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We investigate experimentally the mechanical response to shear of a monolayer of bidisperse frictional
grains across the jamming transition. We inflate an intruder inside the packing and use photoelasticity and
tracking techniques to measure the induced shear strain and stresses at the grain scale. We quantify
experimentally the constitutive relations for strain amplitudes as low as 10−3 and for a range of packing
fractions within 2% variation around the jamming transition. At the transition strong nonlinear effects set
in: both the shear modulus and the dilatancy shear soften at small strain until a critical strain is reached
where effective linearity is recovered. The scaling of the critical strain and the associated critical stresses on
the distance to jamming are extracted. We check that the constitutive laws, together with mechanical
equilibrium, correctly predict to the observed stress and strain profiles. These profiles exhibit a spatial
crossover between an effective linear regime close to the inflater and the truly nonlinear regime away from
it. The crossover length diverges at the jamming transition.
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Introduction.—Understanding the mechanical properties
of dense packings of athermal particles, such as grains,
foams, and emulsions, remains a conceptual and practical
challenge. When decreasing the packing fraction ϕ, these
intrinsically out-of-equilibrium systems lose their rigidity
at the so-called jamming transition, ϕ ¼ ϕJ, when the
confining pressure approaches zero and the particle defor-
mations vanish [1–4]. In the case of frictionless spheres
[2,3], the loss of mechanical stability coincides with the
onset of isostaticity: the average number of contacts z
decreases to its isostatic value, for which the number of
geometrical and mechanical equilibrium constraints exactly
match the number of degrees of freedom. Approaching the
transition, the material becomes more and more fragile [5],
and its linear response, dominated by floppy modes [6],
exhibits critical scaling [2–4,7].
In a first step towards the description of such systems,

Wyart et al. [6,8–11] derived a scaling theory of the
jamming transition from a marginal stability principle,
which captures most of its phenomenology. Recently,
marginality has been translated into the adoption of a full
replica symmetry breaking scheme in the formulation of a
mean field theory of hard sphere glasses at high density
[12–14]. As a result, the theory properly describes not only
the thermodynamic properties of the packing, but also the
structural and dynamical ones, when approaching ϕJ.
The relevance of these theories for real systems remains

to be established. There are very few direct experimental
investigations of the scaling regime above jamming. The
average number of contacts has been measured in grains
[15,16], foams [17], and emulsions [18] but not with a

sufficient accuracy to provide stringent bounds for the
value of the scaling exponent δ. As for the dynamics and
the mechanics, rheology below jamming has been studied
in vibrated grains [19], foams [20], and emulsions [21], but
we are not aware of any direct measurements of the elastic
moduli dependence on the packing fraction when
approaching jamming from above.
Also, the relevance of the linear response very close to

the transition remains a matter of debate [22–24]. At finite
shear strain amplitude γ, nonlinear effects become domi-
nant [9,25,26] and the mechanical response of the system is
no longer relevantly described exclusively by Δz. Finally,
while dilatancy effects—namely, the increase of volume
or pressure under shear—are important in sheared granular
experiments [27–29], they are systematically missed in
numerical and theoretical studies of soft spheres near
jamming.
In this Letter, taking advantage of the possibility to probe

jamming scalings in a weakly vibrated monolayer of soft
grains [16,30,31]—a notoriously difficult task in thermally
agitated colloids [30,32]—we provide the first experimen-
tal measurement of the elastic response of a 2D packing of
grains across the jamming transition. To do so we apply an
inhomogeneous shear by inflating an intruder in the center
of a monolayer of bidisperse frictional grains [Fig. 1(a)].
We obtain the force network and grain displacements from
photoelasticity measurements and tracking techniques, and
calculate the stress and strain tensors at the grain scale. The
constitutive laws, obtained from a parametric plot of the
invariants of the stress tensor with respect to the shear
strain, reveal that linear elasticity does not apply. Dilatancy
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is crucial and, above jamming, shear softening occurs at
moderate strain [Fig. 1(b)]. Elasticity is effectively recov-
ered only for strains larger than a critical strain, which
scales with the distance to jamming and eventually van-
ishes at ϕJ [Fig. 1(c)]. We compute the strain profiles from
the inferred constitutive laws and show that they match the
experimental profiles and display a spatial crossover
between the two regimes. The crossover length diverges
like Δϕ−0.85 when the system (un)jams.
Setup and protocol.—The setup is adapted from [16,31].

