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We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical
quark masses. This calculation uses 2þ 1 quark flavors, spatial volumes between ð4 fmÞ3 and ð11 fmÞ3
and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing
corresponding to a temporal Euclidean extent of Nt ¼ 8. The disconnected chiral susceptibility, χdisc
shows a pronounced peak whose position and height depend sensitively on the quark mass. We find
no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is
increased to 10 fm. Each result is strong evidence that the QCD “phase transition” is not first order but
a continuous crossover for mπ ¼ 135 MeV. The peak location determines a pseudocritical temperature
Tc ¼ 155ð1Þð8Þ MeV, in agreement with earlier staggered fermion results. However, the peak height is
50% greater than that suggested by previous staggered results. Chiral SUð2ÞL × SUð2ÞR symmetry is fully
restored above 164 MeV, but anomalous Uð1ÞA symmetry breaking is nonzero above Tc and vanishes as T
is increased to 196 MeV.
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As the temperature of theQCDvacuum is increased above
the QCD energy scale ΛQCD ¼ 300 MeV, asymptotic free-
dom implies that the vacuum breaking of chiral symmetry
must disappear and the familiar chirally asymmetric world
of massive nucleons and light pseudo-Goldstone bosons
must be replaced by an SUð2ÞL × SUð2ÞR symmetric
plasma of nearly massless up and down quarks and gluons.
Predicting, observing, and characterizing this transition
has been an experimental and theoretical goal since the
1980s. General principles are consistent with this being
either a first-order transition for sufficiently light pion mass
or a second-order transition in theOð4Þ universality class at
zero pion mass with crossover behavior for nonzero mπ .
While second order behavior is commonly expected, first-
order behavior may be more likely if anomalous Uð1ÞA
symmetry is partially restored at Tc resulting in an effective
ULð2Þ ×URð2Þ symmetry [1,2].
The importance of the SUð2ÞL × SUð2ÞR chiral sym-

metry of QCD for the phase transition has motivated the
widespread use of staggered fermions in lattice studies of
QCD thermodynamics because this formulation possesses

one exact chiral symmetry at finite lattice spacing, broken
only by the quark mass. However, the flavor symmetry of
the staggered fermion formulation is complicated showing
an SULð4Þ × SURð4Þ “taste” symmetry that is broken by
lattice artifacts andmade to resemble the physical SUð2ÞL ×
SUð2ÞR symmetry by taking the square root of the Dirac
determinant, a procedure believed to have a correct but
subtle continuum limit for nonzero quark masses.
Because of these limitations, it is important to study

these phenomena using a different fermion formulation,
ideally one which supports the full SUð2ÞL × SUð2ÞR
chiral symmetry of QCD at finite lattice spacing. It is
such a study which we report here. We use Möbius domain
wall fermions [3], a formulation in which the fermions are
defined on a five-dimensional lattice. While the extent in
the fifth dimension, Ls ¼ 16 or 24, makes the calculation
16 to 24 times more costly, the resulting theory possesses
an accurate SUð2ÞL × SUð2ÞR symmetry, broken only by
the input quark mass and the highly suppressed mixing
between the left and right four-dimensional boundaries,
where the low-energy fermions propagate. This residual
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chiral asymmetry is a short-distance phenomenon whose
leading long-distance effect is to add a constantmres to each
input quark mass, mq, giving a total mass ~mq ¼ mq þmres.
Here mres ≈ 3 MeV and further residual chiral symmetry
breaking is Oðmresa2Þ [4].
Because of this computational cost, the calculation

reported here uses only one lattice spacing, a, at each
temperature, corresponding to a temporal extent of Nt ¼ 8.
The good agreement with experiment for fπ and fK
computed at our largest lattice spacing and a comparison
of zero temperature results at our T ≈ 170 lattice spacing
with those from two smaller lattice spacings [5], suggest
≈5% discretization errors in our results. In contrast, the less
costly staggered fermion calculations use Nt ¼ 8, 10, 12,
and 16. However, to make a controlled continuum extrapo-
lation, the staggered fermion discretization errors are
assumed to behave as a2. Potential nonlinearities in the
taste-breaking effects, which in zero-temperature staggered
fermion calculations are handled using staggered chiral
perturbation theory, are ignored because of the absence of a
corresponding theory of finite-temperature taste breaking.
Methods.—The present calculation withmπ ¼ 135 MeV

and 323 × 8 and 643 × 8 volumes extends earlier domain
wall results with mπ ¼ 200 MeV and 163 × 8, 243 × 8 and
323 × 8 volumes [6–8]. We use the same combination of
Iwasaki gauge action and dislocation suppressing determi-
nant ratio (DSDR) exploited to reduce residual chiral
symmetry breaking in this earlier work. To enable calcu-
lations atmπ ¼ 135 MeV with available computing resour-
ces we have changed the Shamir domain wall formulation
to Möbius [3]. By choosing the Möbius parameters b and c
of Ref. [3] so that b − c ¼ 1, we insure that our Möbius
Green’s functions will agree at the 0.1% level with those of
Shamir evaluated at a much larger Ls. Thus, except for their
quark masses, ourmπ ¼ 200 and 135 MeV calculations are
equivalent, including lattice artifacts.
Table I lists the parameters for the mπ ¼ 135 MeV

