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We experimentally demonstrate a protocol for entanglement distribution by a separable quantum

system. In our experiment, two spatially separated modes of an electromagnetic field get entangled by

local operations, classical communication, and transmission of a correlated but separable mode between

them. This highlights the utility of quantum correlations beyond entanglement for the establishment of a

fundamental quantum information resource and verifies that its distribution by a dual classical and

separable quantum communication is possible.
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Like a silver thread, quantum entanglement [1] runs
through the foundations and breakthrough applications of
quantum information theory. It cannot arise from local
operations and classical communication (LOCC) and
therefore represents a more intimate relationship among
physical systems than we may encounter in the classical
world. The ‘‘nonlocal’’ character of entanglement mani-
fests itself through a number of counterintuitive phe-
nomena encompassing the Einstein-Podolsky-Rosen
paradox [2,3], steering [4], Bell nonlocality [5], or nega-
tivity of entropy [6,7]. Furthermore, it extends our abilities
to process information. Here, entanglement is used as a
resource which needs to be shared between remote parties.
However, entanglement is not the only manifestation of
quantum correlations. Notably, separable quantum states
can also be used as a shared resource for quantum commu-
nication. The experiment presented in this Letter highlights
the quantumness of correlations in separable mixed states
and the role of classical information in quantum commu-
nication by demonstrating entanglement distribution using
merely a separable ancilla mode.

The role of entanglement in quantum information is
nowadays vividly demonstrated in a number of experi-
ments. A pair of entangled quantum systems shared by
two observers enables us to teleport [8] quantum states
between them with a fidelity beyond the boundary set by
classical physics. Concatenated teleportations [9] can fur-
ther span entanglement over large distances [10] which can
be subsequently used for secure communication [11]. An
a priori shared entanglement also allows us to double the
rate at which information can be sent through a quantum
channel [12] or one can fuse bipartite entanglement into
larger entangled cluster states that are ‘‘hardware’’ for
quantum computing [13].

The common feature of all entanglingmethods used so far
is that entanglement is either produced by some global

operation on the systems that are to be entangled or it results
from a direct transmission of entanglement (possibly medi-
ated by a third system) between the systems. Even entangle-
ment swapping [9,14], capable of establishing entanglement
between the systems that do not have a common past, is not
an exception to the rule because also here entanglement is
directly transmitted between the participants.
However, quantum mechanics admits conceptually dif-

ferent means of establishing entanglement which are free
of transmission of entanglement. Remarkably, the creation
of entanglement between two observers can be disas-
sembled into local operations and the communication of
a separable quantum system between them [15]. The
impossibility of entanglement creation by LOCC is not
violated because communication of a quantum system is
involved. The corresponding protocol exists only in a
mixed-state scenario and obviously utilizes fewer quantum
resources in comparison with the previous cases because
communication of only a discordant [16–18] separable
quantum system is required.
In this Letter, we experimentally demonstrate the entan-

glement distribution by a separable ancilla [15] with
Gaussian states of light modes [19]. The protocol aims at
entangling mode A which is in possession of a sender
Alice, with mode B held by a distant receiver Bob by local
operations and transmission of a separable mediating mode
C from Alice to Bob. This requires the parties to prepare
their initial modes A, B, and C in a specific correlated but
fully separable Gaussian state. Once the resource state
�̂ABC is established, no further classical communication
is needed to accomplish the protocol. To emphasize this,
we attribute the state preparation process to a separate
party, David. Note that this resource state preparation is
performed by LOCC only. No global quantum operation
with respect to David’s separated boxes is executed at the
initial stage, and no entanglement is present.
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Protocol.—The protocol [19] depicted in Fig. 1 consists
of three steps. Initially, a distributor David prepares modes
A and C in momentum squeezed and position squeezed

vacuum states, respectively, with quadratures x̂A;C ¼
e�rx̂ð0ÞA;C and p̂A;C ¼ e�rp̂ð0Þ

A;C, whereas mode B is in a

vacuum state with quadratures x̂B ¼ x̂ð0ÞB and p̂B ¼ p̂ð0Þ
B .

