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We present evidence of the gravitational lensing of the cosmic microwave background by 1013 solar
mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter
(ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the
SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and
is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave
background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.
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Introduction.—Measuring the gravitational lensing of
the cosmic microwave background (CMB) by intervening
structure is a potentially powerful way to map out the mass
distribution in the Universe. Advantages of CMB lensing

over lensing measured at other wavelengths include that
the CMB is a source that fills the whole sky, is at a known
redshift, and has well understood statistical properties. To
date, the lensing of the CMB caused by the large-scale
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projected dark matter distribution has been observed by a
number of CMB experiments with ever increasing statis-
tical significance [1–5]. This lensing signal has been
detected in both CMB temperature and polarization maps
and in cross-correlation with other tracers of large-scale
structure [1,2,5–18]. These CMB lensing measurements
have become precise enough that they now provide
interesting constraints on a number of cosmological
parameters such as curvature and the amplitude of matter
fluctuations [19]. These constraints can be expected to
significantly improve with the advent of near-term and
next-generation CMB data sets [20–22].
Previous studies have focused on the lensing of the CMB

by large-scale structure corresponding to scales between
tens and several hundred comoving Mpc. As the data
improve, it is possible to shift focus to smaller scales,
particularly those which have undergone appreciable non-
linear growth. On small enough scales, the CMB is lensed
by individual darkmatter halos.We refer to this small-scale
signal as “CMBhalo lensing,” and note that this lensing can
be due to individual galaxy clusters, galaxy groups, and
massive galaxies. Before now, CMB experiments did not
have the sensitivity or resolution to detect this signal which
was hypothesized to exist over a decade ago [23–35].
In this Letter, we present evidence of the CMB halo

lensing signal using the first season of data from ACTPol.
This detection is made by stacking ACTPol reconstructed
convergence maps at the positions of CMASS galaxies
that have been optically selected from the Sloan Digital
Sky Survey-III Baryon Oscillation Spectroscopic Survey
Tenth Data Release (SDSS-III/BOSS DR10) ([36–38]).
This signal is detected at a significance of 3.2σ when we
combine the nighttime data from three ACTPol first-season
survey regions. We see an excess of 1.3σ or greater in each
individual survey region, although all fields are needed to
give a statistical detection.
CMB Data.—ACT is located in Parque Astronómico

Atacama in northern Chile at an altitude of 5190 m.
The 6-meter primary mirror has a resolution of 1.4
arcminutes at a wavelength of 2 millimeters. Its first
polarization-sensitive camera, ACTPol, is described in
detail in [39] and [40]. ACTPol observed from Sept. 11
to Dec. 14, 2013 at 146 GHz. Four “deep field” patches
were surveyed near the celestial equator at right ascensions
of 150°, 175°, 355°, and 35°, which we call D1 (73 deg2),
D2 (70 deg2), D5 (70 deg2), and D6 (63 deg2). The scan
strategy allows for each patch to be observed in a range of
different parallactic angles while scanning horizontally,
which aids in separating instrumental effects from celestial
polarization. White noise map sensitivity levels for the
patches are 16.2, 17, 13.2, and 11.2 μK arcmin, respec-
tively, in temperature, with polarization noise levels higher
by roughly

ffiffiffi
2

p
. All patches were observed during nighttime

hours for some fraction of the time. The nighttime data
fraction is 50%, 25%, 76%, and 94% for D1, D2, D5, and

D6, respectively. We use only nighttime data from D1, D5,
and D6 in this analysis. Further details about the obser-
vations and mapmaking can be found in [40].
We template-subtract point sources from these maps by

filtering the D1, D5, and D6 patches with a filter matched
to the ACTPol beam profile. Point sources with a signal at
least 5 times larger than the background uncertainty in the
filtered maps are identified, and their fluxes are measured.
A template of beam-convolved point sources is then
constructed for each patch and subsequently subtracted
from the corresponding patch. As a result, point sources
with fluxes above 8 mJy are removed fromD1, and sources
with fluxes above 5 mJy are removed from D5 and D6.
Overall, calibration of the ACTPol patches is achieved

by comparing to the Planck 143 GHz temperature map [41]
and following the method described in [42]. The patches
are then multiplied by a factor of 1.012 to correspond to the
WMAP calibration as in [40].
Optical Data.—SDSS I and II obtained imaging data of

