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Discontinuous shear thickening (DST) observed in many dense athermal suspensions has proven
difficult to understand and to reproduce by numerical simulation. By introducing a numerical scheme
including both relevant hydrodynamic interactions and granularlike contacts, we show that contact friction
is essential for having DST. Above a critical volume fraction, we observe the existence of two states: a low
viscosity, contactless (hence, frictionless) state, and a high viscosity frictional shear jammed state. These
two states are separated by a critical shear stress, associated with a critical shear rate where DST occurs.
The shear jammed state is reminiscent of the jamming phase of granular matter. Continuous shear
thickening is seen as a lower volume fraction vestige of the jamming transition.
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Suspensions of particles at high volume fraction of solid,
often termed dense suspensions, have a rich non-Newtonian
rheology. This is particularly striking for the simple system
of nearly rigid particles in a Newtonian fluid, which exhibits
shear thinning, shear thickening, and normal stresses, the
last associated with strong microstructural distortion,
despite the dominant influence played in such mixtures by
viscous (Stokes-flow) fluid mechanics [1]. The phenome-
non of discontinuous shear thickening (DST) (see [2—5] and
references therein) is especially fascinating. Suspensions
exhibiting DST flow relatively easily with slow stirring, but
become highly viscous or even seemingly solid if one tries
to stir them rapidly. In a rheometer, the transition is seen at a
critical shear rate for a given volume fraction. It is often
found that DST is completely reversible [6]. DST typically
occurs for a volume fraction that exceeds a threshold value
¢, which depends on the nature of the suspended particles:
increased nonsphericity or surface roughness seem to lower
¢ .. Continuous shear thickening (CST) is observed below
¢, and becomes weaker with decreasing volume fraction.
Although counterintuitive, the abrupt or discontinuous
increase of viscosity with increase of shear rate is a generic
feature of dense suspensions [3,7], occurring in both
Brownian (colloidal) and non-Brownian suspensions. This
ubiquity suggests the possibility of a single mechanistic
basis applicable to the various types of suspension. DST
has yet to be reproduced by a simulation method which
can unambiguously point to the essential physical features
necessary for its observation. This Letter presents a novel
method able to identify these features.

Several possible mechanisms have been proposed as
the origin of DST. An order-disorder mechanism [8§8-10]
describes a low shear rate ordered flow with few interac-
tions between particles that becomes unstable at high shear
rates and evolves to a disordered, highly interacting vis-
cous flow. A hydroclustering [6,11-15] or (hydro)contact
network [16,17] mechanism attributes the thickening to
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clusters of particles “glued” together by the lubrication
singularity. The competition between a force (Brownian or
interparticle) tending to keep particles apart and the
imposed shear strain, which tends to push particles
together along the compressional axis, results in narrower
interparticle gaps as the shear rate increases. The resulting
clusters of particles move more rigidly, effectively increas-
ing the viscosity. Neither of these scenarios makes a dis-
tinction between CST and DST, and the development of
hydroclusters oriented with their dominant principal axis in
the compressional quadrant in Brownian hard-sphere sus-
pensions leads only to CST [18,19] even at volume frac-
tions as large as ¢ = 0.58 [20]. A theoretical approach
based on an ad hoc mode-coupling theory attempts to
describe DST as a shear-induced glass transition [21-24].
Another suggested mechanism [5,25-27] explicitly relates
DST to the existence of an underlying jamming transition
due to the frustration of the granularlike dilatancy by the
confining stress.

The appropriate mechanism has been difficult to ascer-
tain. Most of the mechanisms noted predict the shear
rate above which shear thickening happens [5,28,29].
Experimentally, the order-disorder transition seems unnec-
essary [30], at least with a strictly ordered state [10].
Simulations based on purely hydrodynamic modeling,
such as Stokesian Dynamics [12], show that hydroclusters
appear in the semidilute regime and networks in the con-
centrated regime (¢ = 0.5), where they produce a (weak)
CST [13,16,31,32]. DST has never been reproduced by
those models.

A key mechanical issue left largely unconsidered in
previous simulation efforts is the occurrence of contacts,
and, in particular, frictional contacts between particles. It is
known that, despite the lubrication force, particle rough-
ness can lead to contacts, resulting in qualitative changes
from the expected behavior of ideal smooth hard particles
[33,34]. One consequence of surface contact is an increase
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of viscosity with increasing surface friction [35]. In a
colloidal silica suspension exhibiting DST, increased par-
ticle roughness has been shown to lead to a smaller critical
shear rate [36,37]. Even for ideally smooth spheres, such
issues as finite particle deformability may play a role for
the large stresses that arise at small interparticle gaps. Such
small gaps, dropping to subnanometer scale even for non-
colloidal particles, lead us to question the relevant physics
of close particle interactions. The experiments cited above,
as well as physical intuition, suggest that contact between
particles is an essential ingredient of the mechanics of flow
of highly concentrated suspensions.

