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The telomere length can either be shortened or elongated by an enzyme called telomerase after each cell

division. Interestingly, the shortest telomere is involved in controlling the ability of a cell to divide. Yet, its

dynamics remains elusive. We present here a stochastic approach where we model this dynamics using a

Markov jump process. We solve the forward Fokker-Planck equation to obtain the steady state distribution

and the statistical moments of telomere lengths. We focus specifically on the shortest one and we estimate

its length difference with the second shortest telomere. After extracting key parameters such as elongation

and shortening dynamics from experimental data, we compute the length of telomeres in yeast and obtain

as a possible prediction the minimum concentration of telomerase required to ensure a proper cell

division.
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The ends of the chromosomes, also called the telomeres,
are necessary for the maintenance of chromosomal integ-
rity and overall genomic stability [1]. Without any mecha-
nism of elongation, the telomere length can only decrease
during cell division [2]. Indeed, DNA polymerase cannot
fully replicate telomere ends. As a result, a cell can only
divide a finite number of times before it arrests proliferat-
ing. This process is called senescence, and has been pro-
posed as a component of cellular aging [3]. Interestingly,
ribonucleoprotein telomerase [4] allows telomeres to elon-
gate. Thus, the opposing effects of constitutive shortening
and telomerase elongation can maintain a telomere length
at equilibrium, so that the cell does not undergo senes-
cence. Short telomeres are preferentially increased by
telomerase [5] and the shortest is a limiting factor of
cellular proliferation [6]. However, the relation between
telomerase activity and the length of the shortest telomeres
remains elusive.

Using numerical simulations, previous theoretical mod-
els focused on telomere shortening in mammalian cells
within a telomerase-deficient cell population and provided
significant insights into the molecular dynamics and the
variability of triggering senescence [7–10]. More recently,
a computational approach based on a deterministic model
and stochastic simulations accounted for some experimen-
tal distributions of telomeres in senescent cells [11], but did
not provide either the underlying physical mechanisms or a
study for the distribution of telomeres and the shortest one
in particular.

In this Letter, we present a model that describes the
dynamics of the telomere length in a telomerase positive
cell, with a few specific parameters that we evaluate from
experiments in yeast. We model the telomere length by a
stochastic jump process, from which we derive the asso-
ciated jump Fokker-Planck equation. By solving this equa-
tion, we show that the telomere distribution is a Gamma

function. In addition, to compute the moments associated
with the shortest telomere, we present a statistical analysis
for the telomere lengths, which are viewed as independent
random variables. We found a universal law for the ratio of
the shortest to the second shortest telomeres at steady state.
Finally we propose a criterion for telomerase activity to
maintain the shortest telomere above a threshold that
defines the senescence onset. The present results give a
relation between telomerase activity and telomere length
and could be further applied to other organisms.
Stochastic model for telomere dynamics during cell

division.—We model the length Ln of a single telomere
after n divisions. This length is regulated by the opposing
effects of constitutive shortening and elongation by the
telomerase. Thus, at the end of each cellular division, a
telomere can either be elongated by a length � with proba-
bility PðLnÞ, which depends on the telomere length, or
shortened by a length a with probability 1� PðLnÞ.
After a division, Lnþ1 is then given by

Lnþ1 ¼
(
Ln �a with probability 1� PðLnÞ
Ln þ� with probability PðLnÞ;

(1)

where a is the shortening length [3–4 base pairs (bp) in
yeast [12]], while � is the number of nucleotides added by
telomerase. Because the number of base pairs added by
telomerase does not correlate with telomere length [5], we
considered that � is a random variable independent of
telomere length. Its probability is an exponential distribu-
tion [ Prð� ¼ yÞ ¼ pe�py] of parameter p, where 1=p is the
mean number of base pairs added per elongation. This
parameter was obtained by fitting experimental data [5]
[see Fig. 1(a)], for which we obtained p ¼ 0:026 (mean
number of nucleotides added� 40 bp). We further inferred
the probability PðLnÞ from analyzing biochemical reactions
involved in telomerase recruitment (see the Supplemental
Material [13]). Indeed, we considered the two opposite
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processes of elongation due to telomerase activity with a
rate k2, and inhibition of telomerase, the rate of which
depends on telomere length [14,15], and which is given by
k1ðLn � L0Þ. Combining these two opposite reactions, we
obtain for the probability of elongation

