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Nonequilibrium systems are often characterized by the transport of some quantity at a macroscopic

scale, such as, for instance, a current of particles through a wire. The asymmetric simple exclusion process

(ASEP) is a paradigm for nonequilibrium transport that is amenable to exact analytical solution. In the

present work, we determine the full statistics of the current in the finite size open ASEP for all values of

the parameters. Our exact analytical results are checked against numerical calculations using density

matrix renormalization group techniques.
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A system containing carriers (of thermal energy, mass,
or electrical charge) and subject to a driving field in its
bulk, or to a difference of potentials between its bounda-
ries, will usually evolve to a nonequilibrium steady state
with a nonvanishing macroscopic current of heat, particles,
or charges flowing through it. Because of the presence of
this macroscopic current, time-reversal invariance is vio-
lated. This is a situation which lies beyond the realm of
traditional thermodynamics: Steady-state transitions at the
microscopic level break detailed balance, and the prin-
ciples of equilibrium statistical mechanics do not apply.
Hence, for a system that is bulk-driven, boundary-driven,
or both, no suitable generalization of the Gibbs-Boltzmann
formalism exists that would allow us to predict the value of
the current and of its fluctuations from first principles.

During the past two decades, substantial progress has
been made towards a statistical theory of nonequilibrium
systems [1–6]. Large-deviation functions, that encode
atypical fluctuations of a physical observable, are likely
to be the best candidates to generalize the traditional
thermodynamic potentials. Moreover, it has been proved
that large-deviation functions display symmetry properties,
called ‘‘fluctuation theorems,’’ that remain valid far from
equilibrium [2]. These remarkable relations imply linear
response theory in the vicinity of equilibrium. Hence, the
determination of large deviations in a nonequilibrium sys-
tem, whether theoretically, numerically, or experimentally,
is a question of fundamental importance [7–14].

There are very few models in nonequilibrium physics
that can be studied analytically. Among these, the asym-
metric simple exclusion process (ASEP) has become a
paradigm [15–17]. The ASEP is a one-dimensional lattice
gas model in which particles perform biased random walks
and interact through an exclusion constraint that mimics a
hard-core repulsion: Two particles cannot occupy the same
site at a given time. This minimal system appears as a
building block in a great variety of phenomena that involve
low-dimensional transport with constraints. Invented origi-

nally to represent the motion of ribosomes along mRNA
during protein synthesis, this model plays a seminal role in
nonequilibrium statistical mechanics and has been applied
to problems as different as surface growth, biological
transport, traffic flow, and pure mathematics [5,17–22].
In the long time limit, the ASEP reaches a nonequilib-

rium steady state with a fluctuating macroscopic current.
Exact results have been derived for the exclusion process
on a periodic ring and on the infinite line, using the Bethe
ansatz, determinantal processes, and random matrix theory
[22–26]. For open boundaries, the steady state has a re-
cursive structure [27] that can be encoded by a matrix
product representation [28], a fruitful method to analyze
low-dimensional transport models [5,29]. The mean value
of the stationary current, the associated density profiles,
and the phase diagram of the open ASEP are known
exactly [27,28]. However, finding the full statistical prop-
erties of the current in the open ASEP has remained, until
now, an outstanding challenge that has stimulated much
work [8,11,30–35]. A recent conjecture based on the Bethe
ansatz [30] gives the asymptotic behavior of the large-
deviation function of the current for infinitely large sys-
tems in some specific regions of the phase diagram. In the
present work, we give exact analytic expressions for the
full statistics of the current that are valid for arbitrary
system sizes and boundary parameters, thus solving this
long-standing problem.
The dynamics of the ASEP is that of a continuous time

Markov chain: During an infinitesimal time interval dt, a
particle located on a site can jump forward to the next
adjacent site with rate 1 and hop backward to the previous
site with rate q, provided these sites are empty. A particle
can enter site 1 with rate � and site L with rate � and can
exit from site 1 with rate � and from site Lwith rate � (see
Fig. 1). Each of the 2L microscopic configurations C of the
ASEP can be written as a binary string of length L
ð�1; . . . ; �LÞ, where �i ¼ 1 if the site i is occupied and
�i ¼ 0 otherwise. The probability PtðCÞ of being in con-
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figuration C at time t evolves according to the master
equation

dPtðCÞ
dt

¼ X
C0
MðC; C0ÞPtðC0Þ: (1)

The nondiagonal matrix element MðC; C0Þ represents the
transition rate from C0 to C. The diagonal element
MðC; CÞ ¼ �P

C0�CMðC0; CÞ is equal to minus the exit rate
from C.