In this Letter we introduce a numerical model merging
hydrodynamics and features of granular physics. The
model permits contacts between particles by assuming a
cutoff in the singular resistance due to lubrication for a
small interparticle gap in the Stokes regime. These contacts
are treated with a model adopted from granular physics,
involving friction. Our simulations, limited here to
athermal systems (i.e., not considering Brownian motion,
although this may, in principle, be introduced), show
expected effects of volume fraction and exhibit both CST
and DST, with the critical ingredient leading to the latter
being the incorporation of interparticle friction (Fig. 1).

Our model deals with the following interparticle inter-
actions: the hydrodynamic force Fg, the contact force F,
and a repulsive force Fy. Since both fluid and particle
inertia are neglected, the dynamics is overdamped and
forces (and torques) are balanced for each particle:
F(f’,) + Fg) + F%) =0, i=1,...,N. The hydrodynamic
interaction Fy in the Stokes regime can be written as a
linear function of velocities of particles U relative to
an imposed flow U® by constructing a resistance
matrix R; i.e., hydrodynamic forces are of the form
Fy; = —R - (U — U®) (see [12,38] for details). The parti-
cle velocities can therefore be determined by solving the
force balance equations.

For concentrated suspensions, the resistance matrix can
be approximately obtained by neglecting the far-field or
many-body effects and taking the leading terms of the pair
hydrodynamic interactions [38]. In the simulations, we use
the leading terms from the exact solution for two particles
[39,40] in order to handle bidisperse systems, but the
following explanation assumes a monodisperse system
for simplicity. There is a singular factor 1/h®%7 in the
resistance to relative motion of particles i and j, where
h'%J) is the interparticle gap. We argue that it is appropriate,
in seeking to represent real suspensions, to relax the ideal-
ization to represent factors such as the finite roughness of
particle surfaces. We regularize the lubrication by inserting
a small length & to prevent divergence at contact 2>/} = 0
as in [41] (6 = 107 3a is used, where a is the particle
radius). The squeezing mode of the lubrication force is
written as

Fl(;{,) = —a(hNUD — UW) - n)pld), (1)

Here, a(h) = 3mnya®/2(h + &), where 7, is the viscosity
of the suspending fluid. n*/) is the unit vector along the
line of centers from particle i to j. Thus, the hydrodynamic
force acting on a particle is approximately given as the
sum of the regularized lubrication force and the Stokes
drag FY = —6mnya{U? — U®(?))}. The hydrody-
namic forces scale with shear rate 7, and hence there is
no essential shear-rate dependence.

The contact force F is activated for 2*/) < 0. A simple
spring-and-dashpot contact model [42,43] is employed to
mimic frictional hard spheres; the normal force is propor-
tional to the overlap —h®): F (éfor = k,he)n) where k,
is the spring constant. The friction appears as a tangential
force and a torque, both proportional to the tangential
spring displacement £0-): F&) = k6 and TE7 =
kan®) X £0)) (see [43] for details), where k, is the
tangential spring constant. The tangential force is subject
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FIG. 1 (color online). (a), (b) Shear rate and stress dependence of the relative viscosity 7,, respectively. I is the dimensionless shear
rate. The open and filled symbols indicate the results of n = 512 and 2048, and the volume fractions are shown in the graphs. The
friction coefficient is . = 1 except for the dashed and dotted blue lines, for which x = 0.1 and 0, respectively. Red symbols show the
results with 1.5 times stiffer particles. (c) DST (red line) and CST (dashed line) are shown in the phase diagram. The former is expected
to reach the jamming point ¢, for I' — 0, which is not seen because of log scale. The contour lines for ¢ < 0.56 are labeled by the
relative viscosity, 1,(¢, I). Before jamming (black domain), the shear jammed states (gray domain) exist. Observed flowing and
jammed states at ¢» = 0.58 are shown by circles and crosses, respectively.
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to Coulomb’s law Fc o < uF oo Even with contact
forces, ideal hard-sphere suspensions should be
Newtonian, because different y result in the same particle
trajectories, but with different time (~1/7) and force
(~ 7) scales. When trying to mimic hard spheres with
linear springs, we should avoid introducing an artificial
shear-rate dependence. We therefore choose k,, and k; ~ 7,
and tune the dashpot resistance to keep a short contact
relaxation time (=1073/%), in contrast to [16].