A bidisperse layer of 8166 photoelastic disks of diameter 4
and 5 mm is confined in a rectangular frame. Awall piston
allows us to precisely tune the packing fraction ϕ. The
grains lie on a glass plate which can be vibrated with an
amplitude of 1 cm at a frequency of 10 Hz perpendicularly
to the direction of the wall piston. The inflater is made of a
brass spacer, equipped with 9 radial pistons, is surrounded
by an O ring of diameter 2rI ¼ 26.3 mm and connected to
a pressure switch. When the pressure is increased inside the
spacer, the pistons push the O ring radially, ensuring a
uniform radial dilation, up to 2ðrI þ aÞ ¼ 28.5 mm. When
the pressure is switched off, the elasticity of the O ring
brings back the inflater to its initial diameter. The dilation
rate a� ¼ a=rI ∈ ½1–10�%.
Varying both the strain amplitude and packing fraction,

we record the stress response following a precise protocol.
First we introduce the inflater at the center of the packing
at low packing fractions. We then compress the packing
into a highly jammed state while vibrating the bottom plate
(see [31] for details). We stop the vibration and start
acquiring images while increasing the size of the intruder
using steps of 1.5%. At the end, we let the inflater recover
its initial size, turn on the vibration, stepwise decrease the
packing fraction, and start the next measurement loop. The
vibration steps homogenize the stresses between change
of packing fraction, while keeping the packing structure
identical [16,31].
The photoelastic grains are backlit with a large, uniform,

circularly polarized light source. Pictures are taken using a
high-resolution CCD camera. We record both photoelastic

and position information by alternating between cross-
polarized and direct pictures using a cross polarizer
mounted on a synchronized step motor (see [31] for
details). We process these images with standard segmenta-
tion, tracking, and tessellation techniques, to obtain the
displacement field and the force network [31]. We then
compute the strain tensor ϵ and the stress tensor σ fields at
the grain scale [28,33–36]. Having checked that these
tensors share the same eigenvectors [37], we restrict the
analysis to their first and second invariants: the dilatation
ε ¼ 1

2

P
kϵkk, the pressure P ¼ − 1

2

P
kσkk, the shear strain

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

P
i;jðϵij − εδijÞ2

q
and the shear stress τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
2

P
i;jðσij þ PδijÞ2

q
, where δij is the Kronecker symbol.

In the following, P and τ are normalized by the contact
stiffness k ¼ 1 N=mm and the length unit is the diameter of
the small grains s ¼ 4 mm. The stress and strain tensors
are, respectively, measured with a resolution of 10−4

and 10−3.
Initial state.—For each packing fraction, before inflating

the intruder, the system is characterized by an initial state,
with force chains spanning the whole system. This com-
pressed state above jamming, which has been studied in
detail before [31], is statistically homogeneous. The aver-
age contact number z0 is essentially constant at low packing
fraction [see Fig. 2(a)]. At intermediate packing fraction, it
exhibits a kink from where it increases sublinearly. We
identify the location of the kink with the jamming transition
at packing fraction ϕJ ¼ 0.8251� 0.0009. One should
not be surprised to observe a finite z0 below jamming:
when the vibration is turned off, the structure is quenched
abruptly from a vibrational state where the averaged
number of contact need not be zero. The sublinear increase
of z0 with packing fraction is compatible with the one
obtained in simulations of frictional particles [17,38]. The
initial pressure P0 also increases above jamming from a
small residual value below jamming, again inherited from
the vibrational state [see Fig. 2(b)]. Since the packing
is compressed by moving only one lateral wall, the

(a) (b) (c)

