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We provide a complete and exact theoretical study of the dynamical structure factor of a two-
dimensional quantum spin liquid in gapless and gapped phases, as realized in Kitaev’s honeycomb model.
We show that there are direct signatures—qualitative and quantitative—of the Majorana fermions and
gauge fluxes emerging in this model. These include counterintuitive manifestations of quantum number
fractionalization, such as a neutron scattering response with a gap even in the presence of gapless
excitations, and a sharp component despite the fractionalization of electron spin. Our analysis identifies
new varieties of the venerable x-ray edge problem and explores connections to the physics of quantum
quenches.
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Topological states of matter present a wide variety of
striking new phenomena. Prominent among these is the
fractionalization of electrons into unusual particles:
Majorana fermions [1], Laughlin quasiparticles [2], or
magnetic monopoles [3]. Their detection, however, is
fundamentally complicated by the lack of any local order,
such as, for example, the magnetization in a ferromagnet.
While there are now several instances of candidate topo-
logical spin liquids [4], their identification remains chal-
lenging [5]. The study of spin liquids has been central to
advancing our understanding of correlated phases of
quantum matter ever since Anderson’s proposal of the
resonating valence bond liquid state [6], which provided,
via the detour of high-temperature superconductivity, an
early instance of a fractionalized topological state [7,8].
More recent manifestations hold the promise of realizing
an architecture of quantum computing robust against
decoherence [9].
Investigations of such topological states are hampered by

the lack of suitable approaches, with numerical methods
limited to small system sizes, to models with a robust
excitation gap, or ones that avoid the sign problem in
quantumMonte Carlo calculations. A benchmark is offered
by the Kitaev model [1], which can be used as a repre-
sentative example of an entire class of quantum spin liquids
(QSL). While being a minimal model, it combines a raft
of desirable features. First, it is described by a simple
Hamiltonian involving only nearest-neighbor interactions
on the honeycomb lattice (Fig. 1), by virtue of which it is a
promising candidate for realization in materials physics
[10], or in cold atom implementations of quantum simu-
lators [11]. Second, it harbors two distinct topological
quantum spin liquid phases, with either gapless or gapped

Majorana fermion excitations. Finally, its solution can be
reduced to the problem of Majorana fermions hopping in
the background of an emergent static gauge field.
This remarkable feature permits, at least in principle,

even an analysis of the model’s dynamical properties, as
noted in a seminal paper by Baskaran and co-workers [12],
who pointed out an unexpected connection to the x-ray
edge problem [13], results of which were used to extract
asymptotic correlators of related models [14,15]. This
problem, whose tour de force exact solution was obtained
by Nozieres et al. [16], is one of the cornerstones of
condensed matter physics, linked to the discovery of
Anderson’s “orthogonality catastrophe” [17] and a foun-
dation for our understanding of local quantum quenches.

(a) (b)

FIG. 1 (color online). (a) The structure of the model on the
honeycomb lattice with two sublattices (labeled A and B) and
three bond directions (denoted x, y, z). The calculation of the
dynamical response can be mapped to a local quantum quench,
in which two adjoining Z2 fluxes, shown in blue, are inserted.
(b) The ground state and dynamical phase diagrams of the model:
the phase with gapless fermion excitations fills the central triangle
while gapped phases occupy the three outer triangles. The
dynamical response Szzðq;ωÞ includes a contribution sharp in
ω in the dark red region, but not in the light green region.
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The possibility of accessing dynamical properties of spin
liquids is of particular importance as these contain infor-
mation on fractionalized quasiparticles, and their theoreti-
cal study is topical in view of recent neutron scattering
investigations of candidate QSL compounds [5,18,19].
Indeed, the S ¼ 1=2 spinons in the Heisenberg chain were
most impressively visualized [20,21] by an analysis of
experiments based on the exact Bethe-ansatz solution,
specific to one dimension. Our Letter provides this infor-
mation in complete detail for the first time for a fraction-
alized quantum spin liquid in more than one dimension.
Through the connections to quantum quenches and the
physics of Majorana Fermions which appear in our dis-
cussion, it cements the central role played by the Kitaev
model for our understanding of correlated and topological
phases.
The model.—In the Kitaev model spin-half degrees of

freedom at sites j of a honeycomb lattice interact via
nearest-neighbor Ising exchange Ja. Frustration and quan-
tum fluctuations stem from linking the anisotropy direction
a ¼ x; y; z in spin space to the bond direction in real space
[Fig. 1(a)], a form of spin-orbit coupling. With Pauli
matrices σ̂aj and using hijia to indicate two sites sharing
an a bond, the Hamiltonian is

