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The unrelated discoveries of quasicrystals and topological insulators have in turn challenged prevailing

paradigms in condensed-matter physics. We find a surprising connection between quasicrystals and

topological phases of matter: (i) quasicrystals exhibit nontrivial topological properties and (ii) these

properties are attributed to dimensions higher than that of the quasicrystal. Specifically, we show, both

theoretically and experimentally, that one-dimensional quasicrystals are assigned two-dimensional Chern

numbers and, respectively, exhibit topologically protected boundary states equivalent to the edge states of

a two-dimensional quantum Hall system. We harness the topological nature of these states to adiabatically

pump light across the quasicrystal. We generalize our results to higher-dimensional systems and other

topological indices. Hence, quasicrystals offer a new platform for the study of topological phases while

their topology may better explain their surface properties.
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The discovery of topological insulators has sparked
considerable interest in the study of topological phases of
matter. Topological phases consist of various band insula-
tors or superconductors that have gaps in their spectrum
[1]. The hallmark of these novel phases is the emergence of
topologically protected boundary phenomena, e.g., quan-
tum pumping [2,3], surface states related to exotic models
from particle physics [4], and quasiparticles with non-
Abelian statistics [5]. Yet, realizations of these phases of
matter are scarce [6–12].

Two systems belong to the same topological phase if they
can be continuously deformed from one into the other
without closing energy gaps. Consequently, at the interface
between two topologically distinct systems, the energy gaps
close by the appearance of localized boundary states. A
classification of all the possible topological phases accord-
ing to dimension and local symmetries was recently intro-
duced [13]. For example, in the absence of any symmetries,
all 1D systems belong to the topologically trivial phase,
while in 2D there are the topological phases of the integer
quantum Hall effect (IQHE) [14].

The order of quasicrystals (QCs)—nonperiodic struc-
tures with long-range order—can be seen as originating
from periodic structures of a dimension higher than the
physical one. For example, the 1D Fibonacci QC can be
described as a projection of a 2D lattice on a line [15].
Remarkably, observed phenomena such as unconventional
Bragg diffraction and the existence of phasons can be
attributed to this higher dimension [15–17]. Remnants of
the higher dimensionality appear as additional degrees of
freedom (d.o.f.) in the form of shifts of the origin of the
quasiperiodic order. These d.o.f. discern between QCs with
the same quasiperiodic order, as they result in different
patterns. However, they have no apparent influence on bulk
properties and were therefore usually ignored.

In this Letter, we show that, due to the additional d.o.f.,
QCs exhibit nontrivial topological properties that are attrib-
uted to systems of a higher dimension. The topological
properties of the QCmanifest in twoways: (i) the existence
of quantum phase transitions when continuously deforming
between two topologically distinct QCs and (ii) the appear-
ance of robust boundary states which traverse the bulk gaps
as a function of the aforementioned shifts. Specifically, we
demonstrate, both theoretically and experimentally, that 1D
QCs exhibit topological properties that were, thus far,
thought to be limited to 2D systems. Using photonic QCs,
we observe localized boundary states, which manifest these
topological properties. The topological nature of these
boundary states is used to realize an adiabatic pumping of
photons across the sample. Generalizations to various types
of quasicrystals in 1D and higher dimensions are also dis-
cussed, suggesting the existence of topological effects on
surfaces of 3D quasicrystals.
Let us begin with a specific QC, the 1D Aubry-André

(AA) model [18] (also known as the Harper model). This is
a 1D tight-binding model in which the on-site potential is
modulated in space. It is described by the Hamiltonian

Hð�Þc n ¼ tðc nþ1 þ c n�1Þ þ � cosð2�bnþ�Þc n:

(1)

Here, c n is the wave function at site n, t is the hopping
amplitude, � is the modulation amplitude of the on-site
potential, and b controls the periodicity of the modulation.
Whenever b is irrational, the modulation is incommensu-
rate with the lattice and the on-site term is quasiperiodic.
Note that in this model the modulation phase� embeds the
d.o.f. mentioned above.
Figure 1 depicts a numerically calculated spectrum of

the AA model as a function of �. Because of the incom-
mensurate potential, the spectrum is broken into a fractal
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set of bands and gaps [19]. Note that as a function of � the
bands are almost unchanged, but the gaps are crossed by a
few modes. These states that reside within the gaps are
boundary states, localized either on the left or on the right
boundary of the system, as seen in insets (1) and (2),
respectively. The states within the bands are typically
extended, as depicted in inset (3). As we later show, these
boundary states are the physical manifestation of the fact
that the AA model belongs to a nontrivial topological
phase.

