of one or more modes on the positive-
frequency branch of the dispersion relation to a mode that
lies on the negative-frequency branch.We also note that the
negative mode has a truly distinct frequency from all the
other modes in Fig. 1 and, if it is generated, it should appear
as a clearly distinct peak in the spectrum with a higher

FIG. 1 (color online). Typical dispersion relation k ¼ kð!Þ,
e.g., for fused silica glass with second- and third-order disper-
sion, (a) in the laboratory reference frame and (b) in the
reference frame comoving at the soliton velocity. (c) The dis-
persion D ¼ Dð!Þ, as described in the text. Dashed curves
indicate the (laboratory frame) negative frequency branches of
the dispersion relation. For simplicity, we take KNL ¼ 0.
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frequency than the RR mode. In analogy with the usual
positive-frequency RR, we call this new mode ‘‘negative-
frequency resonant radiation’’ (NRR).

We note that the fact that the negative RR mode is a
solution to Eq. (1) does not, alone, imply that it will
actually be excited. Similarly to the RR mode, the negative
mode will only be excited if a sufficiently steep shock front
is formed within the pump pulse. Indeed, this condition
guarantees that the pulse contains spectral components at
sufficiently blueshifted frequencies to actually seed both
RR and NRR generation. The main difference with respect
to the RR mode is that the NRR mode is even further
blueshifted, thus requiring even steeper shock fronts.
This requirement may also be loosely understood in terms
of the excitation of a mode that in the frequency domain is
shifted far from the input mode. Therefore, in order for the
IN mode energy to be scattered to the NRR mode, a
sufficiently fast variation, i.e., a shock front, is required
in the time domain. Indeed, preliminary numerical simu-
lations, albeit in simplified setting (e.g., Ref. [18]), do
indicate that the actual intensity of the negative mode
depends critically on the steepness of the refractive index
variation induced by the nonlinear Kerr effect.

Finally, we note that in the comoving frame both the RR
mode and the NRR mode propagate with negative group
velocities (as can be deduced from the slope of the disper-
sion curve at these frequencies), i.e., in the backward
direction. The phase velocities of the two modes are how-
ever opposite to each other. Conversely, in the laboratory
frame both the RR and the NRRmodes have positive phase
and group velocities, i.e., they both propagate in the for-
ward direction (at slower group velocities with respect to
the input mode).

Experiments.—We performed two sets of experiments in
order to capture the formation of the negative RR mode:
(i) in a bulk medium and (ii) in a few-millimeter-long
photonic-crystal fiber. In the first experiment, we chose a
2-cm-long bulk calcium flouride sample (CaF2) as host
material. Light pulses of 60-fs duration and 800-nm carrier
wavelength are provided by an amplified Ti:sapphire laser
system of 1-kHz repetition rate. Under these conditions (3D
geometry), we do not excite a soliton, but the nonlinearity
will nevertheless excite a resonant instability that is gov-
erned by the same physics—and by Eq. (1)—as RR in
optical fiber solitons [10–12]. We reshape the pulses into
Bessel beams with a cone angle (in the medium) of
� ¼ 0:6�, using a conical lens of fused silica with 2� base
angle. The Bessel pulse in the sample moves with uniform
speed v ¼ vg= cos�, where vg denotes the group velocity

of a Gaussian pulse of carrier wavelength 800 nm.
Moreover, the Bessel-beam geometry plays an important
role in the sense that it creates a localized and extended
high-intensity interaction region [19]. The spectrum at the
output of the sample is collected with a lens and a fiber-
based spectrometer. A filter with a flat response in the
visible-near-UV region is placed before the spectrometer

in order to reduce the input pump intensitywithout affecting
the shape of the spectrum between 300–720 nm. The input
pulse energy is varied from 10–50 �J, at which point the
input pulse is in a strongly nonlinear regime and develops a
complex and structured spectrum. Generation of negative
RR modes is observed at intermediate energies �15 �J.
Examples of the resulting spectra for varying input energies
are shown in Fig. 2(a). The spectra are vertically displaced
in order to render them visible. At lower energies
(12–14 �J) the output spectrum shows a distinct single
peak that shifts to shorter wavelengths with increasing input
energy. This process has been described in detail [20] in
similar conditions and is a direct manifestation of the
formation of a steep shock front on the trailing edge
of the pump pulse. As energy is increased, the shock
front steepens and the spectral peak shifts toward shorter
wavelengths. Between 15 and �20 �J input energy, a