PðLnÞ ¼
(

1
1þ�ðLn�L0Þ if Ln > L0

1 else;
(2)

where L0 is a characteristic telomere length, and � ¼
k1=k2 is the effective telomerase inhibition rate (when �
increases, the probability of elongation decreases). We
fitted expression (2) to yeast data [see Fig. 1(b)] and we
found � ¼ 0:045 bp�1 and L0 ¼ 90 bp. Interestingly, the
present model is in agreement with previous observations
[14] that after a cell division, the mean change of telomere
length h�ðLÞi is a decreasing function, larger for short
telomeres than for long ones. Indeed from Eq. (1) of
our model, we derive that h�ðLÞi ¼ �a½1� PðLÞ� þ
ð1=pÞPðLÞ ¼ �aþ ½ðaþ 1=pÞ=ð1þ �ðL� L0ÞÞ�. Using
the numerical values for p, �, and L0 in Eq. (1), we
simulate a population of telomere lengths and obtain a
steady state distribution [see Fig. 1(c)] with mean 350�
102 (standard deviation) base pairs, in agreement with
experimental data in yeast [16]. Finally, we simulate the
return to steady state for average telomere length [see
Fig. 1(d)] with different initial conditions corresponding
to either short (150 bp) or long (600 bp) telomeres (similar
simulations were also reported in mammalian cells [11]).
The resulting dynamics is similar to experimental mea-
surements [14] with the following quantification. Starting
from a short telomere length, we observe a linear conver-
gence (� ¼ limn!1½jLn � L1j=jLn�1 � L1j�< 1) to
equilibrium with a rate � of 0.98 (simulation) compared
to 0.93 (experiments) [14], while starting from long

telomeres the dynamics is divided into two phases: an
initial constant shortening length of 1.9 bp (simulation)
versus 2.1 bp (experiments) [14], followed by an exponen-
tial decay [see Fig. 1(d)]. We conclude that the present
stochastic model captures the average dynamics and allows
us to reproduce the experimental distribution of telomeres
in yeast, confirming its validity. We shall now use this
model to compute the distribution of telomeres, some
statistical quantities associated with the shortest telomere
and to obtain novel predictions.
The stationary distribution of telomere length.—

We compute here the steady state distribution based on
Eq. (1). Because the shortening length (3.5 bp in yeast) is
small compared with the elongation (� 40 bp on average),
we rescale Eq. (1) with a time scale �t and norma-
lize the telomere length L using the scaled variable X ¼
ðL� L0Þ=a. Equation (2) becomes the jump rate function
�ðXÞ ¼ 1=ð1þ BXÞ, and the probability for the jump �� is
given by Prð �� ¼ yÞ ¼ �e��y ¼ bðyÞ, where B ¼ a�
(elongation probability parameter) and � ¼ ap (elongation
length parameter) are parameters of the normalized
model. In the limit�t ! 0, we obtain a continuous process
with a constant drift for shortening, and possible large
jumps with exponential rates for elongation, and the dy-
namics of the normalized length X is given by

Xðtþ�tÞ

¼
�
XðtÞ ��t with probability 1� �ðXÞ�tþ oð�tÞ
XðtÞ þ� with probability �ðXÞ�tþ oð�tÞ:

(3)

Since the mean elongation length 1=p (� 40 bp) is large
compared with the shortening (� 3 bp per division) and
the jump rate is close to 1 when X is close to 0, we
neglected the probability that XðtÞ goes to negative values.
Otherwise, a zero boundary condition has to be imposed on
the probability density function (pdf) of X at zero. The pdf
fðx; tÞ ¼ @Fðx; tÞ=@x where Fðx; tÞ ¼ PrfXðtÞ � xg as
�t ! 0 satisfies the Takacs equation, which is the forward
Fokker-Planck equation for Eq. (3) and x > 0, [17,18]

@tf¼ @xf��ðxÞfðx; tÞ þ
Z l

0
�ðyÞfðy; tÞbðx� yÞdy: (4)

The stationary distribution function �f satisfies

0 ¼ �f0ðxÞ � �ðxÞ �fðxÞ þ
Z x

0
�ðyÞ �fðyÞbðx� yÞdy; (5)

with normalization condition
R1
0

�fðxÞdx ¼ 1. The general
solution of Eq. (5) is [see the Supplemental Material [13])

�fðxÞ ¼ L1ð1þ �xÞe��xM
��1

B
þ 1;

�1

B
þ 2; �

�
xþ 1

B

��
þ L2ðBxþ 1Þ1=Be��x; (6)

where L1 and L2 are two constants and M is the Kummer
confluent hypergeometric function. The asymptotic
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FIG. 1 (color online). Telomere length in the yeast S. cerevi-
siae. (a) CDF of nucleotides added per elongation, fitted to
Ref. [5]. (b) Probability of elongation as a function of the
telomere length computed from Eq. (2) and fitted to Ref. [5]
(dots). (c) Equilibrium telomere length distribution simulated
from Eq. (1) (n ¼ 500, 100 000 runs) compared with the ana-
lytical stationary distribution (red) computed from Eq. (7).
(d) Average dynamics (10 000 runs) of short (150 bp) and long
(600 bp) telomere return to steady state.
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behavior of Mða; b; zÞ for z ! þ1 is Mða; b; zÞ �
ðezaa�bÞ=�ðaÞ. Thus L1 ¼ 0 (otherwise, limx!1 �fðxÞ ¼
limx!1½ðL1Bxe

p=BÞ=ð1� 1=BÞ�ð1� 1=BÞ� ¼ �1, and �f
would not be a probability function), and L2 is determined
by the normalization condition.We conclude that the steady
state distribution for the normalized telomere length is

