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The Hopf fibration is an example of a texture: a topologically stable, smooth, global configuration of a

field. Here we demonstrate the controlled sculpting of the Hopf fibration in nematic liquid crystals through

the control of point defects. We demonstrate how these are related to torons by use of a topological

visualization technique derived from the Pontryagin-Thom construction.
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The combination of geometric order, optical response,
and soft elasticity of liquid crystals uniquely positions
them as an arena to study topology: Boundary conditions
on sample walls can obstruct smooth solutions in the bulk,
forcing points, lines, and walls of diminished order [1]. In
general, these topological defects serve as tools for probing
the symmetries of the ground state manifold [2], as funda-
mental excitations [3], and as potential building blocks for
self-assembly [4]. Does topology play a role only in sys-
tems with singularities? Certainly not; the Skyrmion in two
and three dimensions is an everywhere smooth complexion
of order that is, nonetheless, topologically protected [5,6].
Similar nonsingular configurations are the origin, for
instance, of gapless excitations in the quantum Hall effect
and topological insulators [7,8]. In nematic liquid crystals,
the ground state manifold is the projective plane RP2 (the
sphere with antipodal points identified), and two- and
three-dimensional Skyrmions are labeled by elements of
the second and third homotopy groups, �2ðRP2Þ ¼ Z and
�3ðRP2Þ ¼ Z, respectively. The generator of the latter
corresponds to the much-storied ‘‘Hopf fibration’’ [9], an
allowed texture in the nematic phase [10,11]. This cele-
brated configuration is distinguished by its beautifully
interwoven structure of preimages: the set of all points in
the material where the orientation takes a particular value n̂
[Fig. 2(b)]. The preimage of every orientation is alike—a
simple closed circle in space—and the preimage of every
pair of distinct orientations is a pair of linked circles, whose
linking number is the topological quantity (Hopf invariant)
that uniquely identifies the texture. Beyond this, the pre-
images of every orientation with a fixed z component nz fit
together to fill the surface of a torus, while different values
of nz produce a family of nested tori that fill up all of space.

In this Letter, we demonstrate our ability to controllably
generate the Hopf fibration experimentally in cholesteric
systems: nematics with a preferential handedness, or twist.
Our starting point is the toron configuration depicted in
Fig. 1 and described in detail in Ref. [12]. This is a tube of
double twist that is wrapped upon itself, its boundary

forming a torus. Above and below the ‘‘donut hole,’’ there
are two point defects, both taking the form of hyperbolic
hedgehogs. By manipulating these two point defects, we
can create a defect-free texture with the topology of the
Hopf fibration as in Fig. 2.
How do we know it is the Hopf fibration, and how does

the topology work out to render this result? We present a
representation of the three-dimensional topology of nem-
atics on a set of two-dimensional surfaces based on the
Pontryagin-Thom construction [13,14] which we now
briefly sketch. This method is a three-dimensional general-
ization of the use of crossed polarizers to study schlieren
textures in two-dimensional samples with the director
taking values in RP1 [15] and has much of the flavor of
manipulating a complex function by moving its poles and
branch cuts around.
Recall that the dark lines in a schlieren texture mark

those regions where the director is along one of the two
polarizer directions. Continuity ensures that the dark lines
only end on point defects, and topology ensures that an
even number of dark lines emanate from each point defect.
We can abstract this slightly by considering just one of the
polarizer directions, thus seeing only half the dark lines;
note that, in either case, each line carries an arbitrarily
chosen yet globally consistent orientation so that the lines
point from positive to negative defects.
This two-dimensional construction has a natural gener-

alization to three dimensions. We first pick a probe direc-
tion p̂ 2 RP2. Next we draw the surface �p̂ 2 R3, on

which the director is everywhere perpendicular to the
probe, p̂ � n̂ ¼ 0. We are therefore looking at the preimage
of a curve p̂? in RP2, the ‘‘equator’’ if p̂ were the ‘‘North
pole.’’ Were we to look for the preimage of p̂, we would
generically only get a curve, and, more problematically, we
could get the empty set for a nontrivial texture. The surface
construction, however, neatly generalizes the two-
dimensional case. The boundaries of any surface are
topological defects: A line boundary is the location of a
disclination line, carrying the Z2 charge associated with
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�1ðRP2Þ, while a point boundary, i.e., a hole in the surface,
carries a Z charge associated with �2ðRP2Þ. To illustrate,
the surface �ẑ for a toron is shown in Figs. 1(c) and 1(d).
It is the set of all points in the material where the director
is perpendicular to ẑ and forms a surface that connects
the two point defects at the ‘‘top’’ and ‘‘bottom’’ of
the toron.