11000 deg2 using the 2.5-meter SDSS Telescope [43,44].
This survey has five photometric bands. SDSS-III BOSS
extended this imaging survey by 3000 deg2 [36]. Based on
the resulting photometric catalog of galaxies, CMASS
(“constant mass”) galaxies were selected extending the
luminous red galaxy (LRG) selection of [45] to bluer and
fainter galaxies. These galaxies form a roughly volume-
limited sample with z > 0.4 and satisfy the criterion that
their number density be high enough to probe large-scale
structure at redshifts of about 0.5 [46]. The BOSS spectro-
scopic survey targeted these galaxies obtaining spectro-
scopic redshifts, and these galaxies have been used in a
number of cosmological analyses [46,47].
Using the tenth SDSS public data release (DR10), we

selected CMASS galaxies from the BOSS catalog [48].
This selection resulted in 6144, 5211, and 5420 CMASS
galaxies that lie withinD1,D5, andD6, respectively. These
galaxies span a redshift range of about z ¼ 0.4 to z ¼ 0.7,
with a mean redshift of z ¼ 0.54. The galaxies were cross
referenced with galaxies in the SDSS-III photometric
catalog [49], using a shared galaxy identification number,
to obtain more accurate celestial position information.
A subset of CMASS galaxies have optical weak-lensing

mass estimates of their average halo masses using the
publicly available CFHTLenS galaxy catalog [50,51]. This
subset has an additional redshift cut of z ∈ ½0.47; 0.59� and
a stellar mass cut of 1011.1h−270M⊙ < M⋆ < 1012.0h−270M⊙
relative to the full CMASS sample. (The full CMASS
sample has a stellar mass range of roughly 1010.6h−270M⊙ <
M⋆ < 1012.2h−270M⊙.) The average halo mass estimate for
this CMASS galaxy subsample is M200ρ̄0 ¼ ð2.3� 0.1Þ ×
1013h−1M⊙ [50], where M200ρ̄0 is defined as the mass
within R200, a radius within which the average density is
200 times the mean density of matter today. If we had
adopted the additional redshift and stellar mass cuts of
this subsample of CMASS galaxies, then the number of
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galaxies falling in the ACTPol patches would have been
reduced by roughly a factor of 2; so we instead stack on the
full CMASS galaxy sample within our survey regions for
this Letter.
Since we cut out a 700 × 700 “stamp” centered on each

CMASS galaxy from the ACTPol temperature maps, we
exclude all galaxies whose stamp does not fall entirely
within the corresponding ACTPol patch. We find from
simulations that this stamp size is roughly the minimum
required to obtain unbiased lensing reconstructions using
the pipeline described here. We also note that performing
reconstructions on small stamps allows us to obtain the
necessary precision for the mean field subtraction described
in the next section. To avoid noisy parts of the ACTPol
patches, we also remove galaxies for which the mean value
of its corresponding inverse variance weight stamp is lower
than 0.7, 0.3, and 0.3 times the mean of the weight map of
the full patch for D1, D5, and D6, respectively. These
factors were chosen so that all of the stamps in our stacks
had an average detector hit count above the same minimum
value. These cuts leave 4400, 3665, and 4032 galaxies to
stack on in D1, D5, and D6, respectively.
Pipeline.—The analysis pipeline used in this Letter is as

follows. We set the mean of each galaxy-centered 700 × 700
stamp to zero to prevent leakage of power on scales larger
than the stamp size due to windowing effects. Each stamp is
then multiplied by an apodization window that consists of
the corresponding inverse variance weight stamp that has
been smoothed and tapered with a cosine window of width
14 arcminutes. Each of the stamps is then beam decon-
volved and filtered with the quadratic filter given in [32].
The filter is constructed by noting that lensing of the

