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We present the first experimental demonstration of a new type of localized state in the continuum,
namely, compacton-like linear states in flat-band lattices. To this end, we employ photonic Lieb lattices,
which exhibit three tight-binding bands, with one being perfectly flat. Discrete predictions are confirmed
by realistic continuous numerical simulations as well as by direct experiments. Our results could be of great
importance for fundamental physics as well as for various applications where light needs to be conducted in
a diffractionless and localized manner over long distances.
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The localization of excitations in periodical lattices
usually must rely on some form of defect, either pointlike
or extended, linear or nonlinear, or simply disorder, in order
to produce localized modes. However, there is another way
of accomplishing this, in which the lattice remains perfectly
periodic but is able to support localized states. In that case,
one can find extremely localized entities that do not diffract
at all, and that remain localized by virtue of a perfect
geometric phase cancellation condition. This implies the
possibility of using a judicious combination of these modes
to transmit or localize information on specific regions of a
lattice, without any distortion.
A Lieb lattice [x-y pattern in Fig. 1(a)] is a square

depleted lattice that is essentially a two-dimensional
counterpart of the “perovskite” structure, which is ubiqui-
tous in nature. The CuO2 planes of cuprate superconductors
are perhaps the most famous example [1,2], but in fact
many layered oxides coordinate in this fashion. Initial
interest on this lattice began when ferromagnetism was
found on the flat band at half filling [3]. Later, it was proven
that ferromagnetism in this lattice was robust against spin
wave excitations [4]. This lattice also displays unusual
topological properties; for instance, in the presence of a
uniform magnetic field, the flat band remains flat because
of topological reasons [5]. The flat band touches two
linearly dispersing intersecting bands at a single Dirac
point. In the presence of Kerr nonlinearity the system may
exhibit novel conical diffraction at the Dirac cone [6,7].
Very recently, the effect of considering correlated disorder
on a Lieb lattice was studied [8], where a square-root
singularity in the density of states was predicted. The Lieb
lattice can now be realized by, e.g., manipulating cold
atoms in optical lattices [9–11] and by direct laser writing
of optical waveguides [7,12,13].
The presence of a flat band in the spectrum of a Lieb

lattice implies the existence of entirely degenerate states,

the superposition of which displays no dynamical evolu-
tion. This allows the formation of four-site ring structures
[see dashed line in Fig. 1(a)] that are completely localized
in space, constituting a localized state in the continuum.
The formation of those localized states arises from the high
degeneracy of zero-frequency eigenmodes, as was recently
shown in the context of chiral systems connected to a
continuum [14]. In these systems, there exist zero-energy
states where the wave function has finite amplitude in only
one of the subsystems defined by the chiral symmetry.
When the system is coupled to leads with a continuum
energy band, some of these states remain bounded. These
localized states are reminiscent of localized states in the
continuum (BIC), originally predicted for nontranslation-
ally invariant potentials [15]. However, the BIC concept
has been expanded to different types of potentials, while
retaining the principal property of being localized in space
and existing inside the continuum, as recently investigated
theoretically [16,17] and experimentally [18–21] in differ-
ent photonics setups.

FIG. 1 (color online). (a) A Lieb photonic lattice with sites A, B,
and C defining the unitary cell. The dashed-line region encloses
a four-site ring-mode profile, where different colors represent
different amplitudes and different phases. (b) Linear spectrum of
an anisotropic Lieb lattice for Vy ¼ 2Vx.
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In this Letter, we demonstrate theoretically and exper-
imentally the existence of new localized states consisting of
compacton-like linear states residing in the linear band of a
perfectly periodic Lieb lattice. They can be considered as a
special type of BIC that can be located in any position
of the lattice; this is a special property of flat-band states.
This compacton-like localized entities do not diffract upon
propagation, allowing in this manner the distortionless
transmission of information along an optical channel [22].
The evolution of light along the z direction on a Lieb

photonic lattice, sketched in Fig. 1(a), composed by weakly
coupled identical optical waveguides, is well described by
a discrete linear Schrödinger equation [23,24],