FIG. 2 (color online). Experimental results for negative RR
generation in bulk CaF2. (a) Measured spectra for increasing
input energies (indicated next to each curve). The spectra are
vertically displaced to increase visibility. The inset shows a
sample spectrum (16 �J input energy) corrected for the filter
response. (b) CaF2 dispersion relation in the comoving fre-
quency versus laboratory-frame wavelength coordinates, � ¼
2�c=j!j. Positions of the predicted RR and negative RR spectral
peaks are indicated. The inset is a 20� enlargement of the curve
around the �RR wavelength.
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different regime sets in, characterized by two distinct peaks
in the spectrum that do not shift with increasing energy. The
first peak is located around 620 nm; the second is much
weaker and is located around 341 nm wavelength.
Examples of these spectra (15 and 16 �J) are shaded in
red in the figure. At higher input energies, the pulse starts to
develop complex dynamics, typical of the filamentation
regime, during which the pulse breaks up and creates a
broad-band, highly structured spectrum known as white-
light supercontinuum [21]. We focus our attention, for
example, on the spectrum measured for an input energy of
16 �J: the spectrum is not substantially modified if we
account for the filter response, as shown in the inset to
Fig. 2(a). Three clear peaks are indicated with �IN, �RR,
and �NRR, and we identify these with the IN, RR, and
negative RR modes, respectively. Indeed, these peaks cor-
respond exactly to the positions for the RR and negative RR
modes given the IN mode and the dispersion relation for
CaF2 [22], as shown in Fig. 2(b).

We note that attempts to generate similar features in
other glasses or media (e.g., BK7, fused silica, and water)
failed. Spectral broadening through self-phase-modulation
and the steepness of Kerr-induced shock fronts are both
strongly limited by dispersion. Our experiments in fused
silica and water (data not shown) showed that even at the
highest input energies, spectral broadening exhibited a
sharp cutoff around �450 nm, whereas the negative RR
peak was, in all cases, predicted to appear at shorter wave-
lengths. On the other hand CaF2 (as other fluoride glasses)
is quite unique, as it exhibits significantly lower dispersion
[22], in particular in the UV spectral region, and thus
allows the formation of steeper shock fronts and broader
continua. In this specific case, it allows a relatively effi-
cient excitation of the negative RR peak in the UV.

In a second experiment, we sent 7-fs light pulses,
centred around 800 nm, with a 77-MHz repetition rate,
into a fused silica photonic-crystal fiber (that has anoma-
lous dispersion at 800 nm). Photonic-crystal fibers have the
advantage of enhanced nonlinear effects due to tight mode
confinement, combined with a remarkable flexibility in
tailoring the waveguide dispersion, that can therefore
strongly modify the corresponding bulk medium disper-
sion and, thus, allow observation and control of a variety of
novel effects. (See Ref. [5] for an extensive review.) We
selected fibers where the spectrum of the incident light lies
in a region of anomalous group-velocity dispersion such
that it can propagate as a solitonlike pulse. The 7-fs input
pulses are coupled into the fiber using a 90� off-axis
parabolic mirror. We estimate the coupling efficiency to
be 20%. In a preliminary experiment, we confirmed that
most of the RR emerged using only a few millimeters of
fiber. Therefore, short pieces of fiber of approximately
4–5 mm are used. Figure 3 shows the output spectrum
after 5 mm of fiber for three different input energies
(246, 324, and 366 pJ). The ultraviolet part of the spectrum
[Fig. 3(a)] was measured with a monochromator and a
photomultiplier tube. It shows a clear peak that we identify

