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Lee-Yang zeros are points on the complex plane of physical parameters where the partition function of a
system vanishes and hence the free energy diverges. Lee-Yang zeros are ubiquitous in many-body systems
and fully characterize their thermodynamics. Notwithstanding their fundamental importance, Lee-Yang
zeros have never been observed in experiments, due to the intrinsic difficulty that they would occur only at
complex values of physical parameters, which are generally regarded as unphysical. Here we report the first
observation of Lee-Yang zeros, by measuring quantum coherence of a probe spin coupled to an Ising-type
spin bath. The quantum evolution of the probe spin introduces a complex phase factor and therefore
effectively realizes an imaginary magnetic field. From the measured Lee-Yang zeros, we reconstructed the
free energy of the spin bath and determined its phase transition temperature. This experiment opens up new
opportunities of studying thermodynamics in the complex plane.
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After the pioneering works by van der Waals [1,2], Mayer
[3,4], and van Hove [5], it has been known that different
phases (e.g., liquid and gas phases) of a thermodynamic
system have the same microscopic interactions but the free
energy of the system encounters a singularity (nonanalytic)
point in the physical parameter space where the phase
transition occurs. A rigorous relation between the analytic
properties of free energies and thermodynamics (in particu-
lar, phase transitions) was established by Yang and Lee in a
seminal paper published in 1952 through continuation of the
free energy to the complex plane of physical parameters [6].
Lee and Yang considered a general Ising model with the
ferromagnetic interaction Jij > 0 under a magnetic field h
with the Hamiltonian HðhÞ ¼ −P

i;j Jijsisj − h
P

j sj,
where the spins sj take values �1=2. The partition function
of N spins at temperature T (or inverse temperature
β≡ 1=T) Ξðβ; hÞ≡P

all states expð−βHÞ can be written
into an Nth order polynomial of z≡ expð−βhÞ as
Ξ ¼ expðβNh=2ÞPN

n¼0 pnzn, where expð−βHÞ is the
Boltzmann factor (the probability in a state with energy
H, up to a normalization factor) and the coefficients pn can
be interpreted as the partition function in a zero magnetic
field under the constraint that n spins are at state −1=2. The
free energy F is related to the partition function by
F ¼ −T lnðΞÞ. Obviously, the zeros of the partition function
(where Ξ ¼ 0) are the singularity points of the free energy
and hence fully determine the analytic properties of the free
energy. If the Lee-Yang zeros are determined, the partition
function can be readily reconstructed as Ξ¼p0 expðβNh=2ÞQ

N
n¼1ðz− znÞ. Since the Boltzmann factor is always positive

for real interaction parameters and real temperature, zeros of

the partition function would occur only on the complex plane
of the physical parameters. Lee and Yang proved that for the
ferromagnetic Ising model the N zeros of the partition
function all lie within an arc on the unit circle in the complex
plane of z (corresponding to pure imaginary values of the
external field) [7]. At sufficiently low temperature (T ≤ TC),
the end points of the arc, i.e., the Yang-Lee singularity edges
[8,9] approach the real axis of h at the thermodynamic limit
(N → ∞). Thus the free energy encounters a singularity
point on the real axis of the magnetic field, which means the
onset of a phase transition.
The Lee-Yang zeros exist universally in many-body

systems. These include a broad range of physical systems
described by the Ising models, such as anisotropic
magnets, alloys, and lattice gases. The Lee-Yang theorem,
first proved for ferromagnetic Ising models of spin-1=2,
was later generalized to general ferromagnetic Ising
models of arbitrarily high spin [10–12] and to other
interesting types of interactions [13–16]. For general
many-body systems, the Lee-Yang zeros may not be
distributed along a unit circle but otherwise present
similar features as in ferromagnetic Ising models.
Lee-Yang zeros have also been generalized to zeros of
partition functions in the complex plane of other physical
parameters (such as Fisher zeros in the complex plane of
temperature [17]). The Lee-Yang zeros (or their general-
izations) fully characterize the analytic properties of free
energies and hence thermodynamics of the systems.
Therefore, determining the Lee-Yang zeros is not only
fundamentally important for a complete picture of thermo-
dynamics and statistical physics (by continuation to the
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complex plane) but also technically useful for studying
thermodynamics of many-body systems.
Experimental observation of Lee-Yang zeros, however,