The surfaces, however, do not carry enough information
to determine the point charges. In order to capture this
information, we must add an additional piece of informa-
tion to the surface, namely, the direction of the director in
�p̂. We represent this pictorially through a color wheel,

ranging from red to violet—through orange, yellow, green,
blue, and indigo—as the director rotates by �. We pass

through the color wheel a second time if the director rotates
by 2�, as it does, for instance, in �ẑ for the standard radial
hedgehog shown in Fig. 3. In fact, since all point defects in
a uniaxial nematic can be oriented [16], the usual n̂ ! �n̂
symmetry does not come into play, and the director always
rotates through the color wheel an even number of times,
that is, by a multiple of 2�. As a result, a point defect of
charge p 2 �2ðRP2Þ will have a winding of 2p�, or will
cover the color wheel 2p times, providing a unique iden-
tification of point defects in nematics. Thus, looking at the
toron in Figs. 1(c) and 1(d) again, the surface �ẑ is colored
as described, and about each point defect there is a twofold
winding of the full color wheel, identifying them as carry-
ing unit charge.

FIG. 1 (color). (a) Selected 3PEF-PM images from an image stack—the images are 16 �m wide and approximately 4 �m apart in
the z direction. (b) The toron texture from Ref. [12]. The axis of symmetry of this structure is perpendicular to the substrate. (c) Top
view, (d) side view: the ‘‘Pontryagin-Thom’’ surface constructed from this image stack. Despite the considerable noise, the robustness
of this method allows us to recognize the nontrivial topology of the texture as the winding bands of color meeting at the two hedgehog
defects on top and bottom.

FIG. 2 (color). (a) A simulation of a toron in which the point hedgehogs are replaced with disclination loops. (b) Flow lines of the
famous Hopf fibration. (c) The preimage surface of the Hopf fibration, which one can get from (a) by bringing together the two
disclination loops through the center of the spool. (d) An experimental image of the same texture.
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There is an important constraint on the colors that may
paint the preimage. The neighborhood of the preimage �p̂

must admit a continuous map to the ground state manifold
[13], and the neighborhood of p̂? 2 RP2 is a Möbius strip
M, a line bundle over the equatorial circle. This means that
the normal vectors to points in �p̂ are mapped continu-

ously to points of M lying ‘‘above’’ the points of the base
circle. Since one turn through the color wheel is half a trip
through M, the image of the surface normal on any path
in �p̂ whose image in RP2 wraps the equator once will

reverse sign. This extra structure forces every closed curve
on �p̂ to have an even color winding, so that the image of

the surface normal in M can be continuous.
Finally, it can be shown that this representation is faith-

ful; that is, up to continuous deformations (homotopy), no
information is lost, and the original texture can be recon-
structed from the representation we present here [14]. To
be more precise, homotopies of the original three-
dimensional texture not only induce deformations of the
colored surfaces but also may cause the surfaces to merge
together along same-colored points or split off new ones
(mathematically, such moves are called ‘‘bordisms’’) and
vice versa. A key theoretical technique of this Letter is thus
exploiting this equivalence: Complicated homotopies of
three-dimensional nematic configurations can be visual-
ized by simply manipulating these two-dimensional
surfaces.

In the experiments, we used nematic LC ZLI 2806 doped
with the chiral agent CB15 to obtain cholesteric pitch P of
interest according to the relationship concentration of
CB15 C ¼ 1=ðhPÞ, where h ¼ 5:9 �m�1 is the helical
twisting power of the used combination of the nematic
host and chiral additive. The used cholesteric mixture
had P ¼ 20 �m to match the thickness of the used capil-
lary d so that d=P ¼ 1. A rectangular capillary with a 20�
200 �m cross section was treated for vertical surface
boundary conditions by infiltrating it with a 0.1 wt%
aqueous solution of a surfactant [3-(trimethoxysilyl)
propyl]octadecyldimethylammonium chloride and then
evaporating the solution by heating it to 90 �C and keeping

