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We report the direct measurement of the van der Waals interaction between two isolated, single

Rydberg atoms separated by a controlled distance of a few micrometers. Working in a regime where the

single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction, we

observe partial Rydberg blockade, whereby the time-dependent populations of the various two-atom states

exhibit coherent oscillations with several frequencies. Quantitative comparison of the data with a simple

model based on the optical Bloch equations allows us to extract the van der Waals energy, and observe

its characteristic C6=R
6 dependence. The measured C6 coefficients agree well with ab initio calculations,

and we observe their dramatic increase with the principal quantum number n of the Rydberg state.
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The van der Waals–London interaction UvdW ¼ C6=R
6

between two neutral, polarizable particles separated by a
distance R is ubiquitous in nature. It underlies many
effects, from the condensation of nonpolar gases to the
adhesion of gecko toes [1]. At a macroscopic scale, mea-
suring thermodynamic quantities of a system gives indirect
access to the van der Waals interaction between the
constituent atoms or molecules [2]. Alternatively, one
can directly measure the net force between macroscopic
bodies resulting from the microscopic van der Waals
forces. However, in this case, summing over the underlying
C6=R

6 interactions between individual particles results in
a potential scaling as 1=L�, where L is the separation
between the bodies, and �< 6 is a geometry-dependent
exponent (e.g., � ¼ 1 for two spheres with a diameter
D � L) [1,2].

At the level of individual particles, spectroscopy of
the vibrational levels close to the dissociation limit of a
diatomic molecule, analyzed semiclassically, allows one
to infer the long-range interaction between atoms [3].
Progress in atomic physics has made it possible to measure
van der Waals interactions between ground-state atoms
and a surface (scaling as 1=L3, or even 1=L4 if retardation
plays a role) with a variety of techniques [4]. However,
directly measuring the van der Waals interaction between
two ground-state atoms would be extremely challenging,
due to their very small interaction. In contrast, Rydberg
atoms (atoms with large principal quantum number n)
exhibit very strong interactions that scale rapidly with n.
Using this property, the interaction between Rydberg
atoms and a surface has been measured at relatively large
distances [5,6]. Here, we report on the measurement of
the C6=R

6 interaction between two isolated Rydberg atoms
prepared in a well defined quantum state.

The principle of our experiment is the following. We
irradiate the pair of atoms with lasers that couple the
ground state jgi and the targeted Rydberg state jri with

Rabi frequency �. Depending on the relative strength of
UvdW and @�, two limiting cases can be identified. If
UvdW � @�, the atoms behave independently and the
doubly excited state jrri can be fully populated. On the
contrary, when @� � UvdW, the excitation of jrri is off
resonant and thus suppressed [see Fig. 1(a)], yielding
Rydberg blockade [7–9]. This leads to the appearance of
‘‘blockade spheres’’ inside of which only one Rydberg
excitation can be created. The blockade sphere picture
gives an intuitive understanding of nontrivial many-body
effects in driven systems. Rydberg blockade has been
observed in recent years in extended cold atom ensembles
[10–14] as well as between two atoms [15,16].
In the transition region @��UvdW, i.e., in the partial

blockade regime, the blockade sphere picture is too sim-
plistic: the populations of the various many-atom states
undergo coherent collective oscillations with several fre-
quencies which depend on UvdW. In our two-atom experi-
ment, this allows us to extract the interaction strength.
By measuring UvdW for various R, we observe its charac-
teristic 1=R6 dependence. The measured C6 coefficients,
which scale extremely fast with n, agree well with ab initio
calculations. Our results prove that detailed control over
the interactions between Rydberg atoms is possible; this is
a prerequisite for applications to high-fidelity quantum
information processing [17] and quantum simulation using
long-range interatomic interactions [18].
We use two single 87Rb atoms at a temperature of

50 �K, loaded in 1 mK-deep microscopic optical traps
from a magneto-optical trap [see Fig. 1(b)] [19]. Our new
setup is designed to overcome the limitations of the appa-
ratus used in our early studies of Rydberg blockade [16]
and entanglement [20]. We use an aspheric lens under
vacuum [21] with numerical aperture 0.5 (focal length
10 mm, working distance 7 mm) to focus two 850 nm
trapping beams down to 1:1 �m (1=e2 radius). The dis-
tance R between the traps is varied by changing the
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incidence angle of the beams on the lens. We calibrate R by
measuring the displacement of an image of the trap when
changing the incidence of the trapping beams. The result-
ing uncertainty is below 5% [22].