has not been made before. The previous experiments could
only indirectly derive the densities of Lee-Yang zeros from
susceptibility measurement plus analytic continuation
[18,19]. The difficulty is intrinsic: The Lee-Yang zeros
would occur only at complex values of external fields or
temperature, which are unphysical.
A recent theoretical discovery about the relation between

partition functions and probe spin coherence [20] makes it
experimentally feasible to access the complex plane of
physical parameters. Wei and Liu found that the coherence
of a central spin embedded in an Ising-type spin bath is
equivalent to the partition function of the Ising bath under a
complex magnetic field. The imaginary part of the mag-
netic field is realized by the time since the quantum
coherence of the central spin is a complex phase factor
as a function of time. The Lee-Yang zeros of the partition
function are one-to-one mapped to the zeros of the central
spin coherence, which are directly measurable. Related to
the connection between central spin decoherence and Lee-
Yang zeros [20], recent theoretical studies have revealed the
profound links between thermodynamics in the complex
plane and dynamical properties of quantum systems, such
as quantum quenches of cold atom systems [21], trajecto-
ries in quantum optics [22], and work distributions of
quantum nanoengines [23,24]. To reveal the full picture of
thermodynamics in the complex plane of parameters [25],
experimental observation of thermodynamic functions of
complex variables is highly desirable.
Here we make the first observation of Lee-Yang zeros by

measuring quantum coherence of a probe spin coupled to
an Ising-type spin bath, following the proposal in Ref. [20].
We used liquid-state nuclear magnetic resonance (NMR) of
trimethylphosphite (TMP) molecules [26] to simulate a
coupled probe-bath system. The measured zeros of the
central spin coherence agree very well with the Lee-Yang
zeros of the partition function of the bath spins. From the
measured Lee-Yang zeros, we reconstructed the free energy
of the spin bath and determined its phase transition
temperature. This experiment demonstrates quantum coher-
ence probe as a useful approach to studying thermody-
namics in the complex plane [25], which may reveal a
broad range of new phenomena that would otherwise be
inaccessible if physical parameters are restricted to be real
numbers.
The trimethylphosphite (TMP) molecule [Fig. 1(a)] used

in the liquid-state NMR experiments contains nine equiv-
alent 1H nuclear spins (s1; s2;…s9, regarded as the bath in
our experiments) and one 31P nuclear spin (s0, the probe
spin) [26]. In the liquid state, the three 1H spins in each
methyl group have Heisenberg interaction with strength
2π × 16.75 sec−1 between each other while the interaction
between 1H spins in different methyl groups is negligible,

and the 31P spin has Ising-type interaction with the nine
bath spins with a uniform coupling constant λ ¼ 2π×
10.57 sec−1. The probe-bath Hamiltonian HTMP ¼
−νH P

9
j¼1 s

z
j − νPs

z
0 −

P
1≤i<j≤9Jijsi · sj þ λsz0

P
9
j¼1 s

z
j,

where Jij ¼ 2π × 16.75 sec−1 for 1H spins in the same
methyl group and Jij ¼ 0 otherwise, and νH ¼ 2π×
400.25 × 106 and νP ¼ 2π × 161.92 × 106 sec−1 are the
Larmor frequencies of the 1H and 31P nuclear spins under a
magnetic field 9.4 T, respectively. The coupling to the 1H
nuclear spins splits the NMR resonance of the 31P nuclear
spin into 10 peaks corresponding to the 10 quantized
polarizations of the 9 1H spins [Fig. 1(b)]. Note that the
microscopic Hamiltonian above is not of the ferromagnetic
Ising type and the magnetic field is strong.
To facilitate observation of the Lee-Yang zeros on the

unit circle, we need to simulate a ferromagnetic model
under zero magnetic field. Quantum simulation of a general
Hamiltonian for a 10-spin system is highly demanding.
Instead of directly simulating an effective Hamiltonian,
we used the quantum simulation method to prepare
ensembles of the bath that are described by the effective
density matrix [27]