We implemented the AA model in an optical setup using
a quasiperiodic lattice of coupled single-mode waveguides.
Because of a nonvanishing overlap between the evanescent
modes, light that propagates along a waveguide can hop to
its neighboring waveguides. In addition, along each wave-
guide a phase is accumulated in a rate determined by its
refraction index. Hence, the propagation of light along
the lattice is described by an equation which is identical
to a tight-binding model, where the propagation axis, z,
takes over the role of time, i@zc n ¼ Hc n. Modulating the
refraction index of the waveguides and the spacing be-
tween them controls the on-site and hopping terms of the
Hamiltonian, respectively [20–22]. In particular, it enables
a direct realization of the AA Hamiltonian of Eq. (1).

We produced an AA lattice with the parameters of Fig. 1
and � ¼ �=2 on a semiconductor (AlGaAs) substrate
using standard photolithography methods [23]. We set
the effective refraction index of each waveguide—by

controlling its width—to fit the prescribed quasiperiodic
pattern. We injected light into a single waveguide and
measured the outgoing intensity distribution, as illustrated
in Figs. 2(a) and 2(b). The experimental observations are
depicted in Figs. 2(c)–2(e). Light injected into a lattice site
in the middle of the lattice showed a significant expansion,
due to the overlap of the injected wave function with the
extended bulk eigenstates. Similarly, light injected into the
rightmost lattice site showed considerable expansion.
However, when the light was injected into the leftmost
lattice site [see Fig. 2(e)], the intensity distribution re-
mained tightly localized at the boundary, with the
maximum intensity found at the leftmost waveguide, itself.
This is a clear signature of the existence of a localized
boundary state.
A consequence of the topological nature of this model is

that all boundary states which reside within the same gap
belong to the samemode. This can be seen by following the
eigenenergy of some boundary state as a function of�. For
example, take the right boundary state denoted in inset (2)
of Fig. 1. Its mode is marked by red circles. This state
remains localized on the right boundary as long as its
energy remains within the gap. When the energy reaches
the band, the state becomes extended. Notably, once the

FIG. 1 (color online). The numerically calculated spectrum
of Eq. (1) as a function of the phase � for t ¼ 1, � ¼ 0:5,
b ¼ ð ffiffiffi

5
p þ 1Þ=2 (the golden mean), and n ¼ �49 . . . 49. The

bulk of the spectrum remains fixed, whereas few modes, local-
ized at the boundaries, sweep across the gaps. The insets depict
the spatial density of typical eigenstates as a function of position
along the 1D lattice: (1) a left boundary state, (2) a right
boundary state, and (3) an extended state within the band.

FIG. 2 (color online). Observation of topological boundary
states in an Aubry-André photonic quasicrystal. (a) A sketch
of the experimental setup. (b) An illustration of the conducted
experiment. Light is injected into one of the waveguides and
tunnels to neighboring waveguides as it propagates. (c)–
(e) Experimental observation of the left boundary state for � ¼
�=2. Light was initially injected into a single waveguide (red
arrows). The measured outgoing intensity is plotted versus the
injection position along the lattice. (c),(d) An excitation at the
middle of the lattice (site 0) and at the rightmost site (site 49)
results in a significant spread. (e) For an excitation at the leftmost
site (site �49), the light remains tightly localized at the bound-
ary, marking the existence of a boundary state.
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mode returns into the gap, it appears localized at the
opposite boundary.

This property was used to realize adiabatic pumping of
photons from one side of the lattice to the other. A conve-
nient platform for this feat is the ‘‘off-diagonal’’ version of
the AA model, which is described by the Hamiltonian

Hoffð�Þc n ¼ t½1þ � cosð2�bnþ�Þ�c nþ1

þ t½1þ � cosð2�bðn� 1Þ þ�Þ�c n�1: (2)

While thismodel embeds its quasiperiodicity in the hopping
term, it has topological characteristics similar to its previ-
ously discussed ‘‘diagonal’’ version [cf. Equation (1)]. The
pumping takes place when � is adiabatically swept along
the propagation axis z.

