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When submitted to large stresses at high temperature, usual crystals may irreversibly deform. This
phenomenon is known as plasticity and it is due to the motion of crystal defects such as dislocations. We
have discovered that, in the absence of impurities and in the zero temperature limit, helium 4 crystals
present a giant plasticity that is anisotropic and reversible. Direct measurements on oriented single crystals
show that their resistance to shear nearly vanishes in one particular direction because dislocations glide

freely parallel to the basal planes of the hexagonal structure. This plasticity disappears as soon as traces of
helium 3 impurities bind to the dislocations or if their motion is damped by collisions with thermal

phonons.
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A crystal resists elastically to a shear stress, contrary to a
fluid, which flows. When applied to a crystal, a small shear
stress o produces a strain ¢ that is proportional to o. If the
stress is released, the crystal returns elastically to its origi-
nal shape. The elastic shear modulus of the crystal is the
ratio u = o/e. However, if the applied stress is large, a
usual crystal is “plastic”’—it deforms more than in the
elastic regime thanks to the motion of dislocations. With
classical crystals, plastic deformation is irreversible and
small. In metals, it requires stresses of order 10~ ! to 107©
of the shear modulus and the strain rate increases with
temperature [1,2]. We have discovered that, in the case of
ultrapure helium 4 single crystals around 0.1 K, the resist-
ance to shear nearly vanishes in one particular direction
while in another direction no measurable deviation from
normal elastic behavior occurs. This giant anisotropic
plasticity is independent of stress down to extremely low
values (107'! times the elastic shear modulus). We dem-
onstrate that it is a consequence of dislocations gliding
freely along the basal planes of the hexagonal crystal
structure. Some gliding along these planes had been
observed [3,4] in other hexagonal crystals but never with
comparable amplitude. In “*He crystals, we show that dis-
locations are able to move at high speed with negligible
dissipation so that the plasticity is also independent of the
rate at which the strain is applied. Moreover, this motion is
reversible so that the plasticity shows up as a 50% to 80%
reduction of one particular elastic coefficient, which we
have identified as c44. The plasticity disappears if traces of
impurities bind to dislocations or if thermal phonons damp
their motion. Our observations have been made possible by
direct elasticity measurements on oriented crystals where
the impurity concentration could be lowered from 0.3 ppm
to zero at very low temperature (15 mK). The gliding of
dislocations is an intensively studied phenomenon of
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fundamental importance in materials science [5]. We pro-
vide strong experimental evidence for its precise origin.
We have improved some of our previous techniques
[6-9]. Here we briefly describe them (see details in the
Supplemental Material [10]). In a transparent cell inside a
dilution refrigerator with optical access, crystals can be
seen during growth. After determining their orientation
from their shape (Fig. 1), we grow them in a 1 mm gap
between two piezoelectric transducers. Applying a
small ac voltage to one transducer (0.001 to 1 V, 200 to
20 000 Hz) produces a vertical displacement (0.001
to 1 A) and consequently a strain & of amplitude 1070
to 1077 and a stress o = ue (107 to 107> bar) on the
other transducer (u is the relevant shear modulus of the
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FIG. 1 (color). The shear modulus of crystal X15a as a func-

tion of temperature. Around 0.2 K, the shear modulus is reduced
to 72 bar, much less than the normal value (127 bar).
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crystal). The stress generates a current that is our signal
after amplification with a lock-in. The shear modulus w
and the dissipation 1/Q are obtained from the magnitude
and phase of the signal. Various growth methods lead to
three different types of crystals [7]:

(i) High quality “type 1”* crystals are grown by pressur-
izing the superfluid liquid in the cell at 20 mK up to
the crystallization pressure and staying there after
the cell is nearly full. Random nucleation produces
different orientations. In this case, there remains
some liquid in corners but not in the gap. Fresh
from growth, such crystals are totally free of impu-
rities, especially if one uses ultrapure *He containing
0.4 ppb of *He (we also use natural *He with 0.3 ppm
3He). Slow growth at 20 mK rejects 3He impurities
in front of the liquid-solid interface as in the ““zone
melting” purification of metals but here this method
is extremely efficient because the temperature is very
low [8]. However, when warming such ultrapure
crystals, 3He impurities come back into the crystal
where their concentration varies with temperature.

(i1) Single crystals of lower quality (type 2) are grown at

1.4 K. All the remaining liquid is crystallized during
further cooling along the melting line from 26.1 bar
at 1.4 K to 25.3 bar at 1 K, below which it stays
constant [11]. This pressure change probably cre-
ates dislocations, but the He concentration is that of
the helium gas used to grow them. Any type 1
crystal can be melted down to a small seed and
regrown at 1.4 K as a type 2 crystal with the same
orientation, or vice versa.

(iii) Polycrystals (type 3) are grown at constant volume

starting with normal liquid at 3 K and 60 bar.

