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Ramsey theory is a highly active research area in mathematics that studies the emergence of order in

large disordered structures. Ramsey numbers mark the threshold at which order first appears and are

extremely difficult to calculate due to their explosive rate of growth. Recently, an algorithm that can be

implemented using adiabatic quantum evolution has been proposed that calculates the two-color Ramsey

numbers Rðm; nÞ. Here we present results of an experimental implementation of this algorithm and show

that it correctly determines the Ramsey numbers Rð3; 3Þ and Rðm; 2Þ for 4 � m � 8. The Rð8; 2Þ
computation used 84 qubits of which 28 were computational qubits. This computation is the largest

experimental implementation of a scientifically meaningful adiabatic evolution algorithm that has been

done to date.
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In recent years first steps have been taken towards
experimentally realizing the computational advantages
promised by well-known quantum algorithms. As with
any nascent effort, these initial steps have been limited.
To date the largest experimental implementations of sci-
entifically meaningful quantum algorithms have used just
a handful of qubits. For circuit-based algorithms [1], seven
spin qubits were used to factor 15, while for adiabatic
algorithms [2], four spin qubits were used to factor 143.
In both cases compiled versions of the algorithms were
needed to allow factoring with such small numbers of
qubits. Although factoring was the focus of both experi-
ments, other scientifically significant applications exist.

In Ref. [3] an algorithm for determining the two-color
Ramsey numbers was proposed which could be imple-
mented using adiabatic quantum evolution. Ramsey num-
bers are part of an active research area in mathematics
known as Ramsey theory [4] whose central theme is the
emergence of order in large disordered structures. The
disordered structures can be represented by an N-vertex
graph G, and the ordered substructures by specific graphs
H1 and H2 that are to appear as subgraphs of G. For
two-color Ramsey numbers the subgraphs H1 and H2 are
m-cliques and n-independent sets, respectively. An
m-clique is a set of m vertices that has an edge connecting
any two of the m vertices, and an n-independent set is a set
of n vertices in which no two of the n vertices are joined by
an edge. Using Ramsey theory [4,5], one can prove that a
threshold value Rðm; nÞ exists so that for N � Rðm; nÞ
every graph with N vertices will contain either an
m-clique or an n-independent set. The threshold value
Rðm; nÞ is an example of a two-color Ramsey number.
Other types of Ramsey numbers exist, though we focus
on two-color Ramsey numbers here. Ramsey numbers
Rðm; nÞ grow extremely quickly and are notoriously

difficult to calculate. In fact, for m, n � 3, only nine are
presently known [5].
In the Ramsey number algorithm (RNA) [3], the calcu-

lation of Rðm; nÞ is formulated as an optimization problem
which can be solved using adiabatic quantum evolution [6].
Here we present evidence of an experimental implementa-
tion of the RNA using adiabatic quantum evolution and
show that it correctly determines the Ramsey numbers
Rð3; 3Þ and Rðm; 2Þ for 4 � m � 8. The experimental
computation of Rð8; 2Þ used a total of 84 qubits of which
28 were computational qubits and applied an effective
interaction coupling 28 qubits. To the best of our knowl-
edge, this is the largest experimental implementation of a
scientifically meaningful adiabatic evolution algorithm.
We begin this Letter with a brief description of the RNA.

We then discuss the details of experimentally implement-
ing the RNA using adiabatic quantum evolution on a chip
of 106 superconducting flux qubits, and follow with a
presentation of our experimental results. Finally, we close
with a discussion of what has been found.
I. Ramsey number algorithm.—We briefly describe

the construction of the RNA; see Ref. [3] and the
Supplemental Material [7] for a detailed presentation.
As computation of Rðm; nÞ is intimately connected with

the presence or absence of edges, we associate a bit variable
av;v0 with each pair of vertices (v, v0) in an N-vertex graph

G, and setav;v0 ¼ 1 (0)whenv andv0 are (are not) joined by
an edge in G. There are thus LN ¼ ðN2Þ � NðN � 1Þ=2 bit

variables which we collect into the bit vector (bit string)
a ¼ ða2;1; . . . ; aN;1; a3;2; . . . ; aN;2; . . . ; aN;N�1Þ of length