CMB temperature field shifts the unlensed temperature
field, ~Tðn̂Þ, to the lensed temperature field, Tðn̂Þ, so that

Tðn̂Þ ¼ ~Tðn̂þ∇ϕÞ; ð1Þ
where ϕ is the deflection potential and ∇ϕ is the deflection
angle. The lensing convergence, κ, is given by

∇2ϕ ¼ −2κ: ð2Þ

On the arcminute scales of individual dark matter halos, the
unlensed CMB can be approximated as a gradient, and
lensing induced by the halo alters the CMB field along
this gradient direction. Thus, we search for this signal by
looking for deflections correlated with the background
CMB gradient. In order to do this, we reconstruct the
lensing convergence field, κ, by constructing two filtered
versions of the data: one that is filtered to isolate the
background gradient and one that is filtered to isolate small-
scale CMB fluctuations. Then, we take the divergence of
the product of these two maps as described in [32] and
summarized below.
The first filtered map is constructed by taking the

weighted gradient of the lensed CMB map

GTT
l ¼ ilWTT

l T l; ð3Þ

where the weight filter is

WTT
l ¼ ~CTT

l ðCTT
l þ NTT

l Þ−1 ð4Þ

for l ≤ lG, andWTT
l ¼ 0 for l > lG. Note that ~Cl and Cl are

the unlensed and lensed CMB power spectra, respectively,
from a fiducial theoretical model based on Planck best-fit
parameters, and Nl is the noise power. Here, lG is a cutoff
scale and is set to lG ¼ 2000. We choose this cutoff since,
as shown in [32], the unlensed CMB gradient does not have
contributions above l ¼ 2000, and we want to remove
smaller-scale fluctuations. This cutoff in the gradient filter
is the main difference between the filter used in this Letter
and the filter used for large-scale structure lensing [52].
When the convergence, κ, is large (of order 1), as it is for
clusters, only the filter with the gradient cutoff returns an
unbiased estimate of the convergence [32]. For smaller
convergence values, as measured for galaxy groups in this
work, both filters return similar results.
The second filtered map is an inverse-variance weighted

map given by

LT
l ¼ WT

l T l; ð5Þ

where

WT
l ¼ ðCTT

l þ NTT
l Þ−1: ð6Þ

Taking the divergence of the product of these filtered
maps, as prescribed in [32], gives,

κTTl
ATT
l

¼ −
Z

d2n̂e−in̂·lf∇ · ½GTTðn̂ÞLTðn̂Þ�g: ð7Þ

Here, the real-space lensing convergence field constructed
from temperature data is

κTTðn̂Þ ¼
Z

d2l
ð2πÞ2 e

il·n̂κTTl : ð8Þ

The normalization factor is given by

1

ATT
l

¼ 2

l2

Z
d2l1
ð2πÞ2 ½l · l1�W

TT
l1
WT

l2
fTTðl1; l2Þ; ð9Þ

with

fTTðl1; l2Þ ¼ ½l · l1� ~CTT
l1 þ ½l · l2� ~CTT

l2 ð10Þ

and l ¼ l1 þ l2.
The mean of each reconstructed convergence stamp is set

to zero to remove fluctuations on scales larger than the size
of the stamp. Each reconstructed convergence stamp is then
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low-pass filtered by setting modes with l > 5782 to zero.
This corresponds to ignoring modes smaller than the 1.4’
beam scale.
The reconstructed lensing convergence stamps from a

given ACTPol patch are then stacked (i.e., averaged). A
“mean field” stamp needs to be subtracted from this stack
since the apodization window does not leave the mean of
the reconstructed stack identically zero in the absence of
any signal [53,54]. We construct a mean field stamp from
the average reconstruction of 15 realizations of random
positions in the corresponding ACTPol patch. Each
random-position realization has the same number of stamps
as are in the galaxy stack. Thus, by construction, the mean-
field-subtracted galaxy stacks show any excess signal
above that from random locations.
In order to construct the covariance matrix for each

