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An all-optical transistor is a device in which a gate light pulse switches the transmission of a target light
pulse with a gain above unity. The gain quantifies the change of the transmitted target photon number per
incoming gate photon. We study the quantum limit of one incoming gate photon and observe a gain of 20.
The gate pulse is stored as a Rydberg excitation in an ultracold gas. The transmission of the subsequent
target pulse is suppressed by Rydberg blockade, which is enhanced by a Förster resonance. The detected
target photons reveal in a single shot with a fidelity above 0.86 whether a Rydberg excitation was created
during the gate pulse. The gain offers the possibility to distribute the transistor output to the inputs of many
transistors, thus making complex computational tasks possible.
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The gain, or equivalently the fan-out, is a central figure
of merit for any physical implementation of a transistor. It
describes how much a target output changes with the gate
input. Gain is important for analog amplifiers, for repeaters
in long-distance communication, and for digital computing.
A gain of two or higher offers the opportunity to distribute
the output signal to the input ports of more than one
transistor without attenuating the signal in each such step.
Without gain, complicated computational tasks are
unfeasible.
The excessive present-day use of optical technologies

in long-distance signal transmission suggests that it is
desirable to apply all-optical techniques also to signal
processing [1,2], especially because this offers opportuni-
ties to operate at high speed and low power dissipation.
The cornerstone device for all-optical computing is the
all-optical transistor, a device in which a gate light pulse
switches the transmission of a target light pulse with a gain
above unity. The fundamental low-power limit of the
all-optical transistor is reached when the incoming gate
pulse contains only one photon, which is interesting for a
variety of applications in quantum information processing
[3–5], including heralded quantum memories for quantum
repeaters [6], efficient detection of optical photons [7], and
Schrödinger-cat states [8].
All-optical switching with incoming gate photon num-

bers between a few hundred and ∼20 has been experi-
mentally demonstrated in various systems (see, e.g.,
Refs. [9–14]). Even gain has been observed for 2.5 to 5
incoming photons [15]. However, the single-photon regime
has remained elusive. In fact, it has been possible to
implement an all-optical switch operating at one incoming
gate photon, or even fewer [16], but the gain was only
∼0.24. That experiment used electromagnetically induced
transparency (EIT) [17] with Rydberg states [18] to store the
incoming gate photon as a Rydberg excitation. The optical
properties of the medium were strongly altered by Rydberg

blockade (see, e.g., Refs. [19–25]), resulting in a suppres-
sion of the transmission of a subsequent target pulse.
A large principal quantum number of n ¼ 100 was used
for the gate and target pulse to achieve good blockade.
Different polarizations for gate and target light were used to
reduce undesired retrieval of the gate photons by target light.
But several problems posted severe obstacles for gain in
Ref. [16]. First, the remaining undesired retrieval of the gate
excitations by target light deteriorated the target suppression
for long target pulses, thus making long target pulses
useless. Second, self-blockade of the target light set an
upper bound on the transmitted target signal power. Third,
dephasing reduced the peak transmission on the EIT
resonance and reduced the transmitted target signal power.
Here we experimentally demonstrate an all-optical tran-

sistor with one incoming gate photon on average and a gain
of 20(1) per incoming photon. We use principal quantum
numbers ng ¼ 69 and nt ¼ ng − 2 for the gate and target
pulse, respectively. The fact that the quantum numbers
differ results in drastically better suppression of undesired
retrieval. As a result, the length of the target pulse can
be increased by roughly 2 orders of magnitude without
a strong deterioration of the extinction. The fact that the
principal quantum numbers are lower reduces self-blockade
and dephasing. In addition, the lower quantum numbers
increase the population lifetime of the Rydberg state at the
densities of our experiment because inelastic collision rates
decrease. A Förster resonance [26] for the chosen principal
quantum numbers achieves good blockade between gate
and target pulse, despite the fact that the principal quantum
numbers are not very large. We experimentally study
how extinction and gain profit from the Förster resonance.
We observe that the transmitted signal light has a bimodal
photon number distribution if the gate pulse is applied.
This is because the storage efficiency is below unity. Based
on this bimodal distribution, we determine whether a
Rydberg excitation was created during the gate pulse with
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a single-shot fidelity above 0.86. Unlike Ref. [15], the gate
and target pulse in our experiment operate at the same
wavelength, which is important for many applications.
The experimental setup was described and characterized

in detail in Ref. [16]. In brief, an ultracold gas of 87Rb with
atom number N ∼ 1.5 × 105 and temperature T ¼ 0.33 μK
is held in an optical dipole trap with trapping frequencies
of ðωx;ωy;ωzÞ=2π ¼ ð136; 37; 37Þ Hz. It is illuminated
by a signal light beam at a wavelength of λs ¼ 795 nm,
which propagates along the horizontal z axis. This beam is
used for gate and target pulses. Two control light beams
originate from two different lasers. One is used for the gate
pulse, the other for the target pulse. The gate control beam
counterpropagates the signal beam, and has a wavelength
of λc;g ¼ 474 nm. The target control beam copropagates
with the signal beam, and is several tens of gigahertz red
detuned from the gate control light. The beam waists (1=e2