it at this temperature for about 30 min. The cholesteric
mixture was then heated to isotropic phase at 80 �C and
infiltrated to the capillary to avoid filling-induced defects.
Various twist-stabilized localized structures in an initially
unwound frustrated cholesteric LC were formed through
the use of holographic optical tweezers [17] built around
a spatial light modulator and a cw laser operating at
1064 nm. Both of the structures described here (torons
and Hopf fibration) have an axial symmetry axis which
aligns perpendicular to the substrates. Laser beams of
power less than 50 mW were focused and spatially steered
in 3D within the sample. We have used 10X–100X micro-
scope objectives with numerical apertures ranging within
NA ¼ 0:1–1:4 for optical generation.
Imaging of the samples utilized three-photon excitation

fluorescence polarizing microscopy (3PEF-PM) [18] inte-
grated with holographic optical tweezers into a single
optical setup built around the same inverted optical micro-
scope IX-81 (Olympus). The optical technique of 3PEF-
PM [18] is noninvasive, does not require dyes (since the
detected fluorescence comes from the LC molecules them-
selves), and enables the imaging of director fields in 3D.
The nonlinear three-photon absorption process gives rise to
a cos6� orientational dependence of the fluorescence sig-
nal, where � is the angle between the probing light’s linear
polarization and the director. The inherent z resolution
(along the microscope’s optical axis) associated with the
nonlinear process allows for optical sectioning and recon-
struction of 3D images of the director field. Three-
dimensional 3PEF-PM images for four linear polarizations
are used to generate a representation in PARAVIEW [19].
Whereas schlieren textures in thin cells give directly

the Pontryagin-Thom construction for (quasi-)two-
dimensional nematics, the analogous colored surfaces of
three-dimensional textures are not an automatic output of
any current imaging technique. These surfaces can be
extracted easily from knowledge of the director field,
which can in turn be obtained from confocal microscopy
[20,21] or polarizing-mode nonlinear optical microscopies
such as 3PEF-PM, coherent anti-Stokes Raman scattering
microscopy [22], and stimulated Raman scattering micros-
copy [23]. To construct this surface, we take intensity data
from confocal slices, polarized at four different angles�=4
apart in the xy plane (E2

0, E
2
�=4, E

2
�=2, E

2
3�=4). The Stokes

parameters I, Q, and U are

I ¼ 1

2
ðE2

0 þ E2
�=4 þ E2

�=2 þ E2
3�=4Þ; (1)

Q ¼ E2
0 � E2

�=2; (2)

U ¼ E2
�=4 � E2

3�=4: (3)

Writing n̂ ¼ ½sin� cos�; sin� sin�; cos��T and taking the
electric field amplitude to simply be proportional to the
local electric anisotropy tensor, we find that I / Jsinn� and

(a) (b)

FIG. 3 (color). (a) A schematic of a hedgehog-antihedgehog
pair; far away, the color is constant, and hence the configuration
is topologically trivial. Viewed from below, the handedness
of both color wheels changes, illustrating the global sign ambi-
guity. (b) The same pair of defects moved one on top of the other
with the surface bent around. We might think the two defects
are of the same sign due to the color rotations if we did not have
the surface normal keeping track of the relation to the global
base point.
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Q=U ¼ tanð2�Þ, where J is the amplitude of the signal.
Here n is an exponent depending on the imaging modality;
n ¼ 4 for the case of fluorescence confocal microscopy
[20,21], n ¼ 6 for 3PEF-PM with fluorescence detection
without a polarizer [18], and n ¼ 8 for coherent anti-
Stokes Raman scattering polarizing microscopy with line-
arly polarized detection collinear with the polarization of
excitation light. We then assume that we can shift and
normalize the calculated I from the data, so that it takes
value from 0 to 1 and the nth root of I gives us sin�. The
shift is justified in this case, as we expect that away from
the toron the director is actually normal to the top and
bottom surfaces, along the surface normal, and hence
� ¼ 0 there. The angle � then gives us the angle of the
polarization projected to the xy plane, and we can recon-
struct the director n̂ from � and �.