FIG. 1 (color online). (a) Quadrant of combined raw photoelastic and direct light pictures. The intruder (pink) is inflated and induces
radial compression and orthoradial stretch (white arrows): the packing is sheared azimuthally. (b) Sketch of the shear modulus, G and
dilatancy coefficient R, vs shear strain γ. In the linear regime (LR, γ < γ�), not probed here, both are constant. For γ� < γ < γc both
decrease, this is a shear softening (SS) regime. For γ > γc, effective linear elasticity (SL) is recovered. (c) ϕ − γ parameter space with the
different regimes: both γ� and γc vanish at Jamming. The gray regions could not be accessed in the present experiment.
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compression is not isotropic. The packing conserves some
anisotropy clearly evidenced by the existence of a residual
shear stress τ0 proportional to the pressure P0 [see Fig. 2
(b)]. However, the ratio τ0=P0 remains smaller than one, as
expected for packings where compressive stresses domi-
nate. An important feature of the present geometry is that
the azimuthally invariant mechanical driving integrates out
the anisotropic fluctuations [39,40].
Response to inflation.—Henceforth, we consider the

excess of pressure P and shear stress τ produced while
inflating the intruder, namely, the difference between the
stress measured at the initial state and those measured at
each a�. Assuming linear elasticity, P ¼ −Kε and τ ¼ 2Gγ
(where K is the bulk modulus and G the shear modulus),
the inflation of a disk in an unconfined geometry induces
an azimuthally invariant shear, which decreases radially
with the distance r from the center of the intruder
τ ∼Gγ ∼ a�=r2. Figure 3 displays the four maps of the
two strain (top row) and two stress (bottom row) invariants
for a typical packing fraction above jamming and a typical
a� ð4.4 × 10−2Þ. Apart from the spatial fluctuations inher-
ent to the local response of a disordered material, one
observes that the axisymmetry of the loading is conserved
in the response. Furthermore, the response intensity
decreases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third of the
length of the whole sample). Close to the intruder a
significant dilation occurs because of the boundary con-
dition geometrical mismatch, but the rest of the packing
compresses slightly and ensures the conservation of the
overall volume: the dilation ε fluctuates around 6 × 10−5

with a standard deviation 3 × 10−3 [Fig. 3(a)]: the material
is essentially incompressible. From now on, we shall
remove the first shell around the intruder from the analysis
and assume incompressibility, that is ε ¼ 0. The second
significant observation is that the pressure deviates signifi-
cantly from the elastic response: there are regions of intense
pressure which do not correspond to any sort of intense
compression. This pressure field is thus induced by the
shear; it is a manifestation of dilatancy for experiments
conducted at constant volume, a well-known effect in

granular media [27]. The dilatancy coefficient at constant
pressure is related to that at constant volume by the bulk
modulus [41]. Finally, whereas the spatially averaged
pressure varies linearly with a�, the spatially averaged
shear strain increases faster than a�. This is a first indication
of the nonlinear nature of the material. We checked,
however, that the shear work τγ averaged over space scales
with a�2. The above observations were qualitatively similar
for all packing fractions.
Constitutive laws.—We now come to the quantitative

analysis of the constitutive laws τðγ;ϕÞ and Pðγ;ϕÞ. We
collect all data points Pðr; θÞ and τðr; θÞ vs γðr; θÞ—ðr; θÞ
are the polar coordinates—into averages corresponding to
binned values of γ. Figures 4(a) and 4(b) display the
obtained shear stress τ and pressure P vs the shear strain γ
for different packing fractions. Below jamming, both the
shear stress τ and the pressure P exhibit the simple
expected dependence on the shear strain: τ ¼ 2G0γ, and
P ¼ R0γ

2. Above jamming nonlinearities take place in the
form of a significant shear softening of both the shear
modulus and the dilatancy. We find that the best description
of the data is given by

P ¼ ½R0 þ RnlðΔϕ; γÞ�γ2; ð1Þ

τ ¼ 2½G0 þ GnlðΔϕ; γÞ�γ; ð2Þ

with Δϕ ¼ ϕ − ϕJ, G0 ¼ 6.0� 0.2 × 10−2, R0 ¼ 1.2�
0.1 × 101, and

(a) (b)