H ¼ −Jx
X

hijix
σ̂xi σ̂

x
j − Jy

X

hijiy
σ̂yi σ̂

y
j − Jz

X

hijiz
σ̂zi σ̂

z
j: (1)

The ground states of Eq. (1) fall into two classes [1]—
gapped and gapless spin liquids—depending on the relative
values of the Ja [Fig. 1(b)]. Their emergent independent
degrees of freedom are static Z2 gauge fluxes threading the
plaquettes of the honeycomb lattice and Majorana fermions
that hop between sites in this gauge field.
The model is solved [1] by introducing four Majorana

fermions ĉi, b̂
x
i , b̂

y
i , b̂

z
i at each site and representing spins

as σ̂ai ¼ iĉib̂
a
i . Taking r as a unit cell coordinate, the

Majorana fermions can be combined into two complex
species: bond fermions χ̂†hijia¼

1
2
ðb̂ai − ib̂aj Þ and matter

fermions f̂r ¼ 1
2
ðĉAr þ iĉBrÞ [12]. Defining bond operators

ûhijia ¼ ib̂ai b̂
a
j , which commute with Ĥ, the model in terms

of gauge degrees of freedom and Majorana fermions is

Ĥ ¼ i
X

a;hijia
Jaûhijia ĉiĉj: (2)

The Hamiltonian Ĥ has the Bogoliubov–de Gennes form
when expressed in terms of matter fermion operators f̂†r and
f̂r for eigenstates of the gauge fermion operators ûhiji.
It, therefore, conserves fermion parity, but not fermion
number. These features differentiate our spin dynamics
problem from the conventional x-ray edge problems and
turn out to be central to our findings.

The Hilbert space of the Hamiltonian in Eq. (2) can
now be decomposed into gauge jFi and matter jMi sectors,
and we denote the ground state of Ĥ by j0i ¼ jF0i ⊗ jM0i,
in which ûhijia jF0i ¼ þ1jF0i for all bonds and jM0i is
the corresponding ground state of the Majorana hopping
problem [1], whose Hamiltonian Ĥ0 is obtained from
Ĥ by substituting all ûhijia with their ground-state eigen-
values þ1.
The dynamical structure factor.—Our objective is to

calculate the spin correlation function Sabij ðtÞ ¼
h0jσ̂ai ðtÞσ̂bj ð0Þj0i and its Fourier transform in space and
time, the dynamical structure factor Sabðq;ωÞ. The latter is
proportional to the cross section obtained in an inelastic
neutron scattering (INS) experiment, and at q ¼ 0 to the
signal obtained in electron spin resonance.
The measurement process creates a spin flip, which

introduces a pair of fluxes in adjacent plaquettes (as
illustrated in Fig. 1) and initiates the dynamical rearrange-
ment of matter fermions in the modified gauge field.
Because fluxes are static, site off diagonal spin correlations
vanish except for a components of a nearest-neighbor pair
hijia [12]. We indicate this using the symbol δhiji;a. (In the
rest of the Letter, we show expressions for the nearest
neighbor correlator; the ones for the site-diagonal terms
are similar.) Crucially, the nonzero contributions to the
structure factor can be expressed purely in terms of matter
fermions in the ground state flux sector, subject to a
perturbation V̂a ¼ −2iJaĉiĉj, using the expression [12]

Sabij ðtÞ ¼ −ihM0jeiĤ0tĉie−iðĤ0þV̂aÞtĉjjM0iδabδhiji;a: (3)

The Hamiltonians Ĥa ¼ Ĥ0 þ V̂a and Ĥ0 differ only in the
sign of the Majorana hopping on the a bond, representing
insertion of the flux pair. The Lehmann representation of
Eq. (3) can be written in the basis of many-body eigenstates
of the Hamiltonian Ĥa, denoted by jλi with the corre-
sponding energies Eλ, taking E0 as the ground state energy
of Ĥ0. We choose to work in the fixed gauge in which the
eigenvalues of ûhkli are þ1 for all bonds except the one
linking the pair of sites i and j that appear in the correlator
Sabij ðtÞ. Then