patch, we construct 50 independent realizations of simu-
lated ACTPol data for each patch. These simulations have
noise and beam properties matched to the data and include
only lensing by large-scale structure. We repeat the
procedure performed on the data on each of the 50
independent simulations. The covariance matrix for each
patch is then obtained by calculating the covariance of
radial profiles across these 50 mean-field-subtracted, mean
stamps. In this way, the covariance matrices capture the
correlations between radial bins. This procedure also takes
into account any additional covariance coming from over-
lapping stamps. In addition, it also folds in the uncertainty
in the subtracted mean field. (Note that we use simulations
to characterize the covariance matrix since stacking on
random positions in the data does not capture the variance

due to overlapping stamps and meanfield subtraction.
A typical mean-field amplitude is 0.03, and the uncertainty
is ≈20% of the errorbars shown in Fig. 1.)
The pipeline described above is implemented for each

ACTPol patch separately as well as for all the patches
combined. The latter is done by stacking the three mean-
field-subtracted galaxy stacks for each ACTPol data patch.
The combined-patch covariance matrix is obtained by
combining the 50 mean simulated convergence stamps
for each patch and calculating the variance across all
150 mean stamps.
This pipeline is tested on a suite of simulations where

700 × 700 CMB stamps are lensed with Navarro-Frenk-
White (NFW) cluster profiles [55] with varying levels of
instrument noise, beam resolution, and pixelization. The
pipeline returns unbiased reconstructions (to ≈0.1σ) and
S=N estimates in agreement with previous analyses [32].
In particular, the expected detection significance stacking a
sample of roughly 12 000 galaxies in lensed CMB stamps
with ACTPol beam and noise properties is 4.2σ. For this
estimate, the masses, concentrations, and redshifts of the
lensing galaxies are assumed to be the mean values of the
CMASS subsample with optical weak lensing follow-up
described above [50].
Results.—We show the result of the combined-patch

stack of reconstructed convergence stamps centered on
CMASS galaxies in Fig. 1. The left panel shows the
measured azimuthally averaged lensing convergence pro-
file, and the right panel shows the reconstructed lensing
stack in the two-dimensional plane. We note that the signal
peak in the two-dimensional plot is offset by about 10.

FIG. 1 (color online). Left: The azimuthally averaged signal from stacked reconstructed convergence stamps centered on CMASS
galaxy positions for all three ACTPol deep fields combined. The green dashed curve shows the best-fit NFW profile. Right: The
reconstructed convergence stack in the two-dimensional plane, where the horizontal and vertical scales are in arcminutes. We also show
1σ (dashed) and 3σ (solid) contours; the signal is the dark red spot in the middle. The peak is offset by about 10 from the center; offsets of
> 10 are seen roughly 20% of the time in simulations of centered input halos given ACTPol noise levels. The detection significance
above null is 3.8σ within 10 arcminutes, and the best-fit curve from [50] is preferred over null with a significance of 3.2σ within
10 arcminutes.
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This is also seen in simulations of centered input halos
given ACTPol noise levels, where offsets of > 10 are seen
roughly 20% of the time. We also note that this offset is
well within the virial radius of CMASS halos. The profile
has been binned, with inverse-variance weighting, in annuli
that are four-pixels (2 arcminutes) wide so that correlations
between neighboring bins in general do not exceed 50%.
The exceptions are that for the stacks on galaxy positions,
the 3rd and 4th bins are correlated by 65%, and the 4th and
5th bins are correlated by 70%. This is due to overlapping
stamps, as the galaxy locations are more correlated than
random positions.
The significance of this detection above the null hypoth-

esis, including measured points within 10 arcminutes of the
profile center, is 3.8σ. This is calculated using the com-
bined-patch covariance matrix, C, where