In the long time limit, the ASEP reaches a nonequilib-
rium steady state where each configuration C occurs
with a probability P?ðCÞ, that can be written as a matrix
product [28]:

P?ðCÞ ¼ 1

ZL

hWjYL
i¼1

½�iDþ ð1� �iÞE�jVi; (2)

where the operators D and E, the bra vector hWj, and the
ket vector jVi satisfy quadratic algebraic relations

DE� qED ¼ ð1� qÞðDþ EÞ;
ð�D� �EÞjVi ¼ ð1� qÞjVi;
hWjð�E� �DÞ ¼ ð1� qÞhWj:

(3)

The normalization constant in Eq. (2) is given by ZL ¼
hWjðDþ EÞLjVi. The matrix product representation al-
lows us to determine stationary equal-time correlations
and density profiles for any system size L.

For L ! 1, the ASEP has three phases whose bounda-
ries are given in terms of the effective densities �a ¼
1=ðaþ þ 1Þ and �b ¼ bþ=ðbþ þ 1Þ of the left and right
reservoirs, where

a�¼ð1�q��þ�Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�q��þ�Þ2þ4��
p
2�

; (4)

b�¼ð1�q��þ�Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�q��þ�Þ2þ4��
p
2�

: (5)

The ASEP is in the maximal current phase when �a > 1=2
and �b < 1=2, in the low density phase when �a < 1=2 and
�a þ �b < 1, and in the high density phase when �b > 1=2
and �a þ �b > 1.

For a system of size L, the average value J of the sta-
tionary current is given by the ratio ZL�1=ZL, which can be
expressed in terms of orthogonal polynomials [34].
However, the fluctuations of the steady-state current cannot
be calculated from the knowledge of the stationary proba-
bilities alone. In order to study the current, we introduce an
observableYt that counts the number of particles exchanged
between the system and the left reservoir between times 0
and t. Therefore, Ytþdt ¼ Yt þ y, where y ¼ þ1 if a parti-
cle enters the site 1, y ¼ �1 if a particle exits from 1 during
the interval dt, and y ¼ 0 otherwise. These three mutually
exclusive types of transitions lead to a three-part decom-
position of the generator M: M ¼ Mþ þM� þM0. We
note that Yt also represents the total integrated current that
has flown through the system till time t. When t ! 1, the
expectation value of Yt=t converges to the average station-
ary current J. The convergence rate is quantified by the
large-deviation function �ðjÞ, characterizing nontypical

fluctuations of Yt and defined as PðYt

t ¼ jÞ � e�t�ðjÞ.
A different manner to encode the statistics of Yt is

through its characteristic function which, in the long time

limit, behaves as he�Yti ’ eEð�Þt, where Eð�Þ is the cumu-
lant generating function of Yt, and is the Legendre trans-
form of the large-deviation function �ðjÞ [14]:
Eð�Þ ¼ maxj½�j��ðjÞ�. Following Refs. [3,9], one can

prove that Eð�Þ is the largest eigenvalue of the deformed
operator Mð�Þ ¼ e�Mþ þ e��M� þM0. Thus, the cal-
culation of the cumulants of the current is equivalent to an
eigenvalue problem.
For the ASEP with periodic boundary conditions, Mð�Þ

can be diagonalized by the Bethe ansatz, leading to a full
solution for the current fluctuations [9,24]. In the case of
open boundary conditions, integrability conditions are met
only on hypersurfaces of the parameter space, and the
Bethe ansatz can be used only for L ! 1 and in specific
regions of the phase diagram [30].
We have obtained a solution valid for all parameters and