Sabij ðωÞ ¼ −i
X

λ

hM0jĉijλihλjĉjjM0i

× δ½ω − ðEλ − E0Þ�δhiji;aδab: (4)

Results.—We start our discussion of the results displayed
in Figs. 2 and 3 by explaining the salient qualitative features
in terms of the selection rules imposed by the fractionali-
zation of the electrons into fluxes and Majoranas. It is
instructive to do so using Eq. (4), from which the central
aspects of the response can be read off, and we relegate an
explanation of the numerically exact solution of Eq. (3)
which is used to obtain the results in Figs. 2 and 3 to the
Supplemental Material [22].
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First, in both gapped and gapless phases, response
vanishes below the two-flux gap Δ ¼ Eλ0 − E0, the differ-
ence between the ground state energies in a system with
and without the flux pair. (At the isotropic point,
Δ≃ 0.26 J [1].) It is remarkable that in an INS experiment,
the response of a gapless QSL will show an excitation gap
which is directly related to the emergent gauge field.
A similar gap was found in a modified Kitaev model with
a Fermi circle excitation spectrum [14].
Above the gap Δ, the response thus reflects the physics

of the matter sector. Here, our analysis uncovers an
entirely new structure in the phase diagram of the
Kitaev model, Fig. 1(b). Specifically, an important con-
sequence of the fact that Ĥ in Eq. (2) conserves matter
fermion parity is that the nonzero contributions to Eq. (4)
come only from excited states jλi with parity opposite to
the ground state jM0i. As a result, two distinctively
different alternatives arise: either (I) the ground states
jM0i of Ĥ0 and jλ0i of Ĥa have the same parity, in which
case, the states jλi must contain an odd number of
excitations, or (II) the ground states have opposite parity
and jλi contains an even number of excitations. For (II),
the sector with zero excitations is an important special
case, distinct from the sectors with two, four, or more
excitations because it contains only a single state: the
ground state of Ha. Its contribution to Sabij ðωÞ is therefore
sharp in ω, whereas the contributions from sectors with
nonzero excitation numbers are broad.

To determine the dynamical phase boundary separating
the regime (II) that has a sharp response from the region (I)
that does not, we calculate numerically the ground state
overlap jhλ0jM0ij (see [22], for details), to find whether
both have the same parity (nonzero overlap) or opposite

FIG. 3 (color online). The integrated structure factor μðωÞ ¼R
ω
0 dω0P

aS
aað0;ω0Þ in the gapless Jx ¼ Jy ¼ Jz (red) and the

gapped Jx=Jz ¼ Jy=Jz ¼ 0.15 (black) phases. The sharp step in
the black curve at low ω at the two-flux gap Δ≃ J4x=8J3z is due to
the δ-function contribution of the strong bond correlator (a ¼ z).
Inset: the dependence of the ground state overlap jh~λ0jM0ij2,
proportional to the δ-function contribution, on interaction
strength, along the line Jx=Jz ¼ Jy=Jz, see Supplemental
Material [22] for details.
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FIG. 2 (color online). Total dynamical structure factor Sðq;ωÞ ¼ P
aS

aaðq;ωÞ and the inequivalent components Saað0;ωÞ, as would
be measured in inelastic neutron scattering and electron spin resonance, respectively, evaluated for three points in the phase diagram:
(aþ b) the symmetric point (Jx ¼ Jy ¼ Jz); (cþ d) a gapless asymmetric point (Jx ¼ Jy; Jz ¼ 0.7Jx); and (eþ f) a gapped point
(Jx ¼ Jy ¼ 0.15Jz). Top: Sðq;ωÞ on a logarithmic color scale as a function of ω along the cut MΓKM through the Brillouin zone.
Bottom: dynamical susceptibility Saað0;ωÞ for a ¼ z; x at the same values of the exchange. Comparison with the adiabatic response as
explained in the main text is given in panel b (black dashed line). The dashed line in (f) indicates the delta-function contribution to the
response, present only in the region of the dynamical phase diagram colored red in Fig. 1(b). The insets to panels (b) and (d) show the
density of states of the matter fermions.
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parity (zero overlap). The results are illustrated in Fig. 1(b).
The reason why the two ground states may have opposite
parity is most transparent deep in the gapped phase, e.g.,
Jx; Jy ≪ Jz. There, each z bond can be occupied or empty
with a single complex fermion, and the ground state of the
system without a flux has an even number of those.
Addition of the flux pair amounts to flipping the sign of
Jz, hence, inverting the energy of that Fermion. The ground
state with flux thence has opposite parity, as its energy is
lowered by occupying the previously empty state.
For (I) [Figs. 2(a)–2(d)], single particle excitations