FIG. 2 (color online). Initial stress state. (a) Initial average
contact number z0 (squares); (b) pressure P0 (triangles) and
shear stress τ0 (downward triangles) vs ϕ. The solid line is a fit
to z0 ¼ zpðϕ − ϕJÞ0.5 þ zJ , with ϕJ ¼ 0.8251� 0.0009, zp ¼
10.0� 0.5, and zJ ¼ 3.9� 0.1. The dashed line indicates ϕJ .
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FIG. 3 (color online). Maps of the strain and stress invariants.
Maps of dilation ε (a), shear strain γ (b), pressure P (c), and shear
stress τ (d) for ϕ ¼ 0.8294 and a� ¼ 4.4 × 10−2. The uncolored
grains sit below the pneumatic tube connected to the intruder,
which masks the field of view.
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RnlðΔϕ; γÞ ¼
�
0 for ϕ < ϕJ

aΔϕμγα−2 for ϕ > ϕJ
;

GnlðΔϕ; γÞ ¼
�
0 for ϕ < ϕJ

bΔϕνγβ−1 for ϕ > ϕJ
;

with μ ¼ 1.7� 0.1, α ¼ 1.0� 0.1, a ¼ 8.1� 0.3 × 10−2,
ν ¼ 1.0� 0.1, β ¼ 0.4� 0.1, and b ¼ 7.5� 0.3 × 10−1.
From the above relations, one obtains the rescaling shown
in Figs. 4(c) and 4(d) with γc ∼ Δϕζ, τc ¼ 2G0γc and
Pc ¼ R0γ

2
c. Despite the fact that the exponent pairs ðμ; αÞ

and ðν; βÞ have been obtained independently, we find that
ζ ¼ μ=ð2 − αÞ and ζ ¼ ν=ð1 − βÞ lead to the same value
ζ ¼ 1.7, as it should be. The above equations and the
related scaling are the key results of the present study. To
our knowledge, this is the first time that nonlinear elasticity
is quantified precisely approaching the jamming transition
of a granular packing. Note that the “linear” regime
observed here should not be confused with the linear
response and should rather be seen as a saturation of the
nonlinearities. For very small strain ðγ ≃ 10−6Þ, such as
those probed in numerical studies [3,42], and much smaller
than the lowest strain probed here ðγ ≃ 10−3Þ, one expects
to recover a linear response for all Δϕ > 0 [24]. For strains
of experimental relevance, very recent numerical studies
have reported a crossover from the linear response at small
strains to a shear softening regime, with a exponent β≃ 0.5
[43,44], compatible with the present results.
Shear strain profiles.—We finally proceed to a self-

consistency check by integrating the condition of

mechanical equilibrium ∇ · σ ¼ 0, with the above constit-
utive laws to derive the expected shear strain profiles and
compare them with those obtained experimentally. We
introduce here the reduced shear strain ~γ ¼ γ=γc.
Axisymmetry ensures that σ is diagonal in polar coordinate
and independent of the azimuthal coordinate θ. ∇ · σ ¼ 0
thus reads

Pcðα~γα−1 þ 2~γÞ þ τcðβ~γβ−1 þ 1Þ
~γβ þ ~γ

d~γ ¼ −2τc
dr
r
: ð3Þ

We numerically integrate Eq. (3) with the boundary
condition ~γðr ¼ rIÞ ¼ a�=γc and we obtain the profiles
plotted in Fig. 5(a), together with the experimental data.
The agreement is excellent, given the absence of any
adjustable parameter and the fact that we have neglected
the confinement at large r. For intermediate values of Δϕ
and a�, the crossover of the constitutive law translates into a
spatial crossover with a characteristic length rc between the
saturated linear regime for r < rc, close to the inflater, and
the truly nonlinear regime for r > rc. An estimate of rc can
be derived by integrating the above equation in the
saturated linear regime and selecting γ ¼ γcð~γ ¼ 1Þ:

rc
rI

¼
�
a�

γc

�
1=2

exp

�
R0

2G0

a�
�
1 −

γc
a�

��
: ð4Þ

In the limit, γc → 0, approaching jamming, rc ∼ γ−1=2c ∼
Δϕ−0.85. One can indeed observe the emergence of this
singular behavior on Fig. 5(b), together with the exponen-
tial regularization at large Δϕ.
Summary and Discussion.—We have provided a quanti-

tative characterization of the elastic response of a 2D
packing of grains to the local inflation of an intruder close
to jamming. This specific geometry probes the response to
an inhomogeneous shear at constant volume. Our results
highlight the effect of dilatancy and unveil a nonlinear