LN . Thus an N-vertex graph G determines a unique
bit string a, and vice versa. Reference [3] (and the
Supplemental Material [7]) showed how to count the num-
ber of m-cliques CN

mðaÞ and n-independent sets INn ðaÞ in an
N-vertex graph G using its associated bit string a. We can
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thus calculate the total number of m-cliques and
n-independent sets contained in G: hNm;nðaÞ ¼ CN

mðaÞ þ
INn ðaÞ. Now consider the following combinatorial optimi-
zation problem (COP): For given integers (N,m, n) and cost
function hNm;nðaÞ defined as above, find an N-vertex graph

Ga?
that yields the global minimum of hNm;nðaÞ. Notice that

if N < Rðm; nÞ, the global minimum is hNm;nða?Þ ¼ 0, since
Ramsey theory guarantees that a graph exists that has
no m-clique or n-independent set. Furthermore, if N �
Rðm; nÞ, Ramsey theory guarantees that hNm;nða?Þ> 0.

Adiabatic quantum optimization (AQO) [6] is a T ¼ 0
ground-state (GS) method that exploits the adiabatic evo-
lution of a quantum system to solve COPs, while quantum
annealing (QA) [8] is a finite temperature method which
can also be used to solve COPs even in the presence of
decoherence. Reference [3] described a quantum imple-
mentation of the RNA using AQO, while in this Letter we
present evidence for a QA implementation of the RNA.
(Note that a classical implementation of the RNA is also
possible using a classical optimization algorithm run on a
classical computer to solve the Ramsey number COP.)
Both AQO and QA use the COP cost function to define a
problem Hamiltonian HP whose ground-state eigenspace
contains all COP solutions. These algorithms evolve the
state of a qubit register from the ground state of an initial
Hamiltonian Hi to a ground state of HP with high proba-
bility in the adiabatic limit. The algorithm dynamics
is driven by a time-dependent Hamiltonian HðtÞ ¼
Aðt=tfÞHi þ Bðt=tfÞHP, where tf is the algorithm run

time, adiabatic dynamics corresponds to tf ! 1, and

Aðt=tfÞ [Bðt=tfÞ] is a positive monotonically decreasing

[increasing] function with Að1Þ ¼ 0 [Bð0Þ ¼ 0].
In the quantum implementation of the RNA each bit

variable av;v0 is promoted to a qubit, thus associating a

qubit with each vertex pair (v, v0). The bit strings a now
label the computational basis (CB) states jai, and the
problem Hamiltonian HP is defined to be diagonal in
the CB with eigenvalue hNm;nðaÞ. By construction, the

ground-state energy of HP vanishes if and only if there is
a graph with no m-cliques or n-independent sets. The
initial Hamiltonian Hi is the standard one for AQO [6]
and appears in the Supplemental Material [7]. Its unique
ground state is the uniform superposition of all CB states.

Implementation of the RNA using QA computes Rðm; nÞ
as follows. First, choose N such that N < Rðm; nÞ, then run
QA on the LN qubits and measure the qubits in the CB at
the end of the anneal. This yields a bit string a�, which
determines the final energy E ¼ hNm;nða�Þ. In the adiabatic

limit the result will be E ¼ 0 since N < Rðm; nÞ. Now
increment N ! N þ 1, rerun QA on the LNþ1 qubits,
and measure the final energy. Repeatedly incrementN until
E> 0 first occurs, at which point the current value of N
will be equal to Rðm; nÞ. In any real application of the
above algorithm the evolution will only be approximately
adiabatic, and the probability that the measured energy will

be the ground-state energy will thus be 1� �. By running
the algorithm k�Oðln½1� ��= ln�Þ times, the probability
� that at least one of the measurement outcomes yields the
ground-state energy can be made arbitrarily close to 1.
II. Experimental implementation.—Our hardware is

designed to implement QA using rf SQUID flux qubits.
Each qubit is a superconducting loop interrupted by
Josephson junctions, and the states j0i and j1i correspond
to the two directions of circulating current about the loop
[9]. The chip hardware uses Josephson-junction-based
devices to produce pairwise qubit coupling [10]. By rescal-
ing the chip Hamiltonian by the interqubit coupling energy
JAFMðtÞ ¼ MAFMjIpq ðtÞj2, the low-energy dynamics of the
chip can be represented by a quantum Ising model in a
transverse field with the Hamiltonian [11],