�fðxÞ ¼ �½�ðxþ 1
BÞ�1=Be��½xþð1=BÞ�

�ð1B þ 1; �BÞ
; (7)

where �ðs; xÞ ¼ Rþ1
x ts�1e�tdt is the upper incomplete

Gamma function. Finally, the variable �½X þ ð1=BÞ� fol-
lows approximatively a normalized Gamma distribution
of parameter � ¼ 1þ ð1=BÞ [Eq. (7)]. The mean hLi
and standard deviation (SD) for the telomere length L ¼
aX þ L0 are given by [see the Supplemental Material [13])

hLi ¼ L0 � 1

�
þ 1

p
ð1þ 1

a�
Þ (8)

SD ðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a�

q
p

: (9)

In Figs. 1(c) and 2, we obtain a good agreement between
the probability density function �ð�; 1Þ and the empirical
distributions obtained from stochastic simulations [Eq. (1)].
The distributions are robust for the parameters fitted in
yeast [see Fig. 1(c)] as for other values of � (elongation
length parameter) andB (elongation probability parameter)
(see Fig. 2). In particular, changing the parameter � resulted
only in a shift of the length distribution. In contrast, chang-
ing the elongation probability parameterB (which accounts
for the telomerase activity) affects significantly the shape
of the distribution through the parameter � (see Fig. 2),
suggesting that the level of telomerase can drastically mod-
ify the telomere length distribution.

The distribution of the shortest telomere.—Because the
shortest telomeres potentially initiate senescence signaling
[6], we shall now focus on the distribution of the shortest
telomere in an ensemble of 2n telomeres, which

correspond to n chromosomes (16 in yeast and n is in the
range of 36–60). We model the 2n telomere lengths
as independent identically distributed variables
L1; L2; . . . ; L2n. Considering 2n independent identically
distributed variables X1; . . . ; X2n following a distribution
f, the pdf of Xð1:2nÞ ¼ minðX1; X2; . . . ; X2nÞ is given by

fXð1:2nÞ ðxÞ ¼ 2nð1� FÞ2n�1ðxÞfðxÞ; (10)

where FðxÞ ¼ R
x
0 fðuÞdu. The statistical moments

�Xk
ð1:2nÞ ¼

R
Rþ xkfXð1:2nÞ ðxÞdx are given by

�X k
ð1:2nÞ ¼ k

Z
Rþ

xk�1ð1� FÞ2nðxÞdx: (11)

When f is a Gamma distribution of parameter � and n is
sufficiently large, we estimate �Xk

ð1:2nÞ using Laplace’s

method. Equation (7) with � ¼ 1þ ð1=BÞ is such that,
when x goes to 0, FðxÞ � mxr with m ¼ ½1=��ð�Þ�> 0
and r ¼ �> 1 (see also p. 305 of Ref. [19]), we obtain

�X k
ð1:2nÞ ¼

k

r

Z þ1

0
xk=r�1 exp½2n lnð1� Fðx1=rÞÞ�dx:

Thus, �Xk
ð1:2nÞ � ½ðk�ðk=rÞÞ=ðrð2nmÞk=rÞ�. That is,

�X k
ð1:2nÞ �

k�ðk�Þ
�

�
��ð�Þ
2n

�
k=�

: (12)

Using formulas (10)–(12), we compute the pdf and the
moments of the shortest telomere length L1:2n for k ¼ 1.
As shown from Eq. (7), we have that p½ððLi � L0Þ=aÞþ
ð1=BÞ� follows a Gamma distribution. Then using
Eq. (12), we obtain that the mean of the shortest telomere
length is

�L ð1:2nÞ � L0 � 1

B
þ �ð1þ 1

BÞ�ð 1
1þ1=BÞ1=ð1þ1=BÞ

pð1þ 1
BÞ1=ð1þBÞð2nÞ1=ð1þ1=BÞ : (13)