with the negative RR mode. The part of the output spec-
trum that lies in the visible range, shown in Fig. 3(b), was
measured with a compact CCD spectrometer. The peak
observed here corresponds to the RR: the frequency of this
mode shifts to shorter wavelengths with increased input
pulse energy due to the nonlinear modification of the
refractive index from the pulse [5]. Figure 1(c) shows
the predicted RR and negative RR frequencies based on
the dispersion relation for the photonic-crystal fiber. The
measured peaks at �RR and �NRR are, similarly to the bulk
measurements, the main spectral features in the whole
spectrum and both correspond very precisely to the pre-
dictions. We note that the negative RR peak does not shift
noticeably with input energy because the nonlinear refrac-
tive index change from the pulse is negligible compared to
the dispersive index changes in the UV.
Experiments were repeated for a series of photonic-

crystal fibers, as shown in Table I: NL-1.6 615 and NL-
1.5 590 (used for the data shown in Fig. 3) consist of a solid
silica core surrounded by a hexagonal pattern of air holes
[23], and the fiber indicated with NL-1.5 670 consists of a

FIG. 3 (color online). Experimental results for negative RR
generation in a photonic-crystal fiber. (a)–(b) Measured spectra
in the visible and UV regions for three different input energies:
246 pJ (dotted line), 324 pJ (dashed line), and 366 pJ (solid line).
(c) Full fiber dispersion relation: positions of the predicted RR
and negative RR spectral peaks are indicated. The inset is a 25�
enlargement of the curve around the �RR wavelength.

TABLE I. Predictions of �RR and predictions and measured
values for �NRR for the three fibers used in the experiment.

Fiber �RR �NRR pred. �NRR meas.

NL-1.6 615a 542 nm 233.4 nm 233.1 nm

NL-1.6 615b 542 nm 233.3 nm 232.1 nm

NL-1.5 590 516 nm 228.7 nm 227.0 nm

NL-1.5 670a 478 nm 221.4 nm 218.1 nm

NL-1.5 670b 480 nm 221.8 nm 218.9 nm
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solid silica core surrounded by a cobweb of silica strands.
The size and spacing of these holes and the thickness
(� 1 �m) of the strands determine the dispersion profile
of the fiber. The letters a and b in the fiber name indicate
measurements performed along one of the two orthogonal
polarization axes of the fiber. The table lists the wavelength
of the negative RR emission predicted from the respective
dispersion relations compared to the actual measured
wavelengths: as can be seen, very good agreement is
obtained in a variety of settings.

In closing, we note that although four-wave mixing
(FWM) could in principle occur between the RR and IN
modes, leading to a further blueshifted peak (e.g., Ref. [4]),
a simple calculation shows that in the fiber case this gives
emission at 180 nm and in the bulk case to emission at
230 nm. Both sets of measurements therefore cannot be
explained by FWM, which in any case would be strongly
suppressed by the severe wave-vector mismatch at these
frequencies.

Conclusion.—Frequency conversion through a resonant
transfer of energy from an input laser pulse to a typically
blueshifted peak is a well-studied process in nonlinear
optics and has attracted substantial attention in the last
few years due to the high conversion efficiencies that are
attainable with short pulses [3,24] and, more recently, even
to predicted mode-squeezing properties [25]. Here, we
have shown how the same process generates a second,
so-far-unnoticed peak that corresponds to resonant transfer
of energy to the negative-frequency branch of the disper-
sion relation. The energy transfer is favored in the presence
of steep shock fronts or, more generically, by a nonadia-
batic variation within the pump pulse. Experiments were
performed in both bulk media and waveguides with opti-
mized dispersion landscapes so as to allow the process to
occur with a relatively high efficiency. These results are not
limited to nonlinear optics but are a general property of
wave propagation in a dispersive medium: if the dispersion
relation allows coupling between the positive and negative
dispersion branches, then a similar excitation of negative
modes may be expected. Relevant examples of experimen-
tally realizable systems are gravity waves in water [26] or
acoustic oscillations in Bose-Einstein condensates [27].
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