H ¼ �A

�
t

tf

�X
i

�x
i þ B

�
t

tf

��X
i

hi�
z
i þ

X
ði;jÞ2E

Jij�
z
i�

z
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�
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Here MAFM is the maximum antiferromagnetic (AFM)
value of the interqubit effective mutual inductance that
the hardware can produce, and Ipq ðtÞ is the supercurrent
circulating about the rf SQUID loop. Although the scale
factor JAFMðtÞ is time dependent, its order of magnitude
can be estimated. For the D-Wave One device, MAFM ¼
1:8 pH, and jIpq ðtÞj�0:6�A at the quantum critical point,
so that JAFM � 1 GHz or 50 mK. With this rescaling, the
local biases fhig and coupling strengths fJijg may be

programed to values in the ranges [�2, 2] and [� 1, 1],
respectively, and the experimentally measured functional
forms of the interpolation functions Aðt=tfÞ and Bðt=tfÞ
appear in the Supplemental Material [7], along with the
layout of qubits and couplers on the chip. For further
details of the chip hardware, see Ref. [12].
The cost function hNm;nðaÞ is not yet ready for experi-

mental implementation for two reasons: (a) there are
k-qubit interactions with k > 2 and (b) the qubit couplings
do not correspond to the qubit couplings on the chip. These
obstacles are removed as follows.
(a) Reduction to pairwise coupling: The Supplemental

Material [7] shows that CN
mðaÞ involves interactions

coupling ðm2Þ qubits, while INn ðaÞ couples ðn2Þ qubits. These
interactions must be reduced to pairwise coupling if
hNm;nðaÞ is to be realized experimentally. We illustrate

how such a reduction can be achieved by reducing the
3-bit coupling term a1a2a3 to pairwise coupling using an
ancillary bit variable b and penalty function Pða1;a2;bÞ¼
a1a2�2ða1þa2Þbþ3b. Notice that Pða1; a2;bÞ ¼ 0ð>0Þ
when the input values for a1, a2, and b satisfy
b ¼ a1a2 (b � a1a2). Now consider the quadratic cost
function hðbÞ ¼ ba3 þ�Pða1; a2; bÞ for given values of
� and ai. For � sufficiently large, hðbÞ is minimized
when b satisfies the equality constraint b ¼ a1a2 which
causes the penalty function to vanish. The optimum cost
is then hðb ¼ a1a2Þ ¼ a1a2a3 which reproduces the 3-bit
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coupling term using a quadratic cost function. This
example is generalized in the Supplemental Material [7]
to produce the quadratic cost function used to calculate
Rðm; 2Þ.

(b) Matching spin to qubit connectivity: A cost func-
tion with only pairwise qubit coupling may still not be
experimentally realizable as the qubit couplings needed
may not match the qubit couplings available on chip. The
primal graph (PG) of a quadratic cost function is the
graph whose vertices are the qubit variables, and whose
edges indicate pairwise-coupled qubits. An arbitrary PG
can be embedded into a sufficiently large qubit graph
having the qubit layout and connectivity present on the
chip. An embedding maps a PG vertex to one or more
vertices in the qubit graph, where the image vertices form
a connected subgraph of the qubit graph. We link this
connected set of qubits together with strong ferromag-
netic couplings of strength � so that in the lowest energy
state these qubits have identical Bloch vectors. An exam-
ple of this ferromagnetic coupling procedure is given in
the Supplemental Material [7].

III. Embedding Ramsey problems.—We examined all
Ramsey number COPs that could be solved using the
106 qubits available on the chip. Specifically, Rðm; 2Þ
with 4 � m � 8, and Rð3; 3Þ. Here we describe the embed-
ding of these problems onto the chip.