Here, r is the squeezing parameter and the superscript (0)
denotes the vacuum quadratures. David then exposes
all the modes to suitably tailored local correlated dis-
placements [20]:

p̂A ! p̂A � p; x̂C ! x̂C þ x;

x̂B ! x̂B þ ffiffiffi
2

p
x; p̂B ! p̂B þ ffiffiffi

2
p

p:
(1)

The uncorrelated classical displacements x and p obey a
zero mean Gaussian distribution with the same variance
ðe2r � 1Þ=2. The state has been prepared by LOCC across
AjBjC splitting and hence is fully separable.

In the second step, David passes modes A and C of the
resource state to Alice and mode B to Bob. Alice super-
imposes modes A and C on a balanced beam splitter BSAC,
whose output modes are denoted by A0 and C0. The beam

splitter BSAC cannot create entanglement with mode B.
Hence, the state is separable with respect to BjA0C0 split-
ting. Moreover, the state also fulfils the positive partial
transpose (PPT) criterion [21,22] with respect to mode C0
and hence is also separable across C0jA0B splitting [23], as
required [24].
In the final step, Alice sends mode C0 to Bob, who

superimposes it with his mode B on another balanced
beam splitter BSBC. The presence of the entanglement
between modes A0 and B0 is confirmed by the sufficient
condition for entanglement [25,26]

�2
normðgx̂A0 þ x̂B0 Þ�2

normðgp̂A0 � p̂B0 Þ< 1; (2)

where g is a variable gain factor. Minimizing the left-hand
side of Eq. (2) with respect to g, we get fulfilment of the
criterion for any r > 0, which confirms successful entan-
glement distribution.
Experiment.—The experimental realization is divided

into three steps: state preparation, measurement, and data
processing. The corresponding setup is depicted in Fig. 2.
From now on, we will work with polarization variables
described by Stokes observables (see, e.g., Refs. [27,28])
instead of quadratures. We choose the state of polarization

such that mean values of Ŝ1 and Ŝ2 equal zero while

FIG. 1 (color online). Sketch of the Gaussian entanglement
distribution protocol. David prepares a momentum squeezed
vacuum mode A, a position squeezed vacuum mode C, and a
vacuum mode B. He then applies random displacements (green
boxes) of the x̂ quadrature (horizontal arrow) and the p̂ quad-
rature (vertical arrow) as in Eq. (1), which are correlated via a
classical communication channel (green line). David passes
modes A and C to Alice and mode B to Bob. Alice superimposes
modes A and C on a balanced beam splitter BSAC and commu-
nicates the separable output mode C0 to Bob (red line connecting
Alice and Bob). Bob superimposes the received mode C0 with his
mode B on another balanced beam splitter BSBC, which estab-
lishes entanglement between the output modes A0 and B0 (black
lemniscata). Note the position of the displacement on mode B. In
the original protocol, the displacement is performed before
BSBC, which is depicted by the corresponding box with a dashed
green line. Equivalently, this displacement on mode B can be
performed after BSBC (the dashed arrow indicates the respective
relocation of the displacement) on mode B0, and even
a posteriori after the measurement of mode B0.
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FIG. 2 (color online). Sketch of the experimental setup. Used
abbreviations: HWP, half-wave plate; QWP, quarter-wave plate;
EOM, electro-optical modulator; BS, beam splitter; WS,
Wollaston prism; and AD, analog-to-digital. State preparation:
The polarization of two polarization squeezed states (A and C) is
modulated using EOMs and sinusoidal voltages from a function
generator (dotted lines). The HWPs before the EOMs are used to
adjust the direction of modulation to the squeezed Stokes vari-
able, whereas the QWPs compensate for the stationary birefrin-
gence of the EOMs. Such prepared modes interfere with a
relative phase of �=2 on a balanced beam splitter BSAC. In the
last step of the protocol, the mode C0 interferes with the vacuum
mode B on a second balanced beam splitter BSBC. Measurement
process: A rotatable HWP, followed by a WS and a pair of
detectors, from which the difference signal is taken, allows us to
measure all possible Stokes observables in the Ŝ1-Ŝ2 plane. To
determine the two-mode covariance matrix �A0B0 , all necessary
combinations of Stokes observables are measured. Removing the
second beam splitter of the state preparation allows us to
measure the covariance matrix of the two-mode state �̂A0C0 .
Data acquisition: To achieve displacements of the modes in
the Ŝ1-Ŝ2 plane, we electronically mix the Stokes signals with
a phase matched electrical local oscillator and sample them by
an analog-to-digital converter.
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hŜ3i � 0. This configuration allows us to identify the