�
S
N

�
2

¼ χ2null ¼
X

θ1;θ2≤100
κðθ1ÞC−1κðθ2Þ: ð11Þ

Restricting this to 4 arcminutes from the profile center,
where most of the S=N is from, gives a detection signifi-
cance above null of 3.6σ.
We fit the data set within 10 arcminutes from the center

with an NFW profile, which is the projected and redshift-
averaged mass density as in, e.g., [56]. We vary the mass
and concentration and obtain a best-fit profile with a mass
ofM200ρ̄0 ¼ ð2.0� 0.7Þ × 1013h−1M⊙ and a concentration
of c200ρ̄ ¼ ð5.4� 0.8Þ. This result is obtained by imposing
a prior on the c-M relation from [57] assuming Gaussian
errors on the normalization of this relation of 20% as found
in [50]. We note that the best-fit mass and mass error are
unchanged with and without the prior; however, since there
is significant degeneracy in the concentration, given our
noise levels, the prior influences the best-fit c200ρ̄0 and
corresponding error. This best-fit curve gives a reduced
chi-square of χ2=ν ¼ 1.5 for ν ¼ 3 degrees of freedom, and
is consistent with the best-fit curve from [50]. The data also
favor the best-fit curve from [50] over the null line (κ ¼ 0)
at a significance of 3.2σ within 10 arcminutes, where
we calculate this significance using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2null − χ2best-fit

p
.

Restricting to within 4 arcminutes, the model is favored
over null with a significance of 2.9σ.
The profile of the reconstructed lensing stack for each

ACTPol patch is shown in Fig. 2. An excess above null
is seen in all three patches with a significance of 2.0σ, 3.6σ,
and 1.3σ within 4 arcminutes for D1, D5, and D6,
respectively. The black-dashed curve in Fig. 2 is an NFW
profile with the best-fit mass and concentration found from
optical weak lensing of a subset of the CMASS galaxy
sample [50]. This best-fit mass and concentration for the
subset is M200ρ̄0 ¼ 2.3 × 1013h−1M⊙ and c200ρ̄0 ¼ 5.0,
where the concentration is from the best-fit concentration-
mass relation found in [50], calculated at the mean redshift
of the subset (z ¼ 0.55). (In [50], a best-fit of c200ρ̄0 ¼ 5.0 is

found for CMASS galaxies when their model allows for
off centering of CMASS galaxies in dark matter halos.
Without this degree of freedom, a best-fit of c200ρ̄0 ¼ 3.2
is found.)
Systematic Checks.—Two different null tests are per-

formed to verify the robustness of the signal. The first is to
stack on random positions in the data. As mentioned above,
all of the stacked images have a subtracted mean field
stamp that is determined from averaging 15 realizations of
randomly selected stamps from the data. Therefore, by
construction, the measured signal is the excess above that
from random locations. However, we show a single
random-position realization which contains the same num-
ber of stamps as are in the galaxy stack. We subtract the
mean field stamp from this single realization and plot the
resulting profile in the top panel of Fig. 3 (brown circles).
The data set is consistent with the null hypothesis with a
probability to exceed (PTE) of 0.92.
The second null test is a curl test where we repeat the

analysis of stacking reconstructions centered on CMASS
galaxies and subtract a mean field stamp as before. However,
this time the divergence in Eq. (7) is replaced with a curl, and
the first instance of the dot product l · l1 in Eq. (9) (not in
fTT) is replaced with a cross product [4,58,59], where both
the curl and cross product are projected perpendicular to the
image plane. The reconstruction is then expected to contain
only noise since lensing is not expected to generate a curl
signal in temperature maps. The curl reconstruction data
points scatter about zero, with a PTE of 0.08, as shown in
Fig. 3 (red stars).