The aspheric lens used to focus the trapping beams
also collects the atom fluorescence from each trap on
separate photon counters. The two-photon excitation
from jgi ¼ j5S1=2; F ¼ 2; mF ¼ 2i to the Rydberg state

jri ¼ jnD3=2; mj ¼ 3=2i [see the inset of Fig. 1(b)],

described in Ref. [23], yields coherent oscillations with
single-atom Rabi frequencies �=ð2�Þ in the range from
500 kHz to 5 MHz [see Fig. 2(a)]. The excitation pulse has
a duration � (during which the traps are off), and the laser
frequencies are adjusted so that the (light-shift corrected)
one-atom detuning is � ’ 0. After excitation, we infer the
state of each atom by detecting its presence or absence in
its respective trap (atoms in jri are slightly antitrapped by
the optical potential, which results in their loss). We thus
reconstruct the populations Pij of the two-atom states jiji

(i, j taking the values g, r), by repeating each sequence
about 100 times [23].
Our setup was designed to minimize residual electric

fields detrimental to Rydberg state manipulations: (i) the
aspheric lens surface facing the atoms is coated with a
conductive 200 nm-thick indium-tin-oxide layer; (ii) eight
independent electrodes allow us to apply electric fields
along any direction [24]. Using Stark spectroscopy on
the j62D3=2; mj ¼ 3=2i state, we determine that with all

electrodes grounded, a residual field of �150 mV=cm
(pointing essentially along x) was present. After applying
appropriate correction voltages, the residual field is below
�5 mV=cm. This cancellation is critical to the success of
the experiment: small (transverse) stray fields mix jri with
other Rydberg states not coupled to light, or exhibiting
Förster zeros [25], thus degrading the blockade.
Figures 2(b)–2(e) shows the probabilities Prg þ Pgr to

excite only one atom, and Prr to excite both, versus the
area �� of the excitation pulse, for various R and �, in
the case n ¼ 62. In Fig. 2(b), the atoms are far apart
(R ’ 15 �m) and thus almost independent. Indeed, the
probability Prr of exciting both atoms is nearly equal to
the product P1;rP2;r [see Fig. 2(a)], where Pi;r is the

probability for atom i to be in jri, obtained in a control
experiment with only trap i. In this case Prg þ Pgr is

expected to oscillate at frequency 2� between 0 and 1=2,
close to what we observe. On the contrary, in Fig. 2(e), the
atoms are close (R ’ 4:0 �m) and � ’ 2�� 1:9 MHz is
small enough for almost perfect blockade to occur: at
all times, Prr is negligible (Prr < 0:06, with an average
of 0.036), and thus differs substantially from the product
of the single-atom excitation probabilities expected for
independent atoms. At the same time, Prg þ Pgr oscillates

at ð1:49� 0:07Þ�, close to the expected collective

frequency
ffiffiffi
2

p
� [16].

In between those regimes [see Figs. 2(c) and 2(d)],
blockade is only partial: Prg þ Pgr and Prr show a more

complex behavior, revealing nontrivial two-atom states.
We model this dynamics by solving the optical Bloch
equations (OBEs) [26,27]. Each atom i (i ¼ 1, 2) is con-
sidered as a two-level atom with ground state jgii and
nD3=2 Rydberg state jrii, coupled by a near-resonant

laser with Rabi frequency � (in practice, for our data,
the atoms experience, within 5%, the same�). In the basis
fjggi; jgri; jrgi; jrrig, and using the rotating wave approxi-
mation, the Hamiltonian is

H¼

0 @�=2 @�=2 0

@�=2 �@� 0 @�=2

@�=2 0 �@� @�=2

0 @�=2 @�=2 UvdW�2@�

0
BBBBB@

1
CCCCCA: (1)

We omit diagonal terms corresponding to interaction
between ground-state atoms (for R ¼ 1 �m the van der
Waals interaction is in the 10�8 Hz range, and the

FIG. 1 (color online). (a) Principle of the Rydberg blockade.
The single-atom Rabi frequency is �. (b) Experimental setup.
Two single atoms are trapped in microscopic optical traps
separated by R. Eight electrodes (four of which, facing the
ones displayed here, are not shown) provide electric field con-
trol. Inset: two-photon excitation scheme (the intermediate-state
detuning is � ’ 2�� 740 MHz).
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magnetic dipole-dipole interaction in the mHz range) or
between a ground-state and a Rydberg atom (in the 1 Hz
range at R ¼ 1 �m), as they are negligible with respect to
the relevant energy scales of the problem. Experimentally,
we observe (especially for large �) a small damping of
the oscillations, essentially due to off-resonant spontane-
ous emission via the 5P1=2 intermediate state. To take this

into account, we solve the OBEs for the two-atom density
matrix _� ¼ �i½H;��=@þL. We write the dissipative
term as L ¼ L1 � �2 þ �1 �L2, where

Li ¼ �
�rr ��gr=2

��rg=2 ��rr

 !
i

(2)

is the dissipator for atom i (neglecting dephasing),
expressed in the basis fjgii; jriig, and �i the reduced
density matrix of atom i. This phenomenological way to
include dissipation is sufficient for the present data; a more
exact way would include several levels (including the
5P1=2 state) for each atom, as was done in Refs. [23,27].

We neglect cooperative effects such as super radiance
(this is legitimate as R is much larger than the wavelength
� ’ 795 nm of the 5S-5P transition which dominates the
dissipation via spontaneous emission) [26].