all system sizes using a generalized matrix product repre-
sentation. The components F�ðCÞ of the dominant eigen-

vector F� of Mð�Þ can be expanded formally as a power

series with respect to � to any given order k � 0. For each
value of k, we have proved rigorously [36] that F� can be

represented by a matrix product ansatz up to corrections of
order �kþ1, i.e.,

F�ðCÞ ¼ 1

ZðkÞ
L

hWkj
YL
i¼1

½�iDk þ ð1� �iÞEk�jVki þOð�kþ1Þ:

(6)

The matrices Dk and Ek are constructed recursively start-
ing with D1 ¼ D and E1 ¼ E and

Dkþ1 ¼ ð1 � 1þ d � eÞ �Dk þ ð1 � dþ d � 1Þ � Ek;

Ekþ1 ¼ ð1 � 1þ e � dÞ � Ek þ ðe � 1þ 1 � eÞ �Dk;

(7)

q 1

γ δ

1 L

α β

RESERVOIRRESERVOIR

FIG. 1 (color online). Dynamical rules for the ASEP with open
boundaries. The rate of forward jumps has been normalized to 1.
Backward jumps occur with rate q < 1. All other parameters are
arbitrary.
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where we have defined the operators d ¼ D� 1 and e ¼
E� 1 that satisfy the q-deformed harmonic oscillator
algebra de� qed ¼ 1� q. These matrices are related to
the ones used for the matrix product solution of the multi-
species periodic ASEP [37].

The boundary vectors hWkj and jVki are constructed by
taking tensor products of bra and ket vectors. We start with
jV1i ¼ jVi and hW1j ¼ hWj and iterate

jVkþ1i ¼ jVi � j ~Vi � jVki; (8)

hWkþ1j ¼ hW�j � h ~W�j � hWkj; (9)

where jVi is defined in Eq. (3) and

½�ð1� dÞ � �ð1� eÞ�j ~Vi ¼ 0; (10)

hW�j½�ð1þe�eÞ��ð1þe��dÞ�¼ð1�qÞhW�j; (11)

h ~W�j½�ð1� e�eÞ � �ð1� e��dÞ� ¼ 0: (12)

This matrix ansatz allows us to calculate the cumulants to
any desired order k. Our central result is a parametric
formula for the cumulant generating function Eð�Þ:

� ¼ �X
k�1

Ck

Bk

k
and E ¼ �ð1� qÞX

k�1

Dk

Bk

k
; (13)

where B is a formal parameter that has to be eliminated
from the two equations. We emphasize that similar para-
metric expressions have appeared in all known exact ex-
pressions for the current cumulant generating function
[9,24,38] and a similar generic form was derived from
the additivity principle in Ref. [8]. The function Eð�Þ is
fully specified from the knowledge of the scalars Ck and
Dk. These are given by contour integrals in the complex
plane along a contour � (to be defined below):

Ck ¼
I
�

dz

2i�

	kðzÞ
z

; Dk ¼
I
�

dz

2i�

	kðzÞ
ðzþ 1Þ2 : (14)

The 	kðzÞ’s are obtained as follows. We define a function
WBðzÞ that depends on the parameter B:

WBðzÞ ¼
X
k�1

	kðzÞB
k

k
; (15)

and we find that WBðzÞ is uniquely determined as the
solution of the functional equation:

WBðzÞ ¼ �1
2 lnð1� BFðzÞeX½WB�ðzÞÞ; (16)

where FðzÞ is given by the expression

ð1þ zÞLð1þ z�1ÞLðz2Þ1ðz�2Þ1
ðaþzÞ1ðaþz Þ1ða�zÞ1ða�z Þ1ðbþzÞ1ðbþz Þ1ðb�zÞ1ðb�z Þ1

(17)

with ðxÞ1 ¼ Q1
k¼0ð1� qkxÞ. We note that FðzÞ appears in

the definition of the Askey-Wilson polynomials, known to
be relevant to the open ASEP [34,39]. The operator X is a
linear integral operator:

X½WB�ðz1Þ ¼
I
�

dz2
2{�z2

WBðz2ÞK
�
z1
z2

�
; (18)

where the kernel K is given by

KðzÞ ¼ 2
X1
k¼1

qk

1� qk
fzk þ z�kg (19)

and the contour � in the complex plane encircles (once)
the points 0, qkaþ; qka�; qkbþ, and qkb� for all integers
k � 0. The kernel Kðz1=z2Þ was used in Ref. [24] to
calculate the current fluctuations in the periodic case.
The functional equation (16) contains the complete in-

formation about the current statistics: By solving it itera-
tively to any order k, we obtain the first k cumulants of the
current. At first order, we have 	1ðzÞ ¼ FðzÞ=2, and the
mean value of the current is

J ¼ lim
t!1

hYti
t

¼ ð1� qÞD1

C1

¼ ð1� qÞ
H
�

dz
2i�

FðzÞ
zH

�
dz
2i�

FðzÞ
ðzþ1Þ2

: (20)

This expression is identical to that given in Ref. [34]. At
second order, the variance of the current is

� ¼ lim
t!1

hY2
t i � hYti2

t
¼ ð1� qÞD1C2 �D2C1

2C3
1

; (21)

where C2 and D2 are obtained by using (14) with

	2ðzÞ ¼ 1

2

�
F2ðzÞ þ

I
�

dz2FðzÞFðz2ÞKðz=z2Þ
2{�z2

�
:

For higher cumulants, exact expressions similar to Eq. (21)
are obtained and can be expressed via a combinatorial tree
expansion akin to that found in the periodic case [24]. The
expression of the diffusion constant � generalizes the
formula of Ref. [35] obtained for the totally asymmetric
exclusion process (TASEP) in which q ¼ � ¼ � ¼ 0. For
the TASEP, the kernel K and the operator X vanish iden-
tically, and FðzÞ reduces to

FTASEPðzÞ ¼ �ð1þ zÞ2Lð1� z2Þ2
zLð1� azÞðz� aÞð1� bzÞðz� bÞ (22)

with a ¼ 1��
� and b ¼ 1��

� ; then, Eq. (16) leads to	kðzÞ ¼
Fk
TASEPðzÞ=2, and the results of Ref. [38] are retrieved. For

a periodic system of size L with N particles, the current
fluctuations can be brought into the framework described
here with the same generalized matrix ansatz, but the
boundary vectors are replaced by a trace and
Eq. (16) is modified as follows: The prefactor 1/2 is
removed, FðzÞ ¼ ð1þ zÞL=zN , and the kernel K is still
given by (19). Then, the results of Ref. [24], originally
obtained by Bethe ansatz, are retrieved.
The derivation of the above results involves combinato-

rial identities for matrix elements of the generalized matrix
ansatz. Some of these identities were guessed by induction
rather than mathematically proved [36]. It was therefore
necessary to validate our calculations numerically. For
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small size systems (L � 7), expressions for the cumulants
have been checked against the exact values from direct
calculations. For larger systems (L � 100), we compared
the analytical formulas with numerical computations of the
cumulants performed using a density matrix renormaliza-
tion group (DMRG) method. That method, originally in-
troduced to study ground state properties of quantum spin
chains [40], was recently adapted to calculate the highest
eigenvalues of deformed stochastic operators like Mð�Þ
[11]. A few of those results are displayed in Figs. 2 and 3.