FIG. 2 (color online). Shown are reconstructed convergence
profiles centered on CMASS galaxy positions for each ACTPol
deep field separately. The significance with respect to null within
4 arcminutes is 2.0σ, 3.6σ, and 1.3σ for ACTPol Deep 1, 5, and 6,
respectively. The green dashed curve is the best-fit NFW profile
from all the Deep fields combined, and the black dashed curve is
the best-fit NFW profile from a subset of the CMASS galaxies
measured via optical weak lensing [50].
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As can be seen in Fig. 2, the mean signal is highest
in D5. A histogram analysis of the stamps in both D5
and in the quadrant of D5 with the highest mean signal
shows no apparent outliers. We note that excluding this
quadrant from our analysis still results in a S=N > 3σ
within 10 arcminutes.
We also consider several possible contaminants that

could bias a detection of CMB halo lensing. Ionized gas
in clusters hosting the stacked galaxies could produce a
decrement in the CMB temperature at 146 GHz due to the
thermal Sunyaev-Zeldovich (tSZ) effect [60,61]. In order to
determine the effect of such a contaminant on the lensing
reconstruction, we added a Gaussian decrement with a peak
value of −35 μK and 1σ width of 1 arcminute (the virial
radius of a 1013M⊙ halo at z ¼ 0.6 is roughly 1.50) to CMB
temperature maps lensed by NFW profiles as discussed
above. We adopted this as a conservative level of tSZ for
CMASS halos (see, for example, [62]). This contamination
resulted in the reconstruction being biased low by about
0.3σ within 3 arcminutes at ACTPol noise levels, with
negligible bias beyond 3 arcminutes. An identical check
was performed for 35 μK increments (corresponding to
point source emission) with a similar suppression of the
signal. In addition, no appreciable tSZ decrement or point
source increment is found when stacking the stamps taken
directly from CMB temperature maps and centered on the
CMASS galaxies, after these stamps have been filtered to
isolate modes between 1000 < l < 8000. These checks
indicate that the detected positive signals in Figs. 1 and 2 do
not arise from tSZ or point source emission. The kinetic SZ
effect due to the bulk motion of the cluster will produce a
similar symmetric increment or decrement. Furthermore,
asymmetric contaminants, like those due to the kinetic SZ
effect from internal gas motions, do not coherently align
with the CMB gradient and only add noise by construction
of the estimator.
The stacked lensing convergence measured in Figs. 1

and 2 could also have contributions that are not due to
CMB lensing by the halo that each galaxy resides in (the
1-halo term), but instead are due to correlated halos in the
vicinity of the galaxies (the 2-halo term, [63,64]). Since
most of our detected signal is within a 2 arcminute region,
where the 1-halo term dominates over the 2-halo term
(see, for example, Fig. 7 in [50]), one would not expect the
2-halo term to contribute significantly to the detection
significance in this Letter.
Discussion.—We have presented the stacked recon-

structed lensing convergence of CMASS galaxies within
the first season ACTPol deep fields and shown evidence
of CMB lensing from these halos at a significance of
3.8σ above null. The lensing convergence is directly
related to the projected density profile of these halos
and hence, our results demonstrate that it is possible to
constrain the mass profile of massive objects using CMB
lensing alone.

FIG. 3 (color online). Top panel: Shown are the curl null
test performed on the stack of reconstructed convergence
stamps centered on CMASS galaxy positions, and a random-
position null test where reconstructed convergence stamps are
centered on random positions in the data. Middle and bottom
panels: Shown are the curl and random-position null tests,
respectively, in the two-dimensional plane. We also show
1-sigma contours; the lack of a red spot in the middle confirms
the null test.
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We find a best-fit mass and concentration from the
stacked convergence stamps of M200ρ̄0 ¼ ð2.0� 0.7Þ ×
1013h−1M⊙ and c200ρ̄ ¼ ð5.4� 0.8Þ fitting to an NFW
profile. These mass and concentration values are in broad
agreement with the optical weak lensing estimates in [50]
based on a subset of the CMASS galaxy sample. Our data
also favors the best-fit profile from [50] over a null line at a
significance of 3.2σ within 10 arcminutes.
With this Letter, we demonstrate that CMB observations

are now achieving the sensitivity and resolution to provide
mass estimates of dark matter halos belonging to galaxy
groups and clusters. With the advent of next-generation
CMB surveys, we expect this technique to be further
exploited, thus opening a new window on the dark Universe.
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