In our implementation, we used waveguides written in
bulk glass using femtosecond laser microfabrication tech-
nology [21]. The spacing between the waveguides was
slowly modified along the propagation axis, thus realizing
a sweep of � in Eq. (2) [see Fig. 3(a)]. The length of the
sample was 75 mm, which is in our case 20 tunneling
lengths, where the tunneling length is the characteristic
scale for hopping, namely, 2=t [23]. Figure 3(b) depicts the
spectrum of the system as a function of �. In order to
observe different stages of the pumping process, we fab-
ricated a set of 50 samples for which the light was allowed
to propagate shorter distances within the modulation.
Correspondingly, in the ith sample, � is modulated from
0:35� to ½0:35þ 1:4ði=50Þ��. For each sample, light was
injected to the rightmost site and the output intensity

distribution was measured. The collected results are sum-
marized in Fig. 3(c). The obtained intensity distributions
are stacked incrementally according to their propagation
distance, i.e., their final �. Thus, we reconstruct the light’s
trajectory along the full adiabatic process. It is evident that
the injected light was pumped adiabatically across the QC
from one boundary to the other [24].
We now turn to establish theoretically the topological

properties of QCs. We start by showing that the observed
boundary states are of topological origin by mapping the
AAmodel to the lattice version of the 2D IQHE [19]. In the
latter, electrons hop on a 2D rectangular lattice with
nearest-neighbor hopping amplitudes t and t0 in the pres-
ence of a perpendicular magnetic field, with b flux quanta
threading each rectangle. Assuming one coordinate to be
periodic and using the Landau gauge for the magnetic field,
the system can be described by the HamiltonianH c n;k ¼
tðc nþ1;k þ c n�1;kÞ þ 2t0 cosð2�bnþ kaÞc n;k, where k is

the momentum along the periodic coordinate with lattice
spacing a and n is the location in real space along the
second coordinate. The energy spectrum of H is gapped,
and each gap is associated with a quantized Hall conduc-
tance �H ¼ �e2=h, with � an integer [25] known as the
Chern number [26]. The inclusion of disorder and distor-
tions in the Hamiltonian does not alter �H, as long as the
corresponding gap is maintained open [25–27]. Because of
the fact that the energy gap must be closed in order for �H

to change its value, it can be used to classify different
phases of the IQHE. Phases with different �H are said to
be topologically distinct.

FIG. 3 (color online). Experimental observation of adiabatic pumping via topologically protected boundary states in a photonic
quasicrystal. (a) An illustration of the adiabatically modulated photonic quasicrystal, constructed by slowly varying the spacing
between the waveguides along the propagation axis z. Consequently, the injected light experiences an adiabatically modulated
Hamiltonian, Hoff½�ðzÞ�, as it propagates and is pumped across the sample. (b) The spectrum of the model as a function of the phase �
for t ¼ 40=75, � ¼ 0:6, b ¼ ð ffiffiffi

5
p þ 1Þ=2, and n ¼ 1 . . . 21. In the experiment, � was scanned between 0:35� and 1:75�, marked by

arrows (and red dots). The insets depict the spatial density of a boundary eigenstate as a function of the position at three different stages
of the evolution: At � ¼ 0:35�, the eigenstate is localized on the right boundary. At � ¼ �, it is delocalized across the system, while
at � ¼ 1:75� the state is again localized, but on the left boundary. (c) Experimental results: Light was injected into the rightmost
waveguide (site 1) at z ¼ 0 (� ¼ 0:35�). The measured intensity distributions as a function of the position are presented at different
stages of the adiabatic evolution, i.e., different propagation distances. It is evident that along the adiabatic evolution the light crossed
the lattice from right to left.
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The physical manifestation of a nontrivial topological
phase (i.e., �H � 0) is the emergence of robust chiral
states along the edges of the sample. This general phe-
nomenon is shared by many topological phases, not only
the IQHE [28–30]. In the IQHE, on each edge, exactly j�j
edge states appear, and the energy of each edge state
traverses the gap as k varies from��=a to �=a. The signs
of the group velocity of these edge states are opposite on
opposite edges.