(a) (b)

(c) (d)

FIG. 4 (color online). Constitutive laws. (a) Pressure P and
shear stress, (b) τ vs shear strain γ for 21 packing fractions
ϕ ∈ ½0.8102 − 0.8343�. The solid lines are given by Eqs. (1)–(2).
Color code spans from blue to red with increasing packing
fractions. (c) and (d) Same data as (a) and (b) rescaled by
γcðϕÞ; PcðϕÞ, and τcðϕÞ. The solid lines are given by the rescaled
version of Eqs. (1)–(2) and the dashed lines indicate the
asymptotic regimes.

(a) (b)

FIG. 5 (color online). Shear strain profiles. (a) Shear strain
profile for (right triangles) (ϕ ¼ 0.8208; a� ¼ 0.0374), (dia-
monds) (ϕ ¼ 0.8268; a� ¼ 0.0314), and (left triangles) (ϕ ¼
0.8338; a� ¼ 0.0306). The symbols are experimental data and
the solid lines come from the integration of Eq. (3). The green
dashed line indicates the crossover for the case (ϕ¼0.8268;
a� ¼0.0314). (b) Spatial crossover rcðϕ; a�Þ=rI (for a� ¼0.0208
(green), 0.0440 (turquoise), and 0.0681 (blue) extracted from the
experimental profiles (crosses) in (a) and obtained numerically
from Eq. (3) (dashed lines). (Inset) Same in log-log axis with the
predicted scaling rc ∼ Δϕ−0.85. In both figures, the gray zone is
the region occupied by the inflater.
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regime above jamming where both the shear modulus and
the dilatancy coefficient soften. The importance of shear
dilatancy in marginal solids was recently emphasized in
[41], where it was shown that the Reynolds coefficient at
constant volume RV scales like Δϕ−1=2. Here we also
observe a singular behavior, albeit of a different kind since
the present experiment probes the nonlinear softening of
the dilatancy. In a different context, Ren, Dijksman, and
Behringer [29] report a steep increase of dilatancy under
homogeneous shear as the density of an unjammed packing
of grains is increased. The dilatancy coefficient R0 reported
here is very large (R0 ∼ 104 N=m) and could be seen as a
saturation of the divergence reported in [29].
Finally, the present study uncovers a length scale, rc,

which separates the nonlinear regime from the saturated
linear one. Its scaling with the distance to jamming does not
match any scaling reported before for length scales of linear
origin, such as l� or lc [4,11]. This suggests that rc could
encompass crucial information about the density of the low
energy nonlinear excitations reported recently for sphere
packings [25]. Further insights in this matter could come
from simulations of pointlike response of the kind reported
in [7] albeit in the nonlinear regime.

We thank B. Tighe, W. Ellenbroek, and M. van Hecke for
discussions. We are grateful to V. Padilla and C. Wiertel-
Gasquet for their skillful technical assistance. This work is
supported by the ANR project STABINGRAM No. 2010-
BLAN-0927-01 and RTRA Triangle de la Physique proj-
ects REMIGS2D and COMIGS2D.

*Corresponding author.
coulais@physics.leidenuniv.nl

[1] A. J. Liu and S. R. Nagel, Nature (London) 396, 21 (1998).
[2] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel,

Phys. Rev. Lett. 88, 075507 (2002).
[3] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,

Phys. Rev. E 68, 011306 (2003).
[4] M. van Hecke, J. Phys. Condens. Matter 22, 033101 (2010).
[5] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin,

Phys. Rev. Lett. 81, 1841 (1998).
[6] M. Wyart, S. R. Nagel, and T. A. Witten, Europhys. Lett. 72,

486 (2005).
[7] W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van

Saarloos, Phys. Rev. Lett. 97, 258001 (2006).
[8] M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten,