Figure 1 presents a measurement of the shear modulus w

of crystal X15a at 9 kHz during cooling. This is an ultra-
pure type 1 crystal, although grown at 600 mK. Its shear
modulus reaches a very small value around 0.2 K. At lower
T, the crystal stiffens as a consequence of dislocation
pinning by *He [6,9,12]. Crystals with immobile disloca-
tions are stiffer than with mobile dislocations. The pinning
temperature depends on the *He concentration, on the
binding energy £; = 0.73 K [12], and on the measurement
frequency. Above 0.3 K, u also increases, probably
because dislocations scatter thermal phonons [13]. We
thus understand that “He crystals show an anomalous shear
modulus between impurity pinning at very low T and
collisions with thermal phonons at higher 7. We call it a
“giant plasticity” because it is due to the large motion of
dislocations under very small stresses. Since it is revers-
ible, the plasticity shows up as a reduction in the shear
modulus. Note that the present measurements are made at
kHz frequencies during hours with results that are inde-
pendent of the sign and duration of the applied strain.

Two type 2 crystals are compared in Fig. 2(a): X15c

(purity 0.4 ppb) and X21 (0.3 ppm 3He), at high or
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FIG. 2 (color). Comparison of two ‘“‘type 2" crystals: X15¢c
and X21 grown, respectively, from ultrapure and from natural
“He. The T domain of the giant plasticity depends on both purity
and strain amplitude. On graph (a), two ticks on the vertical axis
indicate the predicted value of the shear modulus for immobile
dislocations. The lower graph (b) shows that the dissipation is
negligible in the high plasticity region of X15, as for immobile
dislocations in the zero temperature limit of X21.

low driving strain. When a larger drive is applied,
the temperature at which 3He bind to dislocations is
lower, so that the plasticity domain is wider. As expected
[6,9,12], pinning by *He occurs at lower T for ultrapure
crystals. Figure 2(b) shows the corresponding dissipation. In
the plasticity domain of X15c, we measure zero dissipation,
as in the low T limit of X21 where *He binding suppresses
dislocation motion. The peak dissipation corresponding to
3He binding is lower in temperature for the ultrapure crystal
X15c and it nearly disappears at a high strain £ = 10~ that
exceeds the threshold for *He unbinding (3 X 1078, see
Refs. [6,14]). The dissipation above 0.3 K is independent
of amplitude and increases with T as expected for a thermal
phonon scattering mechanism [13].

We have identified the precise origin of the plasticity
with the following quantitative study. Hexagonal crystals
have 5 independent elastic coefficients [14-16] ¢y, c12,
C13, C33, Cyq4, and Cee = (Cll - Clz)/z. The indices 1 to 6,
respectively, refer to xx, yy, zz, yz, xz, and xy, where
z is the [0001] “¢” axis. Figure 3 shows results from 7
type 2 crystals, all of natural purity except the ultrapure
X15, and one polycrystal (BC2). X3 is tilted with a
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FIG. 3 (color). Measurements (a) for different crystal orienta-
tions (b) show that the plasticity is highly anisotropic. Ticks on
the vertical axis show the predicted shear modulus with immo-

bile dislocations, in excellent agreement with measurements in
the low temperature limit where dislocations are pinned by *He.
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¢ axis 45° from the vertical. Its effective shear modulus
is = 0.004cyy + 0.004cqq + 0.25 (cy; + c33 — 2¢13)s
practically independent of ¢4y and ce (see the
Supplemental Material [10]). It shows no 7" dependence.
Since it is very unlikely that these coefficients would vary
with T in just such a way to keep (c;; + ¢33 — 2¢13)
constant, we conclude that c;,, ¢13, and ¢33 are independent
of T, so that X3 could be used to calibrate the piezoelectric
coefficient of our transducers 0.88 A/V in our first cell,
0.95 in the second cell). For this we used values of elastic
coefficients measured from ultrasound velocity at the melt-
ing pressure [15,16] ¢, = 405 bar, ¢, = 213 bar, ¢|3 =
105 bar, ¢33 = 554 bar, ¢4y = 124 bar, and cqq = 96 bar.
These values correspond to the intrinsic elasticity of *He
crystals because dislocations could not move at 10 MHz
above 1.2 K. Given this calibration we could calculate the
shear modulus for all other orientations in the 7 = 0 limit
(ticks on the vertical axis of Fig. 3). Excellent agreement is
found with our measurements except for X15 whose stiff-
ening was not completed at 15 mK. For the polycrystal
BC2, Maris’ averaging method [17] leads to excellent
agreement again.