(a) Rðm; 2Þ: Since an N-vertex graph Ga with N <m
cannot contain an m-clique, it follows that CN

mðaÞ ¼ 0
for all suchGa. Thus, for N <m, hNm;2ðaÞ ¼ IN2 ðaÞ ¼ �a1 þ
� � � þ �aLN

, where �ai ¼ 1� ai. This produces a problem

HamiltonianHP with LN uncoupled qubits, which is easily
mapped onto the chip. Now consider N ¼ m. Defining
L ¼ Lm ¼ ðm2Þ, we have Cm

mðaÞ ¼ a1a2 � � � aL�1aL, and

hmm;2ðaÞ ¼ Cm
mðaÞ þ Im2 ðaÞ. The L-bit interaction in Cm

mðaÞ
is reduced to pairwise coupling by (i) introducing ancillary
bit variables b2; . . . ; bL�1 and (ii) imposing the constraints
bL�1 ¼ aL�1aL and bj ¼ ajbjþ1 (j ¼ 2; . . . ; L� 2)

through the penalty function Pða;bÞ ¼ PðaL�1; aL;
bL�1Þ þP

L�2
j¼2 Pðaj; bjþ1;bjÞ, where Pða; b; cÞ was

defined in Sec. II(a). The Rðm; 2Þ cost function for
N ¼ m is then hmm;2ða; bÞ ¼ fa1b2 þ�Pða; bÞg þ Im2 ðaÞ,
where � ¼ 2 is the penalty weight value used in all
Rðm; 2Þ experiments. Making the substitutions 2a¼
saþ1 and 2b ¼ sb þ 1 expresses the cost function in
terms of Ising spin variables sa and sb. The PG for the
pairwise interactions present in hmm;2ða; bÞ appears in

the Supplemental Material [7]. We have embedded this
PG into the hardware up to N ¼ m ¼ 8. In [7] we display
the embedding that was used to determine Rð8; 2Þ which
used 28 computational qubits, 26 ancilla qubits to reduce
interactions to pairwise, and 30 qubits to match the PG
connectivity to the qubit connectivity available on the chip
for a total of 84 qubits.

(b) Rð3; 3Þ: We also determined Rð3; 3Þ by examining
N ¼ 4; 5; 6. The cost functions for these cases are

h43;3ðaÞ ¼ f1;2;4 þ f1;3;5 þ f2;3;6 þ f4;5;6;

h53;3ðaÞ ¼ f1;2;5 þ f1;3;6 þ f1;4;7 þ f2;3;8 þ f2;4;9 þ f3;4;10

þ f5;6;8 þ f5;7;9 þ f6;7;10 þ f8;9;10;

h63;3ðaÞ ¼ f1;2;6 þ f1;3;7 þ f1;4;8 þ f1;5;9 þ f2;3;10 þ f2;4;11

þ f2;5;12 þ f3;4;13 þ f3;5;14 þ f4;5;15 þ f6;7;10

þ f6;8;11 þ f6;9;12 þ f7;8;13 þ f7;9;14 þ f8;9;15

þ f10;11;13 þ f10;12;14 þ f11;12;15 þ f13;14;15;

where fi;j;k ¼ aiajak þ �ai �aj �ak. Notice that fi;j;k can be

rewritten as fi;j;k ¼ �2þ �ai þ �aj þ �ak þ aiaj þ aiak þ
ajak, which only contains pairwise couplings, making

ancillary b qubits unnecessary. The largest of these prob-
lems is for N ¼ 6 whose PG has 15 vertices and 60 edges.
We can reduce its size slightly by exploiting the identity
hNm;nðaÞ ¼ hNn;mð �aÞ. For m ¼ n this yields a twofold sym-

metry: if a? is a global minimum of hNm;m, so is �a?. Thus,

we can fix one variable (say, a1 ¼ 0) and optimize over the
remaining variables a0. Optimal solutions then have the
form (0, a0

?) and (1, �a0
?). With this simplification, the PG

of h63;3ð0;a0Þ has 14 vertices and 52 edges. We show its

embedding into the chip hardware in the Supplemental
Material [7].
IV. Results.—To solve a given Ramsey COP specified by

the parameters h and J, the chip must first be programed to
fix these values in the hardware. For the largest problem we
solved [Rð8; 2Þ using 84 qubits], this took roughly 270 ms.
After programing we iterate many cycles of annealing and
readout. Each annealing cycle has duration tf ¼ 1 ms, and

readout of the qubits takes 1.5 ms per sample. Programing
only occurs once so the total run time required to obtain S
Ramsey output samples is 270þ ð1þ 1:5ÞS ms. As the
hardware is an analog device, there is limited precision
to which h and J can be specified. For a COP whose
ground state is sensitive to parameter settings, this could
pose serious difficulties. However, the Ramsey COP
requires specification of only a few distinct integral values,
and ground states are quite stable to parameter perturba-
tions. The reader is referred to the Supplemental Material
[7] for further discussion of (i) the quantum annealing rate
and the distribution of final energies, (ii) the experimental
temperature, and (iii) parameter noise.
Figures 1 and 3 present our results for Rð8; 2Þ and