radii of intensity) are ðws; wc;g; wc;tÞ ¼ ð8; 21; 12Þ μm. The
blockade radius is estimated to be rb ¼ 16 μm [27]. The
control beams have powers of ðPc;g; Pc;tÞ ¼ ð17; 10Þ mW.
A magnetic field of 1.1 G is applied along the z axis. The
probability for collecting and detecting a transmitted signal
photon is ηdet ¼ 0.24.
Parts (a) and (b) of Fig. 1 show the atomic level scheme

and the timing sequence, respectively. Gate and target pulse
each consist of signal light and control light for EIT.
The gate control light is switched off while a large part of
the gate signal light is inside the medium, thus storing the
gate signal light in the form of a Rydberg excitation. If a
gate excitation is stored, Rydberg blockade will suppress
the transmission of the subsequent target signal pulse.
In the absence of a gate pulse, however, target signal light
experiences a high transmission because of EIT. This gate-
target pulse sequence is repeated with a cycle repetition
time of tcyc ¼ 1 ms. After ∼100 gate-target cycles, we pre-
pare a new atomic sample.
Figure 1(c) shows the dependence of the signal trans-

mission on the signal detuning for the gate pulse but with
a gate pulse durations of 200 μs and 220 μs for signal
and control light, respectively. Figure 1(d) shows the same
for the target pulse if the gate pulse is omitted. Fits of the
simple, empiric model of Ref. [16] to each data set yield
EIT linewidths of ΔT ∼ 2π × 1.9 MHz (full width at half
maximum) and optical depths of OD ∼ 5. For comparison,
we use the parameters of the atomic cloud to estimate the
transmission averaged over the transverse beam profile hTi.
Equating this with hTi ¼ e−OD yields OD ∼ 8, which
agrees fairly well with the above best-fit value.
Figure 2 shows experimental results. The number of

transmitted target signal photons is shown for Ng ¼ 1.0
incoming gate signal photons (red circles). The area under
the curve reveals the number of transmitted target signal
photons Ntrans. A measurement with Ng ¼ 0 (green tri-
angles) yields a corresponding reference value Ntrans;ref .
The extinction

ϵ ¼ Ntrans

Ntrans;ref
ð1Þ

quantifies how well the gate pulse suppresses the target
pulse. The gain,

FIG. 1 (color online). (a) Level scheme. Gate and target pulse
each consist of signal light and control light for EIT. Both pulses
use the same signal transition, but the control light operates at
different frequencies, thus reaching different Rydberg states jrgi
and jrti. The hyperfine quantum numbers are F ¼ 1, mF ¼ −1
and F ¼ 2, mF ¼ −2 for states jgi and jei, respectively, whereas
both Rydberg states have mJ ¼ 1=2 and mI ¼ −3=2. The fact
that the principal quantum numbers ng and nt ¼ ng − 2 differ
suppresses undesired retrieval of stored gate excitations by target
control light much more efficiently than the polarization scheme
of Ref. [16]. In addition, both signal light pulses profit from a
large electric-dipole matrix element. We typically operate at
ng ¼ 69. (b) Input power timing scheme, not to scale (see text).
(c),(d) EIT spectra (see text).

FIG. 2 (color online). Single-photon transistor. The number of
transmitted signal photons is shown for Ng ¼ 1.0 incoming
signal gate photons (red circles). For reference, the same number
is shown in the absence of target signal light Ng ¼ 0 (green
triangles). The lines show exponential fits multiplied by a step
function. The ratio of the areas under the two data sets yields
an extinction of ϵ ¼ 0.89ð1Þ. The gain is G ¼ 20ð1Þ. This is far
above unity, thus demonstrating a single-photon transistor.
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G ¼ ΔNtrans

Ng
¼ jNtrans;ref − Ntransj

Ng
; ð2Þ

quantifies how many input ports of identically constructed
transistors could be driven. The observed value of G ¼
20ð1Þ at Ng ¼ 1.0 is far above unity, thus clearly demon-
strating the realization of a single-photon transistor.
For long target pulse duration, the transmitted target

photon number approaches the reference, as seen in Fig. 2.
We divide the data by the reference, and obtain a 1=e time
of τ ¼ 0.10ð1Þ ms from an exponential fit. This is not
far from the excited-state lifetime due to radiative decay at
room temperature of 0.14 ms [28], showing that undesired
retrieval of gate excitations and inelastic collisions have
only a small effect. The transmission of the reference target
pulse is T0 ¼ 0.49ð1Þ at the EIT resonance. This improve-
ment by a factor of ∼2.5 with respect to Ref. [16] is mostly
due to the reduced principal quantum number, which
reduces self-blockade and dephasing. Experimentally
varying ng in the range between 60 and 75, we find that
T0 depends approximately linearly on ng with a slope
of ΔT0=Δng ∼ −0.01.
The Förster resonance used in our experiment is caused