Turning back to the 1D AA model [cf. Equation (1)], we
shall now observe that it inherits its robust boundary states
from the 2D IQHE. For � ¼ 2t0, the spectrum of Hð�Þ can
be viewed as the kth component of H at k ¼ �=a.
Therefore, by scanning � from �� to �, the spectrum of
Hð�Þ reconstructs that of H . Consequently, the chiral
edge states that traverse the gaps as a function of k appear
now as 1D boundary states that traverse the gaps with �.
Since these boundary states are of topological origin, the
only way to eliminate them is to close the energy gap
which they traverse. In particular, disorder which does
not close an energy gap does not eliminate the correspond-
ing boundary states.

Note that the topology guarantees the existence of
boundary states only for intervals of �. Hence, it does
not guarantee that for any QC pattern they indeed appear.
This can be seen, for example, in Fig. 3(b), where for�¼0
one finds states localized on both boundaries and for�¼�
there are none. Additionally, changing the number of lat-
tice sites or translating them (e.g., taking n ¼ 5 . . . 25
instead of n ¼ 1 . . . 21) may alter dramatically the inter-
vals of � for which boundary states appear.

So far, in order to witness the topological nature of the
AAmodel, we had to scan�. Ostensibly, one can associate
Chern numbers only to the union of all the Hð�Þ
Hamiltonians. Indeed, per Hð�Þ, a Chern density is as-
signed, while the Chern number involves integration of the
Chern density over all �. However, we show that for QCs
the Chern density is independent of �. Thus, the Chern
number can be evaluated from the Chern density of any
Hð�Þ. Since the same quantized Chern number is associ-
ated with any Hð�Þ, it topologically classifies it. This is
somewhat analogous to the role of the Aharonov-Bohm
flux in the IQHE [23,25,30]. The association of a Chern
number with each QC is a key result of this work.

Proof of the above statement appears in the
Supplemental Material [23]. Here, we show that the bulk
spectrum is also independent of �. This simpler proof
contains the essential ingredients of the former. Since
Hð�Þ has a band structure, the spectrum is insensitive to
lattice translations in the thermodynamic limit. From
Eq. (1), it is evident that translating the lattice by m sites
is equivalent to shifting � by 2�ðbm mod1Þ. Now the
irrationality of b comes into play. For a rational b¼p=q,
ðbm mod1Þ has only q different values for all possible
translations. Thus, the band structure is guaranteed to be

invariant only for these q corresponding shifts of�. On the
other hand, for irrational b, ðbm mod1Þ samples the entire
[0,1] interval and the bands are invariant for any shift of�.
Thus, we arrive at the following conclusion: while in

order to witness boundary effects the scanning over � is
required, the topological indices can be associated with any
instance of a quasiperiodic pattern, i.e., any given�. These
indices are, of course, the same for a given quasiperiodicity
for all �’s. Thus, the AA model is topologically classified.
Consequently, two QCs with two different b’s cannot be
smoothly deformed from one to the other without closing
the bulk gaps, since in the IQHE different b’s result in
different Chern numbers [23].
Until now, we focused on a specific model which we

were able to map to the IQHE. However, our results could
be easily generalized to any QC, such as the off-diagonal
AAmodel and the Fibonacci QC. Moreover, our arguments
apply to any dimension and any topological index without
the need for establishing such a mapping [23]. Consider a
D-dimensional QC with a tight-binding Hamiltonian with
d quasiperiodic terms, either hopping or on-site. These
terms result in d d.o.f. similar to the above�. In the context
of topological properties, these d.o.f. could be treated as
extra dimensions, yielding an overall effective dimension
of Dþ d. Therefore, the Hamiltonian may belong to a
nontrivial Dþ d-dimensional topological class.
We showed that quasicrystals exhibit new types of to-

pological phases that were previously attributed only to
systems of higher dimension. The study of these novel
topological phases in 2D and 3D may lead to the discovery
of new surface phenomena in atomic and photonic quasi-
crystals; e.g., 3D quasicrystalline materials may exhibit
topological properties that would have appeared only in
6D periodic systems. Furthermore, our approach provides
new tools for engineering photonic quasicrystals and espe-
cially for controlling their surface properties.
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