All crystals except X3 show a strong 7 dependence,
which could be due to a reduction of either cyy or cgg.
Indeed, hexagonal crystals usually have one preferential
gliding plane that can be either the basal plane (0001) or
the prismatic planes perpendicular to it. For hep crystals, it
is predicted to be the basal plane, although directional
bonding in hexagonal metals can lead to non-close-packed
structures which favor prismatic glide [3,4]. For X21, the
dependence on cgq is negligible and the large variation of
c44 could be easily extracted. Assuming then that cgq is
constant, we could calculate the variation of ¢4y in all
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FIG. 4 (color). Assuming that dislocations glide in the basal
plane, one finds the same variation of ¢4y by 62 % 8% for X2,
X5, X6, and X21, which are crystals with different orientations
grown in the same conditions. Assuming that they glide in the
prismatic planes leads to absurd results (see text).

crystals. Since X2, X5, X6, and X21 were all type 2
crystals grown in similar conditions, one expects the T
dependence of their coefficient ¢4y to be the same.
Figure 4 shows that this assumption leads to a reproducible
reduction of ¢4y (62 = 8% for all type 2 crystals), although
the shear modulus of X2 depends mostly on ¢4, while that
of X5 depends mostly on cg. On the opposite, assuming
that c44 is constant and cgg varies leads to absurd results,
from a 60% reduction in cgg for X5 to 300% for X6 and to
1000% for X2, not mentioning X21. The preferential di-
rection for gliding has to be the basal plane. Only cyy
depends on temperature. This is why Fig. 3 shows a highly
anisotropic plasticity.

The amplitude dependence is also consistent with *He
pinning at low 7. Figure 5 shows the shear modulus as a
function of stress for 4 crystals at 20 mK. Above a 1 wbar
threshold due to the breakaway from 3He impurities [6,14],
the shear modulus decreases. By projecting the stress on
the basal plane, we determined the “‘resolved stress” (see
Supplemental Material [10]), and we obtained a reproduc-
ible threshold for different orientations, confirming that
dislocations glide in the basal planes. This threshold is
hysteretic because the force acting on dislocations depends
on the pinning length L; between impurities [18]. One now
understands why Fig. 2 shows a *He pinning occurring at
lower T with a large strain (10~7) than with a low strain
(107°). In contrast, the phonon damping is independent of
the strain amplitude.

Figure 5 shows additional measurements made on X4, a
type 1 crystal that was cooled down under high strain
(1077 at 3 kHz in order to expel all *He impurities into
the liquid. Its coefficient ¢,y is reduced by 80% even at
20 mK. This value is stable in time (*He stay trapped in the
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FIG. 5 (color). The relative amplitude of c,, for 4 different
crystals at 20 mK as a function of the stress projected on the
basal plane (“‘resolved”). At a threshold stress around 1 wbar,
dislocations break away from >He impurities [6,14]. This thresh-
old is larger when increasing the stress than when decreasing it.
Being free of impurities, X4 shows a reduction of cyy by 80%,
independent of stress.

liquid), and independent of the strain amplitude. After
assuming that dislocations glide in the basal plane, Rojas
et al. [9] found 86% reduction for a type 1 crystal of
probably better quality (see Supplemental Material [10]).
Here we demonstrate that this assumption was correct, and
that the plasticity is very large in particular directions. We
have not yet prepared a crystal with zero dislocation as
might be possible [19]. Dislocations arranged in a simple
Frank network should lead to less than 5% reduction in cyy
[20]. In our case, they may be aligned in sub-boundaries
[21] where they cooperate to reduce c44 much more.
Assuming a typical dislocation density [22] A =
10* cm ™2, we could estimate the amplitude of their mo-
tion. With a 10 kHz strain € =3 X 107%, we find that
dislocations move a distance dof orders/Ab =1 um
corresponding to 6 cm/s (b =3 A is the Burgers vector
amplitude). This is 200 million Burgers vectors per second,
a giant effect with no equivalent in classical crystals (see
Supplemental Material [10]) [20,23,24].

In summary, we have demonstrated that the plasticity of
“He crystals is reversible and anisotropic, due to the free
gliding of dislocations parallel to the basal planes.
Classical plasticity is irreversible because dislocations
jump from one pinning site to another and multiply, lead-
ing to ‘“work hardening.” In our case, applying large
stresses at low T produces defects, which harden the
crystals and are probably jogs because annealing at 1 K
restores the high crystal quality (see Supplemental
Material [10]). For simplicity, we show measurements in
this article, which are recorded on cooling after annealing.

The giant plasticity of “He crystals is mainly due to their
absolute purity at very low temperature. An interesting
question is whether dislocations move by tunnelling or
by thermal activation over Peierls barriers. Tunneling is
suggested by the reversible motion at low T without dis-
sipation or strain dependence. However, quantum fluctua-
tions probably reduce the kink energy E; by enlarging their
width. If k3T > E, kinks are not relevant, as is the case for
surface steps [25,26] whose dynamics is also dissipation
free in the low T limit. A calculation of E could indicate if
the dislocation motion is quantum or classical thanks to a
negligible kink energy.
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