The shear-rate dependence is introduced by another
force that is not scaled with ¥, which we take as an
electrostatic double-layer force [44]. The approximate
form F%’j) = —Cae """ n(d) is used for h) >0, with
1/k = 0.05a. The repulsive force acts to keep particle
gaps wider, and is more effective at small shear rate, i.e.,
where the shear time 1/7 is longer. We thus introduce a
dimensionless shear rate as a ratio of two force scales:
I' = 67rmya®y/|Fr(h = 0)|, which is analogous to the
Péclet number for Brownian suspensions.

Simulations are performed using Lees-Edwards bound-
ary conditions. The simulation boxes are cubes for n = 512
particles and rectangular parallelepipeds (the shear plane is
square, and the depth is one half of the other dimensions) for
n = 2048. The influence of particle migration, as previ-
ously discussed [45], can be ruled out here since the system
is homogeneous owing to the boundary conditions. A bidis-
perse system is investigated to avoid strong ordering
(a, = 1.4a; and ¢, = ¢/2, ie., n;/n = 0.73), thereby
reducing the potential for an order-disorder transition [8—10].

We obtain the dependence of the relative viscosity 7, on
the dimensionless shear rate I" and stress  ( = 7,I") for a
range of volume fractions ¢ and friction coefficients u, as
shown in Fig. 1. Two major conclusions can be drawn. The
first is that for frictional spheres, a transition from CST to
DST is observed upon increase of ¢. For u =1, the
transition occurs at 0.56 < ¢, < 0.58. Although the shear
rate at the onset of thickening decreases with increasing ¢,
the onset stress o, is constant, as shown in Fig. 1(b). This
is consistent with experimental observations [28,29]. For
& > ¢, the high viscosity state achieved at high shear rate
is strongly dependent on the particle stiffness, while no
such dependence is seen for ¢ < ¢, or in the low viscosity
state. Remarkably, this qualitative difference between CST
and DST has been observed in experiments [5,25,27].
There, the control parameter is confinement, not particle
stiffness, but both play the key role for the system to
overcome the jammed state: in experiments by dilation,
in simulations by particle overlap. This has an important
conceptual consequence: if one considers a suspension of
ideal hard frictional spheres sheared at fixed volume, the
system becomes solid above the critical shear stress o, as
the jammed state achieved is stable against any further
increment of shear stress.

The second basic result is the crucial importance of
friction. For w = 0.1, the thickening is substantially

weaker than for 4 = 1, and it is completely absent in the
frictionless case, even at volume fractions approaching the
jamming point ¢ ;. This means that friction is essential for
a shear jammed state to exist. A similar finding is reported
for dry granular materials [46,47].

One is then led to think that shear thickening is related to
a shear-induced jamming, similar to what was suggested
in [25,26,48]. To test this idea, we show in Fig. 2(a) the
spatial distribution of contact bonds in the system, in both
the low and high viscosity phases. The difference is striking:
for low shear rate, contact force chains appear, but only as
elongated and isolated objects (unique to the combined
hydrodynamic-plus-contact force algorithm) along the
compression axis, whereas for high shear rate, a network
percolates in all directions. Similar observations have been
made for shear jammed states in granular materials [46].

Cates et al. [48] proposed a simple model of shear
jammed states, describing them by a stress tensor
o= Ann+ Aymm + Ajll, where n, m, and [ are the
three principal axes of the system, corresponding to the
three preferential orientations of force chains. In our simu-
lations, within a one or two degree accuracy, they coincide
with the compression (n), vorticity (m), and elongation (/)
axes for all conditions investigated.