Rð3; 3Þ. Because of space limitations, our full set of results
[Rð3; 3Þ and Rðm; 2Þ with 4 � m � 8] appears in the
Supplemental Material [7], though Table I contains a sum-
mary of all results, along with corresponding theoretical
predictions. Both Figs. 1 and 3 display histograms that plot
the relative frequency of energy values obtained by pro-
graming the chip and running 105 annealing and readout
cycles, yielding 105 s-spin configurations. In the main
figures, histograms of the energies of the Ising problem
sent to the hardware are plotted. These Ising cost functions
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include the Ramsey cost function hNm;nðsÞ and the ferro-

magnetic penalties �, enforcing the equality constraints
among qubits that represent the same PG spin variable.
The ferromagnetic penalty weight used for embedding was
adjusted so that at least 85% of output s configurations
satisfied the equality constraints. These feasible spin
configurations were translated back to the original a var-
iables and the cost-energy function hNm;nðaÞ evaluated. The

resulting energy values were binned and plotted in the inset
histograms. Further discussion of the equality constraint
protocol appears in the Supplemental Material [7].
Figure 1 presents our results for Rð8; 2Þ for N ¼ 7 and 8,

while N ¼ 6 appears in [7]. The Rð8; 2Þ experiment was
the largest of the Rðm; 2Þ problems considered. Of the s
configurations returned by the hardware for N ¼ 8, ap-
proximately 65% are global minima of h88;2. By compari-

son, steepest-descent local search started from a random
spin configuration finds a globally minimal configuration
with less than 0.01% probability. Note that classical or
thermal annealing can be ruled out as the source of opti-
mization efficacy. First, it is clear that the hardware is not
realizing classical annealing since the final distribution of
low-energy states is not Boltzmann distributed as discussed
in the Supplemental Material [7], Sec. VIB, and further-
more, the temperature of the hardware is never varied
during the experiments. Finally, we compare the optimiza-
tion efficacy of the hardware with that of an efficient C
implementation of simulated annealing that was run on a
standard 8 Gb, 2.66 GHz desktop computer. The results of
Fig. 2 show that, at a run time of 2.5 ms (which is the 1 ms
run time plus 1.5 ms readout time of the Ramsey number
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FIG. 1 (color). Energy histograms for Rð8; 2Þ for graphs with:
(a) N ¼ 7 and (b) N ¼ 8, which are, respectively, below and at
the Ramsey threshold. Inset: histogram of relative frequency of
feasible a configurations vs Ramsey energy hN8;2NðaÞ.
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FIG. 2 (color). Plot of simulated annealing success probability
to determine optimal and feasible spin configurations versus run
time for Rð8; 2Þ at N ¼ 8. The simulated annealing cooling
schedule is exponential, and the initial and final temperatures
were optimized for maximum success probability. For compari-
son, the D-Wave hardware results are also shown for a run time
of 2.5 ms. See text for further discussion.

TABLE I. Results for Ramsey numbers Rðm; 2Þ ¼ m for 4 � m � 8 and Rð3; 3Þ ¼ 6. Here N is the number of graph vertices; EGS

and D are the ground-state energy and degeneracy, respectively, for the problem Hamiltonian HP; and for each Ramsey number, the
experimental results are followed by the theoretical predictions from Ref. [3] in parenthesis.