For large system sizes L ! 1, the cumulant generating
function takes different expressions in different phases.
These are derived from an asymptotic analysis involving
the leading singularities of FðzÞ [29,34,36]. In the low
density phase, the dominant singularity is the pole at aþ
leading to 	kðzÞ � FkðzÞ. Using the Lagrange inversion
formula as in Ref. [38], we obtain

E ð�Þ ¼ ð1� qÞð1� �aÞ e� � 1

e� þ ð1� �aÞ=�a

: (23)

This expression agrees with the one found in Ref. [30]
using the Bethe ansatz. Its Legendre transform matches the
prediction of the additivity principle [31]:

�ðjÞ ¼ ð1� qÞ
�
�a � rþ rð1� rÞ ln

�
1� �a

�a

r

1� r

��
;

(24)

where the current j is parametrized as j ¼ ð1� qÞrð1� rÞ.
The high density phase leads to similar expressions with
aþ ! bþ and �a ! 1� �b. In both cases, the statistics of
the current do not depend on system size in the large L
limit.

In the maximal current phase, we find that kth cumulant

grows as Lðk�3Þ=2. When L ! 1, we have

� ¼ �L�1=2

2
ffiffiffiffi
�

p X1
k¼1

ð2kÞ!
k!kðkþ3=2Þ B

k; (25)

E � 1� q

4
� ¼ �ð1� qÞL�3=2

16
ffiffiffiffi
�

p X1
k¼1

ð2kÞ!
k!kðkþ5=2Þ B

k: (26)

These expressions have the same structure as those ob-
tained for the case of a periodic ring [9], and the large-
deviation functions have the same asymptotic behavior.
Moreover, for the open TASEP of size L with � ¼ 1 and
� ¼ 1=2, we observed that the formulas are identical to
those for the half-filled periodic TASEP of size 2Lþ 2.
Along the shock line (�a ¼ 1� �b < 1=2), we obtain

� ¼ �2L�1 ð1þ aþÞ
ð1� aþÞ

X1
k¼1

k2k�1

ð2kÞ! B
k; (27)

E �ð1�qÞaþ
ð1þaþÞ2

�¼�2L�2 ð1�qÞaþ
ð1�a2þÞ

X1
k¼1

k2k�2

ð2kÞ!B
k; (28)

with the kth cumulant scaling as Lðk�2Þ as can be explained
by the domain wall picture for �a � 1 [32,38]. We note
that this is the only case where the statistics of the current
depend both on the system size and on the boundary
parameters at the large L limit.
We have obtained exact formulas for the current statis-

tics of the open exclusion process in contact with two
reservoirs. Our results are valid for arbitrary sizes and
values of the parameters and have been tested by precise
DMRG computations in various regions of the phase dia-
gram. They could also be used as benchmarks to test
alternative computational algorithms [12]. In the limit of
large size systems, the asymptotic behavior of the large-
deviation function is derived in all regions of the phase
diagram as long as the asymmetry ð1� qÞ remains finite.
The diffusive limit q ! 1 represents an important open
analytical problem, and the exact formulas should coincide
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FIG. 3 (color online). Second (E2, red) and third (E3, blue)
cumulants in the high density phase, with q ¼ 0:5, aþ ¼ 0:28,
bþ ¼ 1:15, a� ¼ �0:48, and b� ¼ �0:27.
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FIG. 2 (color online). Third (E3, red) and fourth (E4, blue)
cumulants in the maximal current phase, with q ¼ 0:5, aþ ¼
bþ ¼ 0:65, and a� ¼ b� ¼ 0:6; the full lines represent the
corresponding large size asymptotic behaviors.
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with the predictions of macroscopic fluctuation theory
[7,31]. We have used an extension of the matrix ansatz
that was introduced for multispecies exclusion models
[37]. The relation between multispecies models and cur-
rent fluctuations (and also between open and periodic
systems) is mysterious, as no direct mapping is known.
We believe that our results should be derivable from the
Bethe ansatz for a spin chain with nondiagonal boundaries,
but the corresponding Bethe equations have not yet been
derived [30]. In addition, the matrix representation given
here contains all the information about the density profiles
that generate atypical currents: The precise calculation of
these profiles represents a challenging open question [1].
Finally, the effect of global constraints—such as a finite
particle reservoir—on the current fluctuations is an inter-
esting problem which requires further investigation [41].

A. L. thanks R. Vasseur for useful remarks. K.M. is
thankful to S. Mallick for a very careful reading of the
manuscript.
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