‘‘dark’’ Ŝ1-Ŝ2 plane with the quadrature phase space. Ŝ�,

Ŝ�þ�=2 in this plane correspond to Ŝ1, Ŝ2 renormalized with

respect to Ŝ3 � S3 and can be associated with the effective
quadratures x̂, p̂. We use the modified version of the
protocol indicated in Fig. 1 by the dashed arrow showing
the alternative position of displacement in mode B: The
random displacement applied by David can be performed
after the beam splitter interaction of B and C0, even
a posteriori after the measurement of mode B0. This is
technically more convenient and emphasizes that the clas-
sical information is sufficient for the entanglement recov-
ery after the interaction of mode A with mode C and mode
B with mode C0.

David prepares two identically polarization squeezed
modes [26,27,29,30] and adds noise in the form of random
displacements to the squeezed observables. The technical
details on the generation of these modes can be found in the
Supplemental Material [24]. The modulation patterns
applied to modes A and C to implement the random dis-
placements are realized using electro-optical modulators
(EOMs) and are chosen such that the two-mode state �̂A0C0

is separable. By applying a sinusoidal voltage Vmod, the
birefringence of the EOMs changes at a frequency of
18.2 MHz. In this way, the state is modulated along the
direction of its squeezed observable.

Two such identically prepared modes A and C are inter-
fered on a balanced beam splitter (BSAC) with a fixed
relative phase of �=2 by controlling the optical path length
of one mode with a piezoelectric transducer and a locking
loop. This results in equal intensities of both output modes.
In the final step, Bob mixes the ancilla mode C0 with a
vacuum mode B on another balanced beam splitter and
performs a measurement on the transmitted mode B0.

The states involved are Gaussian quantum states and,
hence, are completely characterized by their first moments
and the covariance matrix � comprising all second
moments [24]. To study the correlations between modes
A0 and C0 after BSAC, multiple pairs of Stokes observables

(ŜA0;�, ŜC0;�) are measured. The covariance matrix �A0C0 is

obtained by measuring five pairs of observables: (ŜA0;0� ,

ŜC0;0�), (ŜA0;90� , ŜC0;0�), (ŜA0;0� , ŜC0;90�), (ŜA0;90� , ŜC0;90�), and

(ŜA0;45� , ŜC0;45�), which determine all of its 10 independent

elements. Here, � is the angle in the Ŝ1-Ŝ2 plane between

Ŝ0� and Ŝ�.
For the measurements of the different Stokes observ-

ables, we use two Stokes measurement setups, each com-
prising a rotatable half-wave plate, a Wollaston prism, and
two balanced detectors. The difference signal of one pair of

detectors gives one Stokes observable Ŝ� in the Ŝ1-Ŝ2
plane, depending on the orientation of the half-wave plate.
The signals are electrically down-mixed using an electric
local oscillator at 18.2 MHz, which is in phase with the
modulation used in the state preparation step. With this