ensembles and results for the residual mass. At the lowest
temperatures, more than 90% of the quark mass is gene-
rated by residual chiral symmetry breaking. In addition
to these 13 ensembles with Nt ¼ 8, two calculations were
performed at T ¼ 0 with space-time volume 323 × 64.
These used β ¼ 1.633 (first reported here) and β ¼ 1.75
[5], corresponding to T ¼ 139 MeV and T ≈ 170 MeV
when Nt ¼ 8.
The choices of quark masses and assigned temperatures

given in Table I were estimated from earlier work [5,6].
Results from the new zero temperature ensemble at
β ¼ 1.633, obtained with the quark masses shown in
Table I, are summarized in Table II and provide a check
of these estimates. The resulting lattice spacing and pion
mass are close to our targets while the kaon mass is lighter
than expected, which may be unimportant for the quantities
studied here. Of special interest is a comparison of the
residual mass for this value of β given in Tables I and II.

The 1.1% discrepancy is a measure of discretization error.
Likewise, the comparison with experiment of fπ and fK
gives 6% and 4% errors, indicating the size of discretization
effects.
Results.—Our most dramatic result is the temperature-

dependent, disconnected chiral susceptibility χdisc, plotted
in Fig. 1. Three of the four lower curves show earlier results
with mπ ¼ 200 MeV on 163, 243, and 323 volumes. A
significant decrease in χdisc is seen for temperatures below
165 MeV as the volume is increased above 163, a volume
dependence anticipated in earlier scaling [9–11] and model
[12] studies. The two higher curves show a large increase
in χdisc in the entire transition region for mπ ¼ 135 MeV
and both 323 and 643 volumes. The ratio of peak heights
for the mπ ¼ 135 and 200 MeV, 323 data is 2.1(0.2), which
is consistent with the ratio 1.86 predicted by universal
Oð4Þ scaling ∼ ~m1=δ−1

l ∝ m−1.5854
π , only if the regular, mass-

independent part of χdisc is small.
This comparison of χdisc with Oð4Þ scaling neglects

the connected part of the chiral susceptibility. In fact,
the connected chiral susceptibility depends mildly on

TABLE I. A summary of the mπ ¼ 135 MeV ensembles.
The units are MeV for the temperature T and 10−5=a for the
masses ml, ms, and mres. Nst, Ntot, and Nσ label the number of
independent streams, the total equilibrated time units, and the
number of sites in each spatial direction, respectively.

T β Nσ Ls c ml ms mres Nst Ntot

139 1.633 32 24 1.5 22 5960 219(1) 4 5768
139 1.633 64 24 1.5 22 5960 219(1) 1 380
149 1.671 32 16 1.5 34 5538 175(1) 4 7823
149 1.671 64 16 1.5 34 5538 175(1) 3 2853
154 1.689 32 16 1.5 75 5376 120(4) 4 6108
159 1.707 32 16 1.5 112 5230 91(1) 3 8714
159 1.707 64 16 1.5 112 5230 91(1) 2 3431
164 1.725 32 16 1.5 120 5045 68(5) 4 7149
168 1.740 32 16 1.2 126 4907 57(1) 2 5840
168 1.740 64 16 1.2 126 4907 57(1) 1 1200
177 1.771 32 16 1.0 132 4614 43(1) 2 8467
186 1.801 32 16 1.0 133 4345 26(1) 2 10127
195 1.829 32 16 0.9 131 4122 19(1) 2 10124

TABLE II. Results at β ¼ 1.633 and T ¼ 0 (in lattice units and
MeV) from 25 configurations separated by at least 20 time units.
We use MΩ to fix the scale. Also listed are the experimental
values.

1=a MeV Expt.(MeV)

mπ 0.1181(5) 129.2(5) 135
mK 0.4230(5) 462.5(5) 495
mΩ 1.530(3) 1672.45 1672.45
T ¼ 1=8a 0.125 136.7(3) � � �
fπ 0.1263(2) 138.1(2) 130.4
fK 0.1483(4) 162.2(4) 156.1
mres 0.00217(2) � � � � � �
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temperature and quark mass (expected if the δ screening
mass remains nonzero at Tc) and so does not contribute to
the singular part of the chiral susceptibility.
Also shown in this figure are highly improved staggered

quarks (HISQ) results for Nt ¼ 12 and a Goldstone pion
mass of 161 MeV [7,13]. If scaled to mπ ¼ 135 MeV
assuming this same m−1.5854