FIG. 1 (color online). System and methods for observation of
Lee-Yang zeros. (a), Schematic structure of a TMP molecule. The
molecule consists of one 31P nuclear spin (the blue ball) as the
probe and nine equivalent 1H spins (the orange balls) as the bath.
(b) Liquid-state 31P NMR spectra of TMP molecules at T ¼
300 K or Teff ¼ ∞ (red), for the nine 1H spins at a simulated
temperature Teff ¼ 15J=8 (green) and Teff ¼ 9J=40 (blue).
The coupling (λ ¼ 2π × 10.57 sec) between the 1H spins and
the 31P nuclear spin shifts the resonance frequency of the 31P by
ð9=2 − nÞλ=ð2πÞ, where n is the number of 1H spins with
szj ¼ −1=2. (c) Quantum circuit for measuring the 31P spin
coherence LðtÞ, with vertical red lines representing the interaction
between the probe spin and the bath spins.
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ρeff ∝ expð−βeffHeffÞ; ð1Þ

We chose the effective Hamiltonian to be a ferromagnetic
Ising model with global coupling, namely, Heff ¼−JP1≤i<j≤9 s

z
i s

z
j − h

P
1≤i≤9 s

z
i , where βeff ¼ 1=Teff is

the effective inverse temperature, and h is the effective
magnetic field. Note that the absolute value of J is irrelevant
since the effective temperature is scaled by J. This choice of
effective Hamiltonian greatly simplified the experiments due
to two features. First, the effective Ising Hamiltonian
commutes with the microscopic interactions of the coupled
probe-bath system, so the prepared ensembles would stay
unchanged during the evolution. Second, all states with the
same total spin polarization along the z axis have the same
probability to appear in the ensembles, so the density matrix
can be simply simulated by choosing different excitation
strengths of different 31P resonances in Fig. 1(b) [27].
We initially prepared the probe spin in a superposition

state as jΨð0Þi ¼ j↑i þ j↓i and detected its coherence
LðtÞ≡ hsx0i þ ihsy0i as a function of time. The experimental
scheme is schematically illustrated in Fig. 1(c). The
coupling between the probe and the bath results in a local
magnetic field b ¼ −λPj

j¼1 s
z
j, which during the quantum

evolution of the probe spin induces a phase factor to the
state: jΨðtÞi ¼ j↑i þ expð−ibtÞj↓i. The random distribu-
tion of the local field b leads to the probe spin decoherence.
The coherence, as characterized by the spin polarization in

the x − y plane, is the ensemble average of the phase factor,
that is [20],

LðtÞ ¼ he−ibti ¼ Tr½expð−βeffHeff − ibtÞ�
Tr½expð−βeffHeffÞ�

¼ Ξðβeff ; hþ itλ=βeffÞ
Ξðβeff ; hÞ

: ð2Þ

The probe spin coherence, except for the normalization
factor Ξðβeff ; hÞ, is equivalent to the partition function
of the spin bath with a complex magnetic field hþ iλt=βeff .
It becomes zero when the evolution time t is such that
z ¼ expð−βeffh − iλtÞ equals to a Lee-Yang zero. For the
ferromagnetic Ising model, all the Lee-Yang zeros lie on the
unit circle of z, where h ¼ 0. Thus in our experiment we set
the effective magnetic field h to be zero. The effective
density matrix ρeff was created (up to a trivial strength
factor) by the temporal averaging method [32]. The states
created were confirmed by partial state tomography [33]
and the final fidelity [34] was ≈0.99. The probe spin
coherence was measured by the free induction decay (FID)
[35] of the 31P spin in NMR. The coherence zeros tn of
LðtÞ and hence the corresponding Lee-Yang zeros zn ¼
expð−iλtnÞ were extracted by fitting these experimental
data via a polynomial function (or by interpolation).
Figure 2 shows the measured probe spin coherence and

the Lee-Yang zeros. For the nine-spin Ising bath, there are
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FIG. 2 (color online). Coherence of the 31P probe spin and the Lee-Yang Zeros. The effective magnetic field was h ¼ 0. (a), (b), and
(c) are the measured probe spin coherence LðtÞ (red symbols) as functions of time for (a) laboratory temperature (T ¼ 300 K),
(b) simulated temperature Teff ¼ 15J=8 and (c) simulated temperature Teff ¼ 9J=40. The solid lines are the numerically calculated
probe spin coherence. (d), (e), and (f) show the Lee-Yang zeros (by red crosses) measured from the zeros of probe spin coherence
corresponding to (a), (b), and (c). The theoretical predictions of the Lee-Yang zeros are shown as blue circles for comparison. The unit
circles are plotted as a guide to the eye.
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9 zeros tn for LðtnÞ ¼ 0 within a period of coherence
evolution (0 ≤ t ≤ 2π=λ ¼ 0.0946 sec), which determine
the 9 Lee-Yang zeros zn ¼ expð−iλtnÞ. At room temper-
ature (the laboratory temperature, at which T=J → ∞),
all of the nine Lee-Yang zeros are degenerate at zn ¼ −1
or, correspondingly, tn ¼ π=λ, as observed in Figs. 2(a)
and 2(d). When the simulated temperature Teff was com-
parable to or less than the coupling strength of the bath (J),
the nine zeros were clearly resolved in the probe spin
coherence [Figs. 2(b), 2(c), 2(e), and 2(f)]. The measured
coherence zeros agree well with the theoretically deter-
mined Lee-Yang zeros [27].
The Lee-Yang zeros fully determine the partition func-