by the fact that the energy mismatches between certain
atom-pair states are close to zero near n ¼ 70. We calculate
these energy mismatches from literature values [29] for the
Rb quantum defects. Results of this calculation are shown
in Fig. 3(a). Parts (b) and (c) show that the performance of
the single-photon transistor profits from the Förster reso-
nance. Extinction and gain both show a clear resonance.
Because of the gain, storing a gate excitation has a

drastic effect on the transmitted light. This holds not only
for the mean value Ntrans of the transmitted photon number
but also for the probability distribution of the transmitted
photon number. We measure the histogram for the number
of detector clicks Nc registered during a 30 μs long target
signal pulse. These data are recorded with N ∼ 2.4 × 105,
T ¼ 0.27 μK, ðPc;g; Pc;tÞ ¼ ð35; 22Þ mW, a dark time of
0.15 μs between gate and target pulse, a target control pulse
duration of 100 μs, and tcyc ¼ 0.7 ms.
Figure 4 shows this histogram. The data for Ng ¼ 1.0

show a bimodal structure with a clearly visible minimum
between the peaks. Obviously, the peak near Nc ¼ 8
detector clicks is expected to be identical to the reference
distribution with Ng ¼ 0, but with the total number of
events reduced by an overall factor p0, which is the
probability that zero Rydberg excitations are stored during
the gate pulse. A fit (red dotted line) yields p0 ¼ 0.60.
Subtracting this fit from the data for Ng ¼ 1.0 yields the
black solid line.
The red dotted line and the black solid line have well-

separated peaks. Hence, the value ofNc obtained in a single
experimental shot reveals whether the number of Rydberg
excitations NRyd stored during the gate pulse was zero or
nonzero. We set a threshold Nthr and assign NRyd ¼ 0 if

Nc > Nthr and NRyd ≠ 0 otherwise. Let c0 and c1 denote
the probability that this assignment is correct if the initial
state were ideally prepared with NRyd ¼ 0 and NRyd ≠ 0,
respectively. To define the fidelity for estimating whether a
Rydberg excitation was stored, we follow the conservative
definition of Ref. [30] that the fidelity F is the minimum of
c0 and c1. From Fig. 4 we find that the choice Nthr ¼ 5.5
maximizes the fidelity, yielding F ¼ 0.86.
Note that the results for p0 and F depend on the choice of

the cutoff value Ncut of Nc for fitting p0. In particular, for
Ncut ≪ 9.5 the black solid curve contributes noticeably to
the red data, causing the fit to overestimate p0 and F,
whereas for Ncut ≫ 9.5 the fit must infer the peak height
only from data far out on the wings of the distribution
which is prone to produce incorrect results. A detailed

FIG. 3 (color online). Effect of the Förster resonance on the
single-photon transistor. (a) Theoretical estimates of the energy
mismatch ΔE in Rb at infinite interatomic distance. Some states
from the fine-structure manifold of the state jðn − 1ÞP; ðn − 2ÞPi
lie close to the state jnS1=2; ðn − 2ÞS1=2i. Two energy mismatches
cross zero near n ¼ 70, thus creating the Förster resonance used
in our experiment. The measured values of the extinction (b) and
the gain (c) clearly profit from the Förster resonance. The target
pulse is operated at nt ¼ ng − 2. The lines show Lorentzian fits to
guide the eye.
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analysis shows that fits with 7.5 ≤ Ncut ≤ 12.5 produce
reliable values, with p0 varying between 0.60 and 0.64
and with F between 0.86 and 0.88. We choose to quote
F ¼ 0.86 as a conservative estimate.
The value of p0 determined here can be used to estimate

the storage efficiency ηs ¼ Ns=Ng, where Ns is the number
of stored excitations. On one hand, the solid bound
Ns ≥ 1 − p0 is reached if the probability of storing more
than one excitation is neglected. Using p0 ¼ 0.64, we
obtain 0.36 ≤ ηs. On the other hand, as self-blockade of the
gate pulse is not very pronounced, one could approximate
the number of stored excitations as Poissonian, so that p0 ¼
expð−NsÞ and p0 ¼ 0.60 would yield the less conservative
estimate ηs ∼ 0.51.
In addition to the perspectives already discussed in the

introduction, Fig. 4 shows that our system offers an
efficient method for the nondestructive detection of a
Rydberg excitation in a single experimental shot with a
fidelity above F ¼ 0.86. In the future, this method could be
used for various purposes, such as to monitor the spatial
and temporal dynamics of a single Rydberg excitation [31].
A recent experiment demonstrated nondestructive imaging
capabilities for Rydberg atoms but was unable to reach
sufficient sensitivity to detect a single Rydberg excit-
ation in a single experimental shot [32]. Single-shot data

acquisition capabilities of single excitations offer the
possibility to record, on the one hand, full probability
distributions and correlation functions and, on the other
hand, real-time trajectories of individual excitations. This
contains much more information than mean values obtained
from averaging over many shots or many excitations.
A related experiment was simultaneously performed at

the University of Stuttgart [33].
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