Phys. Rev. E 72, 051306 (2005).
[9] C. Brito, O. Dauchot, G. Biroli, and J.-P. Bouchaud,

Soft Matter 6, 3013 (2010).
[10] N. Xu, V. Vitelli, M. Wyart, A. J. Liu, and S. R. Nagel,

Phys. Rev. Lett. 102, 038001 (2009).
[11] G.During, E. Lerner, andM.Wyart, SoftMatter 9, 146 (2013).
[12] G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).
[13] L. Berthier, H. Jacquin, and F. Zamponi, Phys. Rev. E 84,

051103 (2011).
[14] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and

F. Zamponi, Nat. Commun. 5 (2014).

[15] T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer,
Phys. Rev. Lett. 98, 058001 (2007).

[16] C. Coulais, R. P. Behringer, and O. Dauchot, Europhys.
Lett. 100, 44005 (2012).

[17] G. Katgert and M. van Hecke, Europhys. Lett. 92, 34002
(2010).

[18] I. Jorjadze, L.-L. Pontani, and J. Brujic, Phys. Rev. Lett.
110, 048302 (2013).

[19] J. A. Dijksman, G. H. Wortel, L. T. H. van Dellen, O.
Dauchot, and M. van Hecke, Phys. Rev. Lett. 107,
108303 (2011).

[20] G. Katgert, B. P. Tighe, and M. van Hecke, Soft Matter 9,
9739 (2013).

[21] V. Mansard and A. Colin, Soft Matter 8, 4025 (2012).
[22] C. F. Schreck, T. Bertrand, C. S. O’Hern, and M. D.

Shattuck, Phys. Rev. Lett. 107, 078301 (2011).
[23] T. Bertrand, C. F. Schreck, C. S. O’Hern, and M. D.

Shattuck, Phys. Rev. E 89, 062203 (2014).
[24] C. P. Goodrich, A. J. Liu, and S. R. Nagel, arXiv:1402.6206.
[25] E. Lerner, G. During, and M. Wyart, Soft Matter 9, 8252

(2013).
[26] L. R. Gomez, A. M. Turner, M. van Hecke, and V. Vitelli,

Phys. Rev. Lett. 108, 058001 (2012).
[27] O. Reynolds, The London, Edinburgh, and Dublin Philos.

Mag. J. Sci. 20, 469 (1885).
[28] D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer,

Nature (London) 480, 355 (2011).
[29] J. Ren, J. A. Dijksman, and R. P. Behringer, Phys. Rev. Lett.

110, 018302 (2013).
[30] A. Ikeda, L. Berthier, and G. Biroli, J. Chem. Phys. 138,

12A507 (2013).
[31] C. Coulais, R. P. Behringer, and O. Dauchot, Soft Matter 10,

1519 (2014).
[32] A. Basu, Y. Xu, T. Still, P. E. Arratia, Z. Zhang, K. N.

Nordstrom, J. M. Rieser, J. P. Gollub, D. J. Durian, and
A. G. Yodh, Soft Matter 10, 3027 (2014).

[33] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.198001 for details
about the derivation of the strain tensor without finite
differentiation.

[34] A. Drescher and G. de Josselin de Jong, J. Mech. Phys.
Solids 20, 337 (1972).

[35] P. Cundall, A. Drescher, and O. Strack, Proceedings of
IUTAM, Delft, 1982, pp. 355.

[36] B. Cambou, M. Chaze, and F. Dedecker, Eur. J. Mech. A.
Solids 19, 999 (2000).

[37] P.-P. Cortet, D. Bonamy, F. Daviaud, O. Dauchot, B.
Dubrulle, and M. Renouf, Europhys. Lett. 88, 14 001
(2009).

[38] E. Somfai, M. van Hecke, W. G. Ellenbroek, K. Shundyak,
and W. van Saarloos, Phys. Rev. E 75, 020301 (2007).

[39] G. E. Schröder-Turk, W. Mickel, M. Schrter, G. W. Delaney,
M. Saadatfar, T. J. Senden, K. Mecke, and T. Aste,
Europhys. Lett. 90, 34 001 (2010).