tions or free energy of spin systems, and in turn the
thermodynamic properties of the systems. This is funda-
mentally rooted in the fact that the free energies are analytic
functions of the physical parameters, except for the
singularity points corresponding to the Lee-Yang zeros.
Thus we determined the free energies of the Ising model for
various temperatures, by measuring the coherence of just
one probe spin. The results are shown in Fig. 3, which
compares very well to the theoretical calculation of the free
energies of the Ising model. It should be pointed out that
there exist other proposals for evaluating the partition
functions or free energies of thermodynamic systems
[36–40]. These schemes, however, require either control
gates over multiple qubits [36,37] or repeated quench of the
systems [38–40], and, moreover, all of them involve
quantum measurement of many qubits. The Lee-Yang zero
method in this Letter is much simpler and more exper-
imentally implementable since it needs control and meas-
urement of only one probe spin.
Phase transitions are intimately connected to the

Lee-Yang zeros. At or below the phase transition

temperature, the Yang-Lee singularity edges (the
Lee-Yang zeros with the smallest imaginary part of the
magnetic field) [8,9] approach the real axis of the magnetic
field in the thermodynamic limit (N → ∞). The critical
temperature of the long-range Ising model is TC ¼ NJ=4.
Our finite spin bath had only nine spins, which is far from
the thermodynamic limit. But still the phase transition
temperature can be inferred from the fact that below the
critical temperature, the Lee-Yang zeros become almost
uniformly distributed along the unit circle. The uniform
distribution of the Lee-Yang zeros at low temperature
(Teff ≪ J) was indeed observed in Figs. 2(c) and 2(f).
The uniform distribution of Lee-Yang zeros led to periodic
oscillation of the probe spin coherence. Such periodic
oscillation can be understood from the fact that below the
critical temperature the bath spins were mostly in the two
degenerate, polarized ground states, which led to interfer-
ence between probe spin precessions under two opposite
local fields. As shown in Fig. 4, below the transition
temperature, the measured Yang-Lee edge (the first
Lee-Yang zero) is almost constant as a function of temper-
ature. The measured phase transition temperature agrees
reasonably well with the theoretical calculation considering
the small size of our system [27].
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FIG. 3 (color online). Free energy of the 1H spin bath
reconstructed from the measured Lee-Yang zeros. The red
symbols are the experimentally determined free energy as a
function of the simulated inverse temperature. The dashed line is
the theoretical calculation.
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FIG. 4 (color online). Phase transition of the long-range
coupling Ising model determined by measurement of Lee-Yang
zeros. The red symbols are the first Lee-Yang zero, i.e., the
Yang-Lee singularity edge (given by the first time t1 when
the probe spin coherence became zero) as a function of the
simulated temperature. The blue dashed line is the numerically
calculated result for comparison. The green solid line represents
the theoretical curve for a large bath size (N ¼ 500) that
approximates the thermodynamic limit. Note that the phase
transition temperature for the long-range coupling system is
proportional to the number of spins N (so the x axis is scaled by
N). Below the critical temperature, the first Lee-Yang zero is
almost constant as a function of temperature. The measured
critical temperature (indicated by vertical dashed line) deviates
from the theoretical predictions for N ¼ 500 (the vertical solid
line) and for N → ∞ (the vertical dotted line) due to the finite
size effect.
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In summary, we have directly observed the Lee-Yang
zeros in experiments for the first time, which concep-
tually completes the analytic description of statistical
physics and thermodynamics. We also demonstrated the
feasibility of using probe spin coherence to determine the
thermodynamic properties of the baths and, more gen-
erally, to access thermodynamics on the complex plane
of physical parameters [25].
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