Rð2; 4Þ Rð2; 5Þ Rð2; 6Þ Rð2; 7Þ Rð2; 8Þ Rð3; 3Þ
N EGS D N EGS D N EGS D N EGS D N EGS D N EGS D

3 0(0) 1(1) 4 0(0) 1(1) 5 0(0) 1(1) 6 0(0) 1(1) 7 0(0) 1(1) 5 0(0) 12(12)

4 1(1) 7(7) 5 1(1) 11(11) 6 1(1) 16(16) 7 1(1) 22(22) 8 1(1) 29(29) 6 2(2) 1758(1760)
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experiments), the hardware obtains significantly higher
success rates for finding both feasible and optimal
final spin configurations than does simulated annealing.
Returning to Fig. 1, examination of the inset histograms for
N ¼ 7 (8), we see that (i) hmin ¼ 0ð1Þ, (ii) the probability
for h ¼ 0ð1Þ is approximately 1.0(0.65), and (iii) the num-
ber of optimal a configurations or graphs is 1 (29). The
reader is referred to the Supplemental Material [7] for an
explanation of how the probability for an optimal spin
configuration is determined. The energies hmin found for
N ¼ 7 and 8 agree with the final GS energies found in
Ref. [3], indicating that the hardware finds the final GS
with high probability. As hmin jumps from 0 ! 1 asN goes
from 7 ! 8, the Ramsey protocol correctly [5] identifies
Rð8; 2Þ ¼ 8. Finally, Ref. [3] showed that the number of
optimal graphs for N ¼ 7ð8Þ is 1 (29), which agrees with
what was found by the hardware. For N ¼ 7, the unique
optimal a configuration corresponds to the graph in which
every pair of vertices is connected by an edge and so has no

2-independent sets or 8-clique and so has h78;2 ¼ 0. For

N ¼ 8, the 29 optimal a configurations correspond to
graphs Ga with h88;2ðaÞ ¼ 1, which are the 28 eight-vertex

graphs containing a single 2-independent set, and the
single 8-vertex graph containing an 8-clique.
Figure 3 shows our results for Rð3; 3Þ with N ¼ 5 and 6,

while N ¼ 4 appears in the Supplemental Material [7].
Together, they show that the minimum energies for
N ¼ 4, 5, 6 are 0, 0, 2, respectively, and these occur with
probabilities of approximately 93%, 94%, and 91%. These
success rates are much higher than steepest-descent local
search. The success rate for randomly initialized local
search is less than 1% for N ¼ 6. The energies hmin agree
with the final GS energies found in Ref. [3], indicating that
the hardware again finds the final GS with high probability.
As hmin jumps from 0 ! 2 as N goes from 5 ! 6, the
Ramsey protocol correctly [5] identifies Rð3; 3Þ ¼ 6.
Finally, Ref. [3] showed that the number of optimal graphs
for N ¼ 4, 5, 6 is 18, 12, 1760, respectively, in excellent
agreement with the hardware results of 18, 12, 1758.
V. Discussion.—We presented results of an experimental

implementation of the RNA [3]. As the Ramsey numbers
found correspond to known Ramsey numbers, it was
possible to validate RNA performance. Agreement
between theory and experiment was excellent: experimen-
tal implementation of the RNA correctly determined
(i) Rðm; 2Þ ¼ m for 4 � m � 8 and Rð3; 3Þ ¼ 6 and
(ii) the corresponding final ground-state energies and
degeneracies. Our results provide evidence of a quantum
implementation of the RNA based on adiabatic evolution.
Further evidence that the D-Wave hardware implements
quantum annealing has recently been reported [13]. It was
argued in Ref. [14] that this evidence did not imply quan-
tum annealing, though these arguments were refuted in
Ref. [15]. Finally, we stress that the optimization formula-
tions necessary for experimental realization of the RNA
were nontrivial. The Ising problems after embedding,
solved with high success rate by the hardware, have
many local minima which were responsible for the low
success rates of iterated local search. In spite of the many
local minima, the hardware implementation of the RNA
correctly determined all of the above Ramsey numbers.
The Rð8; 2Þ computation used 84 qubits of which 28 were
computational qubits, and to the best of our knowledge is
the largest experimental implementation of a scientifically
meaningful adiabatic evolution algorithm.
We thank the D-Wave hardware team for providing

this experimental platform, and M. Amin, R. Harris,
T. Lanting, and M. Thom for valuable suggestions. F. G.
thanks T. Howell III for continued support.
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FIG. 3 (color). Energy histograms for Rð3; 3Þ for graphs with:
(a) N ¼ 5 and (b) N ¼ 6 which are, respectively, below and at
the Ramsey threshold. Inset: histogram of relative frequency of
feasible a configurations vs Ramsey energy hN3;3ðaÞ.
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