detection scheme, the modulation translates to a displace-

ment of the states in the Ŝ1-Ŝ2 plane. The difference
signal is low pass filtered (1.9 MHz), amplified, and then
digitized using an analog-to-digital converter card (GaGe
Compuscope 1610) at a sampling rate of 106 samples=s.
After the measurement process, we digitally low pass filter
the data by an average filter with a window of 10 samples.
Because of the ergodicity of the problem, we are able to

create a Gaussian mixed state computationally from the
data acquired as described above. By applying 80 different
modulation depths Vmod to each of the EOMs, we acquire a
set of 6400 different modes. From this set of modes, we
take various amounts of samples, weighted by a two-
dimensional Gaussian distribution.
The covariance matrix �A0C0 for the two-mode state after

BSAC has been measured to be

�A0C0 ¼

20:90 1:102 �7:796 �1:679

1:102 25:30 1:000 14:63

�7:796 1:000 20:68 0:8010

�1:679 14:63 0:8010 24:65

0
BBBBB@

1
CCCCCA: (3)

The estimation of the statistical errors of this covariance
matrix �A0C0 can be found in the Supplemental Material
[24]. A necessary and sufficient condition for the separa-
bility of a Gaussian state �̂XY of two modes X and Y with
the covariance matrix �XY is given by the PPT criterion

�ðTY Þ
XY þ i�2 � 0; �2 ¼

M2
i¼1

0 1

�1 0

 !
; (4)

where �ðTY Þ
XY is the matrix corresponding to the partial trans-

pose of the state �̂XY with respect to the mode Y [24].
Effects that could possibly lead to some non-Gaussianity of
the utilized states are also discussed in detail in Ref. [24].
The state described by �A0C0 fulfils the condition (4) as the

eigenvalues (39.84, 28.47, 13.85, and 9.371) of (�
ðTC0 Þ
A0C0 þ

i�2) are positive; hence, mode C0 remains separable
after BSAC.
The measured two-mode covariance matrix of the output

state �A0B0 is given by

�A0B0 ¼

19:95 1:025 �4:758 �1:063

1:025 22:92 0:9699 9:153

�4:758 0:9699 9:925 0:2881

�1:063 9:153 0:2881 11:65

0
BBBBB@

1
CCCCCA: (5)

The statistical error of this measured covariance matrix is
given in the Supplemental Material [24]. The separability
is proven by the PPT criterion (eigenvalues 28.24, 21.79,
8.646, and 5.756).
The postprocessing for the recovery of the entanglement

is performed on the measured raw data of mode B0.
Therefore, the displacement of the individual modes
caused by the two modulators is calibrated. By means of
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this calibration, suitable displacements are applied digi-
tally. The classical noise inherent in mode B0 is completely

removed. A part of the classical noise associated with ŜA0;0�

is subtracted from ŜB0;0� , while the same fraction of the

noise in ŜA0;90� is added to ŜB0;90� . In this way, the noise

partially cancels out in the calculation of the separability
criterion (2) and allows us to reveal the entanglement. We
chose the fraction as in Eq. (1), which is compatible with
the separability of the transmitted mode C0 from the sub-
system (A0B) in the scenario with modulation on mode B
before the beam splitter BSBC.

Only as Bob receives the classical information about the
modulation on the initial modes A and C from David is he
able to recover the entanglement between A0 and B0. Bob
verifies that the product entanglement criterion (2) is ful-
filled, as illustrated in Fig. 3. That proves the emergence of
entanglement. The used gain factor g considers the slightly
different detector response and the intentional loss of
50% at Bob’s beam splitter. The clearest confirmation of
entanglement 0:6922� 0:0002< 1 is shown for gopt ¼
0:4235� 0:0005 (Fig. 3). This is the only step of the
protocol, where entanglement emerges, thus demonstrating
the remarkable possibility to entangle remote parties Alice
and Bob solely by sending a separable auxiliary mode C0.