dominate the response, which is broad in energy, so that
its amplitude is appreciable only within the matter fermion
bandwidth. Indeed, only about 2.5% of the signal at the
symmetric point arises from multiparticle contributions
(see Supplemental Material [22]) in stark contrast to the
case of the Heisenberg chain [20], where the corresponding
number is almost 30%.
For (II) [Figs. 2(e) and 2(f)], in striking opposition, the

response includes a finite-weight δ-function component in
ω at the difference Δ in ground state energies, since the
corresponding matrix element is finite. It is a remarkable
and unexpected finding that—despite fractionalization—the
INS response has a component sharp in energy [displayed
in Fig. 3(b)]. Note that the location in the phase diagram of
the dynamical transition at which this sharp response
appears is distinct from the ground state phase boundary:
it lies entirely within the gapless phase [Fig. 1(b)].
Discussion.—Formally, Eq. (3) represents an example of

a quantum quench: it involves the overlap between a state
hM0jĉi that is simple in terms of Ĥ0 (a superposition of
single-particle excitations) and a similar state ĉjjM0i
after the latter has evolved for time t under a different
Hamiltonian Ĥa. The broad features of the resulting
response of the Majorana fermions above Δ are a result
of this quench. Quite surprisingly, this can be well
approximated by replacing the instantaneous flip of the
bond by an adiabatic, rather than sudden, switching on of
the potential V̂a. This amounts to replacing jM0i in Eq. (4)
by the Majorana ground state in the presence of the fluxes.
One can show that in the limit of low energies, the matter
fermion eigenstates are, in fact, insensitive to the flux
addition, so that the resulting approximation [dashed line,
Fig. 2(b)] becomes exact as ω approaches Δ.
It is interesting to compare the energy dependence of the

structure factor with the density of states for matter fermions
[Figs. 2(b) and 2(d)]. Response is substantial over the entire
single-particle bandwidth (shifted in energy by Δ), with
linear onset above the gap. However, as a qualitative
signature of the effect of gauge fluxes on matter fermion
dynamics, the response is far from being simply proportional
to the density of states. Instead, the peak in the latter at 2Jz
due to the van Hove singularity [see inset to Fig. 2(b)] yields
a dip in the response. Away from the symmetric point, there
are two van Hove singularities in the density of states, and,

in addition, there is a distinct response for different spin
components, showing one or two minima in the correspond-
ing dynamical susceptibility [Fig. 2(d)].
Despite the formal similarities between the time-depen-

dent correlator Eq. (3) and the x-ray edge problem, the
physics arising from it is quite different. First, depending on
the exchange Ja one must study a local quantum quench in
either gapless or gapped phases, the latter not presenting the
possibility of low-energy fermionic excitations. Second, for
inequivalent values of Ja, the correlators for different spin
components are different. Third, the Majorana fermions in
our calculation arise due to fractionalization of spin degrees
of freedom as emergent particles. Fourth, they have not
number, but only parity conservation, and their dispersion
exhibits Dirac cones. Finally, the δ-function response
(Fig. 3 inset) is diametrically opposed to Anderson’s
orthogonality catastrophe, which would correspond to a
vanishing signal at Δ.
The Kitaev model is a representative of a class ofZ2 spin

liquids coupled to (gapped or gapless) Majorana fermions.
The qualitative features described above should therefore
be characteristic of this broad class of topological states.
While a potential cold atom realization will likely harbor
few perturbations to the Kitaev Hamiltonian Eq. (1),
magnetic materials usually include other terms, as exten-
sively discussed for Kitaev-Heisenberg models following
Ref. [10]. Both the flux gap and the fermion parity
underpinning our results are robust to such perturbations.
Just as in the analogous case of the Heisenberg chain [20],
where integrability is imperfect in reality but all qualitative
features are well-observed experimentally, so we similarly
expect quantitative changes such as a small degree of
smearing out of the δ-function response or a more gradual
onset of the signal around Δ. Crucially, the central features
we have discovered will be visible as fingerprints betraying
the presence of fractionalized Majorana fermions and
emergent gauge fluxes in INS and electron spin resonance
experiments.
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