π behavior, the HISQ value for
χdisc is 50% smaller than that seen here. This discrepancy
reaffirms the importance of an independent study of the
order of the transition and calculation of Tc using chiral
quarks. (Note in this DWF-HISQ comparison only the
ratios of lattice quark and pion masses and lattice scales are
needed. The perturbative uncertainties in connecting to the
MS scheme cancel.)
The peak shown in Fig. 1 implies a pseudocritical temper-

ature of 155(1)(8)MeV. The central value and statistical error
are obtained by fitting the T ¼ 149, 154, and 159 MeV
values of χMS

disc to a parabola. The second, systematic error
reflects the expected 5% discretization error. We do not
include a finite-volume systematic error. While typically
neglected when Nσ=Nt ≥ 4, we lack the data needed for an
empirical estimate. This result for Tc is consistent with the
staggered-fermion continuum limit [13,14].
The order of theQCDphase transition can be studied using

the time history of the chiral condensate for T ≈ Tc. Figure 2
shows four time histories of hq̄lqli at T ¼ 154 MeV. All
four streams fluctuate over the same range, showing no
metastable behavior and no difference between streams
starting from ordered or disordered configurations. This
and the failure of χdisc to grow when the volume is increased
from 323 to 643 (a contribution to χdisc from tunneling
between two metastable states should have increased by 23)
provide strong evidence that for mπ ¼ 135 MeV, the QCD
transition is not first order but a crossover, a conclusion
consistent with previous staggered work [13,15–17].

In Fig. 3 we show the SUð2ÞL × SUð2ÞR-breaking
differences between the susceptibilities χπ and χσ and

between χδ and χη. Each pair of fields, (~π, σ) and (~δ, η) forms
a four-dimensional representation of SUð2ÞL × SUð2ÞR.
These SUð2ÞL × SUð2ÞR-breaking differences are large
below Tc but have become zero for T > 164 MeV. In
Fig. 4 we show the difference χπ − χδ. These quantities are
related by the anomalousUð1ÞA transformation, a symmetry
of the classical theory that is broken by the axial anomaly.
Figure 4 shows that this symmetry is not restored until
T ≥ 196 MeV. Also shown is the result from our earlier
mπ ¼ 200 MeV calculation [7]. The expected increase in
χπ − χδ with decreasing pion mass is seen for T ≤ Tc.
Above T ¼ 168 MeV this difference has become mass
independent, confirming our earlier conclusion that this

FIG. 1 (color online). The dependence of the disconnected
chiral susceptibility on T for mπ ¼ 135 and 200 MeV. The
mπ ¼ 135 MeV data show a near 2× increase over that for
mπ ¼ 200 MeV. HISQ results formπ ¼ 161 MeV [7,13] are also
plotted. The errors in the conversion of χl;disc from bare to MS
values, common to all of the DWF results, are not shown.

FIG. 2 (color online). The time histories of hq̄lqli for four
streams at T ¼ 154 MeV. Streams beginning with an ordered or
disordered configuration are labeled ord or dis. Each point
averages results from 10 random sources on 20 configurations,
separated by one time unit.

FIG. 3 (color online). Two susceptibility differences are shown
that reflect the SUð2ÞL × SUð2ÞR symmetry of QCD and our
chiral fermion formulation. Below Tc this symmetry is sponta-
neously broken. For T > 164 MeV we see accurate chiral
symmetry. Here and in Fig. 4 only 323 data is shown. Little
volume dependence is seen for these differences [7] for 163, 243,
and 323 volumes and mπ ¼ 200 MeV.
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nonzero value results from the axial anomaly, not the small
quark mass.
Conclusion.—We have presented results from the

first study of the QCD phase transition using chirally
symmetric lattice fermions, physical quark masses, and
therefore three degenerate pions with mπ ≈ 135 MeV. We
find Tc ¼ 155ð1Þð8Þ MeV, similar to previous staggered
fermion results, and see crossover behavior, consistent with
a second order critical point at zero quark mass. We show
that anomalous symmetry breaking extends to temperatures
≈30 MeV above Tc. Finally, we see a factor of 2 increase in
the disconnected chiral susceptibility, χdisc near Tc as mπ

decreases from 200 to 135 MeV, similar to the scaling
expected near an Oð4Þ or a number of other universal
critical points, provided the regular part of χdisc is small.
However, in this region we find χdisc 50% larger than that
suggested by staggered fermion results, a discrepancy that
will require further study to resolve.
These results represent an important milestone in the

study of the QCD phase transition. The crossover character
and pseudocritical temperature of the transition have now
been obtained using a formulation which respects the
symmetries of QCD, uses physical strange and light quark
masses, and is performed at an inverse lattice spacing 1=a ≥
1.1 GeV where 5% discretization errors are expected. This
is a challenging calculation with five-dimensional lattice
volumes as large as 643 × 8 × 24 and a physically light
quark mass. This study was only possible because of its use
of the DSDR action [18], Möbius fermions [3], highly
efficient code [19], and the petaflops-scale Sequoia and
Vulcan computers at the Lawrence Livermore National
Laboratory. Of course, it is important to explore these
questions at larger spatial volume and smaller lattice spacing
as adequate resources become available.
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