Discussion.—The performance of the protocol can be
explained using the structure of the displacements (1).
Entanglement distribution without sending entanglement
highlights vividly the important role played by classical
information in quantum information protocols. Classical
information lies in our knowledge about all the correlated
displacement involved. This allows the communicating

parties (or David on their behalf) to adjust the displace-
ments locally to recover through clever noise addition
quantum resources initially present in the input quantum
squeezed states. Mode C0 transmitted from Alice to Bob
carries on top of the sub-shot-noise quadrature of the input
squeezed state the displacement noise which is anticorre-
lated with the displacement noise of Bob’s mode.
Therefore, when the modes are interfered on Bob’s beam
splitter, this noise partially cancels out in the output mode
B0 when the light quadratures of both modes add.
Moreover, the residual noise in Bob’s position (momen-
tum) quadrature is correlated (anticorrelated) with the
displacement noise in Alice’s position (momentum) quad-
rature in mode A0, again initially squeezed. Because of this,
the product of variances in criterion (2) drops below the
value for separable states, and thus entanglement between
Alice and Bob’s modes emerges. The difference between
the theoretically proposed protocol [19] and the experi-
mental demonstration reported in this Letter lies merely in
the way classical information is used. In the original pro-
tocol, the classical information is retained by David and he
is responsible for clever tailoring of correlated noise. Bob
evokes the required noise cancellation by carrying out the
final part of the global operation via superimposing his
mode with the ancilla on BSBC. In the experimentally
implemented protocol, David shares part of his information
with Bob, giving Bob a possibility to get entanglement
a posteriori, by using his part of the classical information
after the quantum operation is carried out. Thus, entangle-
ment distribution in our case is truly performed via a dual
classical and quantum channel, via classical information
exchange in combination with the transmission of sepa-
rable quantum states.
There are other interesting aspects to this protocol,

which may open new, promising avenues for research.
Noise introduced into the initial states by displacements
contains specific classical correlations. On a more funda-
mental level, these displacements can be seen as correlated
dissipation (including mode C into the ‘‘environment’’). It
is already known that dissipation to a common reservoir
can even lead to the creation of entanglement [31,32]. Our
scheme can be viewed as another manifestation of a posi-
tive role dissipation may play in quantum protocols.
The presence of correlated noise results in nonzero

Gaussian discord at all stages of the protocol, a more
general form of quantum correlations, which are beyond
entanglement [33]. The role of discord in entanglement
distribution has recently been discussed theoretically
[16,17]. The requirements devised there are reflected in
the particular separability properties of our global state
after the interaction of modes A and C on Alice’s beam
splitter. The state �̂A0BC0 contains discord and entanglement
across A0jBC0 splitting and is separable and discordant
across C0jA0B splitting, as required by the protocol. Our
work thus illustrates an interplay of entanglement and
other quantum correlations, such as correlations described

FIG. 3 (color online). Entanglement distributed between
modes A0 and B0. The experimental values for the criterion (2)
are depicted in dependence of the gain factor g. Because of the
attenuation of mode B by 50%, a gain factor of about 0.5 yields a
value smaller than 1, i.e., below the limit for entanglement (solid
red line). The inset zooms into the interesting section around the
minimum. The depicted estimated errors are so small because of
the large amount of data taken.
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by discord, across different partitions of a multipartite
quantum system.
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Note added.—Recently, an experiment has been pre-
sented in Ref. [34], which is based on a similar protocol.
The main difference consists in the fact that it starts with
entanglement which is hidden and recovered with thermal
states. For this implementation, no knowledge about clas-
sical information has to be communicated to Bob, besides
the used thermal state. By contrast, the setup presented in
this work exhibits entanglement only at the last step of the
protocol. Thus, both works give good insights on different
aspects of the theoretically proposed protocol [19]. Another
independent demonstration of a similar protocol based on
discrete variables was recently presented in Ref. [35].
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