[40] C. P. Goodrich, S. Dagois-Bohy, B. P. Tighe, M. van Hecke,
A. J. Liu, and S. R. Nagel, Phys. Rev. E 90, 022138 (2014).

[41] B. Tighe, Granular Matter 16, 203 (2014).
[42] S. Dagois-Bohy, B. P. Tighe, J. Simon, S. Henkes, and

M. van Hecke, Phys. Rev. Lett. 109, 095703 (2012).
[43] M. Otsuki and H. Hayakawa, arXiv:1402.6473.
[44] B. P. Tighe (private communication).

PRL 113, 198001 (2014) P HY S I CA L R EV I EW LE T T ER S week ending
7 NOVEMBER 2014

198001-5

http://dx.doi.org/10.1038/23819
http://dx.doi.org/10.1103/PhysRevLett.88.075507
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1088/0953-8984/22/3/033101
http://dx.doi.org/10.1103/PhysRevLett.81.1841
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1103/PhysRevLett.97.258001
http://dx.doi.org/10.1103/PhysRevE.72.051306
http://dx.doi.org/10.1039/c001360a
http://dx.doi.org/10.1103/PhysRevLett.102.038001
http://dx.doi.org/10.1039/c2sm25878a
http://dx.doi.org/10.1103/RevModPhys.82.789
http://dx.doi.org/10.1103/PhysRevE.84.051103
http://dx.doi.org/10.1103/PhysRevE.84.051103
http://dx.doi.org/10.1038/ncomms4725
http://dx.doi.org/10.1103/PhysRevLett.98.058001
http://dx.doi.org/10.1209/0295-5075/100/44005
http://dx.doi.org/10.1209/0295-5075/100/44005
http://dx.doi.org/10.1209/0295-5075/92/34002
http://dx.doi.org/10.1209/0295-5075/92/34002
http://dx.doi.org/10.1103/PhysRevLett.110.048302
http://dx.doi.org/10.1103/PhysRevLett.110.048302
http://dx.doi.org/10.1103/PhysRevLett.107.108303
http://dx.doi.org/10.1103/PhysRevLett.107.108303
http://dx.doi.org/10.1039/c3sm51543e
http://dx.doi.org/10.1039/c3sm51543e
http://dx.doi.org/10.1039/c2sm25306b
http://dx.doi.org/10.1103/PhysRevLett.107.078301
http://dx.doi.org/10.1103/PhysRevE.89.062203
http://arXiv.org/abs/1402.6206
http://dx.doi.org/10.1039/c3sm50515d
http://dx.doi.org/10.1039/c3sm50515d
http://dx.doi.org/10.1103/PhysRevLett.108.058001
http://dx.doi.org/10.1080/14786448508627791
http://dx.doi.org/10.1080/14786448508627791
http://dx.doi.org/10.1038/nature10667
http://dx.doi.org/10.1103/PhysRevLett.110.018302
http://dx.doi.org/10.1103/PhysRevLett.110.018302
http://dx.doi.org/10.1063/1.4769251
http://dx.doi.org/10.1063/1.4769251
http://dx.doi.org/10.1039/c3sm51231b
http://dx.doi.org/10.1039/c3sm51231b
http://dx.doi.org/10.1039/c3sm52454j
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.198001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.198001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.198001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.198001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.198001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.198001
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.198001
http://dx.doi.org/10.1016/0022-5096(72)90029-4
http://dx.doi.org/10.1016/0022-5096(72)90029-4
http://dx.doi.org/10.1016/S0997-7538(00)01114-1
http://dx.doi.org/10.1016/S0997-7538(00)01114-1
http://dx.doi.org/10.1209/0295-5075/88/14001
http://dx.doi.org/10.1209/0295-5075/88/14001
http://dx.doi.org/10.1103/PhysRevE.75.020301
http://dx.doi.org/10.1209/0295-5075/90/34001
http://dx.doi.org/10.1103/PhysRevE.90.022138
http://dx.doi.org/10.1007/s10035-013-0436-6
http://dx.doi.org/10.1103/PhysRevLett.109.095703
http://arXiv.org/abs/1402.6473