We show that the minimal model can capture most of the
physics of shear thickening, provided that one distin-
guishes between the total stress o and the contribution
from frictional contact forces o . The associated eigenval-
ues A; and A¢ normalized by their traces are shown in
Fig. 2(b). It is clear that the result for the total stress shows
no difference between low and high viscosity states; the
multiaxial stress structure is observed in both states, mean-
ing that, at such high volume fractions, the total force
chains are percolating in all directions. However, the shear
thickening coincides with a dramatic change in the contact
stress. At low shear rate, contacts along the compression
axis dominate the stress, whereas the load is also shared by
the other two axes at high shear rate. The role of friction
can be seen by examining the eigenvalues A§ in the fric-
tionless contact case, as shown in Fig. 2(b): even though
the contact stress also gradually evolves from a uniaxial to
a multiaxial form, no shear thickening is observed. In
addition, the largest contact clusters for frictional and fric-
tionless cases are compared in Fig. 2(c). Clearly, friction
advances the percolation; frictional contacts under shear
cause local dilatancy, which compresses remaining gaps.
Thus, friction is essential for the multiaxial contact network
to develop sharply, i.e., over a narrow range of shear rate,
and to display the observed mechanical properties.

The percolation of the contact network occurs for a
minimum shear stress o,, which is apparently the point
where repulsive forces among particles are not sufficient to
prevent the proliferation of contacts.

DST is observed when the percolating network can
elastically sustain an applied stress. This is only possible
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FIG. 2 (color online). (a) Particle contacts are visualized as bonds at the two shear rates I'=005and "= 0.1 exhibiting low and
high viscosity states, respectively (u = 1, ¢ = 0.56, n = 2048). (b) The stress eigenvalues, A, (circles), A, (triangles), and A;
(squares), normalized by the trace, are shown (¢ = 0.56, n = 512). The solid lines (red) indicate the contact stress o=, and dashed
lines (black) the total stress o (u = 1). The dotted lines (blue) show the contact stress of the frictionless system (u = 0). (c) The
largest contact clusters for 4 = 1 (solid red) and w = 0 (dotted blue) are compared, where n.. is number of particles in a cluster.

for a minimum volume fraction ¢ > ¢, where there are
enough constraints to “lock” or “jam” the structure. The
critical volume fraction can be identified as the shear
jamming [46]: ¢. = dg(w). It is close to the values
observed for the static jamming of frictional spheres, but
it need not be the same [46]. When the suspension is forced
to flow at high shear rate in a strain-controlled experiment,
the viscosity is dominated by the yield stress of the solid
network, which is itself influenced by the confinement. The
network of contacts is constantly broken and reformed,
going from one transient solid configuration to another.
For ¢ < ¢pg(u), the CST is a vestige of this jamming
transition. Even when the applied shear stress is larger than
Oon» DO strictly jammed contact network can form. Only
underconstrained structures appear for o > o, (or equiv-
alently I' > I",), reminiscent of the jammed states seen for
& > ¢g(u). These structures still require a large applied
stress to flow, as they are only deformable via collective
rearrangements. Upon decrease of ¢, these networks are
increasingly underconstrained, and the high viscosity
phase fades away. It is worth noticing that the low viscosity
phase, essentially frictionless (as there are fewer frictional
contacts), has similar behavior, forming force networks
increasingly constrained as the volume fraction increases
[49,50]. It is indeed seen in Fig. 1(a) that the viscosity also

increases with ¢ in this phase. However, the point where
solid frictionless structures appear is only reached for
¢ = ¢, which is much larger than ¢ ¢(u). The fact that
these two divergences occur at two different volume frac-
tions is the cause for the blowup of the difference of
viscosity between the low shear rate frictionless state and
the high shear rate frictional state as ¢ — ¢g(u).

The above results lead us to propose a schematic phase
diagram for the shear thickening of athermal suspensions,
represented in the qﬁ—f’ plane in Fig. 1(c). DST, denoted by a
solid (red) line, occurs in the range ¢ ¢(u) < ¢ < ¢, for a
critical shear stress o,. Asymptotically, in the low viscos-
ity frictionless phase, 7 o« (1 — ¢/ ;) "4 with g = 2 [49],
which gives for the critical shear rate I', o -, (1 — ¢/ ).
This scaling is, however, difficult to observe in our data
range, as we are still rather far from the divergence. Above
the red line, the shear stress is a yield stress of the shear
jammed state, proportional to the pressure. For ideal hard
spheres sheared at constant volume, this region would
simply be inaccessible, as the yield stress would be infinite.
Below ¢g¢(u), CST occurs around an isostress dashed
black line, which appears as the continuation of the DST
red line. The stress is dominated by the proximity of shear
jammed states above this dashed line, and gives a viscosity
o [1 — ¢/pg()]~¢ with an estimated ¢’ = 1.5.
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This phase diagram may well be valid even in the case of
Brownian suspensions, where Brownian motion may play a
role similar to the double-layer force, namely, preventing
contacts and reopening gaps at low shear rate.
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