The parameters � and � appearing in the model
are obtained by fitting single-atom Rabi oscillation data

[see the triangles in Fig. 2(a)]. The only remaining parame-
ters in the model are UvdW and �. We treat UvdW as an
adjustable parameter to fit the solution of the OBEs to
PrgðtÞ þ PgrðtÞ and PrrðtÞ. Examples of such fits are pre-

sented as solid lines in Figs. 2(b)–2(e) (shaded areas show
the confidence interval in UvdW). We also treat � as a free
parameter, to account for slow drifts of the lasers [28].
With this method, we obtain only jUvdWj, as for � ’ 0 the
sign of the interaction does not affect the dynamics. We
have checked that deliberately setting � ¼ 0 and � ¼ 0 in
the fit (thus reducing our analysis to solving an effectively
three-level Schrödinger equation), yields values of jUvdWj
departing by at most 20% from those above. We checked
that the interaction energy yielded by the fits does not
depend on the chosen � by doubling or halving it. We
emphasize that the convergence of the fit is optimal when
UvdW � @�. Combined with our range of accessible �,
this means we can determine values of jUvdWj=h in the
range from 0.1 to 10 MHz.
Figure 3 shows jUvdWj extracted from such fits versus R,

for the Rydberg states jri ¼ jnD3=2; mj ¼ 3=2i with

n ¼ 53, n ¼ 62, and n ¼ 82. The data are consistent
with a power law of exponent�6. Here, the determination
of the exponent is much more direct than for interacting
ultracold [11] or thermal [29] ensembles, in which the

FIG. 2 (color online). From independent to blockaded atoms, via partial blockade, for n ¼ 62. (a) Single-atom Rabi oscillation
P1;rð��Þ between jgi and jri (green triangles), and product of such excitation probabilities for single atoms in traps 1,2 with the other

trap off (red squares). (b)–(e): Probability Prg þ Pgr to excite one atom to the Rydberg state (blue diamonds), and double Rydberg

excitation probability Prr (black circles), versus excitation pulse area ��. From (b) to (e), R decreases, yielding increasing blockade.
Solid lines are fits of the data by the solution of the OBEs (see text). Shaded areas correspond to one standard deviation in determining
jUvdWj (statistical error bars on �, at the 1% level, are not shown).
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random distribution of atoms smears out the interaction R
dependence. Our results illustrate the dramatic dependence
of UvdW with n: for instance, changing n from 53 to 62 at
given R yields a fiftyfold increase in UvdW. Fitting the data
by jUvdWj ¼ jC6jExpt:=R6 with jC6jExpt: as an adjustable

parameter, we obtain the values of Table I.
To compare our measurements to the theoretical expres-

sions of jUvdWj (solid lines in Fig. 3), we diagonalize the
interaction Hamiltonian, considering only the leading, elec-
tric dipole interaction term. From the quantum defects
reported in Ref. [30], we compute radial wave functions
using the Numerov algorithm [31]. We restrict the
Hamiltonian to a two-atom basis jn1l1j1mj1; n2l2j2mj2i
comprising only states close in energy (up to �h�5GHz)
from the jnD3=2; mj ¼ 3=2; nD3=2; mj ¼ 3=2i state, and

satisfying jn� n1;2j 	 4. This corresponds to (sparse) ma-

trices up to ’ 103 � 103 [32].
At the large distances relevant here, the dipole-dipole

interaction simply shifts the two-atom levels by a quantity
C6=R

6 that can be obtained from second-order perturbation
theory. At shorter distances, mixing between adjacent
levels occurs [25], altering the 1=R6 character of the inter-
action (this can be seen for n ¼ 53 when R< 4 �m).
We obtain the jC6jTh: coefficients of Table I by fitting the
numerically obtained interactions at distances 15<R<
20 �m. Our results are in good agreement with second-
order perturbation theory calculations [33]. We get an
estimate of the uncertainty in jC6jTh: by adding random,
uniformly distributed relative errors of �0:5% to radial
matrix elements appearing in the Hamiltonian. The relative
uncertainty is larger (�10%) for n ¼ 53, due to cancella-
tions of terms with opposite signs. Taking into account

error bars, the agreement between our measurement and
the calculated C6 is very good. It appears from Fig. 3 that
for the largest values of UvdW, our experimental determi-
nation systematically lies below the theory. An explanation
might be that mechanical effects induced by interactions
lead to a modification of the dynamics, as recently sug-
gested [34]. Our present analysis neglects these effects and
may lead to an underestimation of the actual interaction.
Including these effects is left to future work.
In summary, we have directly measured the van der

Waals interaction between two isolated Rydberg atoms.
The level of control demonstrated here opens exciting
perspectives in multiatom systems, for observing
geometry-dependent effects due to the anisotropy of the
dipolar interaction [35], or the nonadditivity of van der
Waals interactions [36]. It is also a prerequisite for
generating high-fidelity, many-atom entanglement using
Rydberg blockade, as well as for quantum simulation of
long-range interacting spin systems.
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