In Fig. 3(a), we obtain for various values of the elongation
probability parameter B (n ¼ 50) a good agreement
between the analytical formula (12) and expression (11)
that was computed from the empirical approximation of
Eq. (7) (B> 0:5). We conclude that the shortest telomere
length can be obtained from formula (12) with B large
enough (> 0:5). When B is small, Laplace’s method fails
to approximate well the cumulative distribution F, and
underestimates �Xð1:nÞ. Using values p ¼ 0:026, � ¼
0:045 (B¼ 0:16< 0:5), and L0 ¼ 90 (yeast) and Eq. (11)
for the first two moments (k ¼ 1 and 2), we compute
that the mean shortest telomere length is 184� 25 bp
(confirmed by the empirical simulations of Eq. (1) [see
Fig. 3(b)] ). Thus the shortest telomere length should
significantly vary from cell to cell, which is sufficient to
explain variations of senescence onset observed in
telomerase-deficient cells [20,21].
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FIG. 2 (color online). Stationary distribution of telomere length
for various values of � and B. Histograms of �ðXnþ1=BÞ
using Eq. (1) (500 steps, 50 000 runs), compared with the scaled
Gamma pdf of parameter 1þ ð1=BÞ.
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The gap between the shortest telomere and the others.—
We study here the separation between the shortest telomere
and the others. We compute the distribution of the second
shortest length Xð2:2nÞ. The pdf fXð2:2nÞ of Xð2:2nÞ is given by

fXð2:2nÞ ðxÞ ¼ 2nð2n� 1ÞFðxÞð1� FðxÞÞ2n�2fðxÞ; (14)

and the statistical moments �Xk
ð2:2nÞ satisfy the induction

relation

�X k
ð2:2nÞ ¼ n �Xk

ð1:2n�1Þ � ð2n� 1Þ �Xk
ð1:2nÞ: (15)

Using Eq. (12) for k ¼ 1, we obtain the surprising result
that the ratio �Xð2:2nÞ= �Xð1:2nÞ for n or B � 1 asymptotically

depends on � ¼ 1þ ð1=BÞ as
�Xð2:2nÞ
�Xð1:2nÞ

� 1þ 1

�
: (16)

Interestingly, in the generic case where the pdf of random
variables has a nonzero first order derivative at 0, this ratio
is universal and equal to 3

2 . In Fig. 3(c), we plot Eq. (16)

and obtain good agreement with numerical simulations,
which confirms the accuracy of the analytical approach for
estimating the gap between the shortest telomere and the
others. In the case of the yeast, we use Eq. (15) and we
obtain that the mean length of the second shortest telomere
is 207 bp [confirmed by Fig. 3(b)]. Thus, we predict that
the shortest telomere is on average 22 bp shorter than the
second one.

Maintenance of telomere length.—As the size of the
shortest telomere is controlled by the elongation probabil-
ity parameter B (which depends on the telomerase concen-
tration), we propose to estimate now the minimum value
Bc for which the shortest telomere does not go below a
critical length with probability 99%. The critical length Lq

is defined by PðLð1:2nÞ <LqÞ ¼ q which is the probability

that the shortest telomere length is less than Lq with

probability q ¼ 0:01. Using that the dimensionless length
X ¼ ðL� L0Þ=a and �ðXþ ð1=BÞÞ is a Gamma distribu-
tion of parameter 1þ ð1=BÞ [Eq. (7)], we obtain that L ¼
L0 � ½1=Bþ ðaY=�Þ�, where Y is again a Gamma distri-
bution of parameter 1þ ð1=BÞ. Using Eq. (10), we get that
Lq is such that

1�
�
1� FY

��
Lq þ 1

B
� L0

�
B

a

���
2n ¼ q; (17)

where Y � �ð1þ ð1=aBÞ; 1Þ. A direct computation gives
Lq as a function of B that we plotted in Fig. 4(a). For a

threshold Lc ¼ 120 bp below which the telomerase cannot
regulate telomere length (an event that triggers senescence
[5]), we find that Bc ¼ 0:36 [see Fig. 4(a)]. For this critical
value, the frequency of elongation [Eq. (2)] in Fig 4(b) is
roughly divided by 2 in the range of 100–300 bps and
the probability of senescence for a single cell after one
division is 1%. In contrast, with the endogenous value � ¼
ðB=aÞ ¼ 0:045 we compute that this probability is quasi-
null, as it drops to 1� ð1� 1:5� 10�40Þ32 � 5� 10�38.
In conclusion, we presented a stochastic approach to

compute the telomere length distribution. We specifically
focused on the shortest one. This approach allowed us to
find a condition on the parameter� so that the length of the
shortest telomere does not decrease below a critical length
after a division, with a probability of 1%. It would be
interesting to relate this measurable parameter � to the
level of telomerase, as this relation is still unclear [11].
Another interesting extension is the modification of � in
cancerous cells, where the cell cycle duration is affected
[22,23]. Since such changes might increase the telomerase
effectiveness, this could indeed explain their intrinsic
proliferation ability.
This research is supported by an ERC Starting Grant. We

thank Teresa Teixeira and Zhou Xu for fruitful discussions.
Study [24] provides complementary information to the one
presented here with genetics experiments.
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