To go from this to the colored surface numerically, we
reflect the director field so that it lies in the upper half of
the sphere; i.e., if cos� < 0, we take n̂ ! �n̂. Using
PARAVIEW [19], we then view the isocontour with nz close
to zero. Though one might want to take a slice with nz zero,
the nonorientability of the line field makes it difficult to
exclude the artificial ‘‘branch cuts’’ where any reconstruc-
tion assigns adjacent grid points to different branches of n̂,
for example, when n̂ happens to be adjacent to a data point
of �n̂. The downside of our approach is that what should
be one surface at nz ¼ 0 is actually two nearby surfaces
nz ¼ ��. Note that all we pick out here are the surfaces of
(near) maximum I, so the sixth-root transformation we
made above actually makes no difference; all we need is
the fact that the regions in the data where I is maximum
correspond to regions where the molecules tend to lie in
the xy plane.

We analyzed 3PEF-PM images of several chirally doped
nematic textures as described. A precise reconstruction of
the director field requires a careful analysis of the optical
properties of the material. However, this is unnecessary to
determine topological features, which are independent of
the fine details and depend only on the coarse structure that
is preserved under continuous deformation. Thus, even a
highly approximate reconstruction of the director will
capture all of the topology correctly.

Using these tools, we can robustly identify the topologi-
cal nature of three-dimensional textures. Returning first to
the toron shown in Fig. 1, the surface �ẑ is a ‘‘football,’’ a
closed surface with just two points missing, corresponding
to the locations of the two point defects and identified by
winding singularities of the color. There are no boundaries
to the surface and hence no disclinations. However, the
point defects can open up into small disclination loops
[12], and the surface then looks like the simulation in
Fig. 2(a), where the boundary marks the location of the
disclination. In either form, with point defects [Figs. 1(c)
and 1(d)] or disclinations [Fig. 2(a)], the preimage of any
orientation n̂ 2 ẑ? corresponds to a single color on the

surface (one line lifts to the vector n̂ and the other to �n̂).
Thus, the preimage of any orientation is a curve starting at
one point defect and ending at the other. This tells us
immediately that the configuration is not the Hopf fibra-
tion. To create the linking of preimages that characterizes
the Hopf fibration, we may bring the two ends together to
form a closed loop. In doing so, the defects will cancel
and the surface �ẑ close up to form a torus, as shown in
Figs. 2(c) (simulation) and 2(d) (experiment). Again, the
preimage of any orientation n̂ 2 ẑ? corresponds to a
single color on �ẑ. These are all closed circles (one for
the vector n̂ and the other for �n̂), and it can be seen
directly that each color links every other once in exactly
the manner that typifies the Hopf fibration. Thus, by bring-
ing together the two disclination loops through the center
of the spool, we have created a degree-one Hopf fibration
starting from the toron. Seeing this move directly from the
three-dimensional textures in Figs. 1(b) and 2(b) is much
more of a challenge.
Experimentally, the transition between the structures can

typically be induced by bringing the focused Gaussian
laser beam and ‘‘massaging’’ (perturbing) the peripheral
part of the toron containing the looped double-twist cylin-
der, but this can occasionally also happen spontaneously.
Both structures can be generated from the initial uniform
homeotropic state by rapidly moving the focused Gaussian
beam along a circle of diameter comparable to that of the
double-twist cylinder in the toron.
In closing, we note that this graphical representation

immediately makes clear a number of often subtle issues
in the description of defects in nematics [16]. First, we can
see how the relative charges of two defects depend upon a
base point: In this representation, a positive point defect
will have a counterclockwise-rotating color wheel, while a
negative point defect will have a clockwise-rotating color
wheel when we look from above. Were we to look at the
same surface from below, however, the handedness of the
rotations flips. This corresponds to the global ambiguity in
choosing charge associated with the two choices of lifting
RP2 to S2. It follows that looking at two pieces of surface
in the vicinity of two defects does not allow the calculation
of their relative degree—one surface must be used in order
to consistently determine the topological charge. Finally,
note that these surfaces can end on disclination lines, just
as the dark brushes in the schlieren texture can end on
disclination points in two dimensions. Importantly, the
construction of a colored surface from any given liquid
crystal texture captures all of the topological information
about the texture and also permits the full director field to
be reconstructed, at least up to homotopy. In future work,
we will use this method to visualize blue phases and other
complex textures. Generalizing to biaxial nematics is
another extension worth pursuing.
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