−i
du~n

dz
¼ β~nu~n þ

X

~m

V~n; ~mu~m: ð1Þ

Here, z is the coordinate along the propagation direction,
and u~n corresponds to the light amplitude at the ~nth
waveguide of a Lieb lattice. In our model, all waveguides
are assumed to be identical; therefore, they possess the
same propagation constants β~n ¼ β0 [without loss of
generality, we set β0 ¼ 0 in (1)]. The coupling (hopping)
term between nearest-neighbor lattice sites ~n and ~m is
denoted by V~n; ~m. The linear spectrum of a Lieb lattice is
obtained by solving model (1) with a stationary ansatz,
u~nðzÞ ¼ u~n expðiβzÞ. We assume nearest-neighbor inter-
actions only between sites A, B, and C (unitary cell). To be
more general, we consider an anisotropic lattice where the
horizontal (Vx) and vertical (Vy) coupling coefficients can
be different, but preserve the same lattice properties. For
these three different lattice sites, we construct the coupling

interactions considering a 2D Bloch wave vector ~k ¼
fkx; kyg and find three linear bands on this system [12],

βð~kÞ ¼ 0;�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
xcos2ðkxÞ þ V2

ycos2ðkyÞ
q

: ð2Þ

In Fig. 1(b), the linear spectrum (2) is shown inside the first
Brillouin zone. Two bands are dispersive (nonzero curva-
ture), possessing a particle-hole symmetry [25], where for

each ~k there are two eigenfrequencies �βð~kÞ. We observe
that, for Vy > Vx, the dispersive bands show a different

curvature depending on the direction of the ~k vector, where,
in general, y-oriented waves propagate faster. These two
bands are connected by a Dirac point at β ¼ 0. Exactly at
this value, a completely flat (nondispersive) band is located.
Diagonal interactions are considered negligible in our
approach in order to preserve the flatness of this special
band [6]. This assumption is well justified by the
experiment.
In general, modes in the continuum of any periodic

structure are completely extended. However, a flat-band
system allows the formation of very localized, compacton-
like states [26]. In a Lieb lattice, any closed ring (formed by

eight sites) may support a ring mode, where B-site ampli-
tudes are zero and the other two amplitudes satisfy the
relation VxC ¼ −VyA for ky ¼ kx, as sketched in Fig. 1(a).
A measure of localization is provided by the participation
ratioR ¼ ðPnjunj2Þ2=

P
njunj4, which takes the value 1 for

a state localized at a single site and N for a completely
delocalized profile (N being the number of lattice sites). In
our case, the ring modes have a participation ratio R ≤ 4;
i.e., they constitute a very compact localized state, appearing
only by virtue of symmetry in a completely periodic lattice.
This new type of BIC-like state can be placed at any position
across the lattice and will propagate without diffraction
along the longitudinal direction. Additionally, any linear
combination of these states will be completely coherent and
will propagate without any distortion, allowing for a high-
fidelity transmission of information along the longitudinal
direction [22].
Tight-binding models, like model (1), are known to

describe qualitatively well some particular systems that
have short-range (weak coupling) interactions [23,24].
However, the description of a real lattice requires other
methods to study the light dynamics. Our goal is to trace the
optimal conditions for observing the described discrete
phenomenology, avoiding extra interactions that could
destroy the flatness of the band [6] and, therefore, impede
the observation of linear compact states. In order to be
closer to the conditions likely found in an experiment,
we study dynamically a Lieb lattice using a continuous
approach. We consider a linear paraxial wave equation [12]
given by

−i
∂
∂zψðx; y; zÞ ¼

∇2⊥ψðx; y; zÞ
2k0n0

þ k0Δnðx; yÞψðx; y; zÞ;
ð3Þ

where ψ is the envelope of the electric field, k0 ¼ 2π=λ is
the wave number in free space, λ is the wavelength, n0 is the
refractive index of the bulk material, and Δnðx; yÞ corre-
sponds to the refractive index structure that defines the Lieb
photonic lattice. ∇2⊥ ¼ ∂2

x þ ∂2
y corresponds to the trans-

verse Laplacian operator. Once the geometry is fixed [in our
case, waveguides are elliptical [12], implying a strong
effective anisotropy: Vy ∼ 2Vx in model (1)], we have
essentially two free parameters left, the wavelength and
the maximum index contrast δn≡max jΔnðx; yÞ − n0j. We
implement a beam propagation method to solve Eq. (3)
numerically and study the evolution of light across and
along a Lieb lattice, considering a lattice period of
d ¼ 20 μm and a propagation distance of L ¼ 10 cm.
We consider green light of λ ¼ 532 nm because it leads
to a weaker coupling between lattice sites and, therefore, to
a more discrete phenomenology.
By running our simulations at this wavelength, we obtain

the results presented in Fig. 2. First, in Fig. 2(a), after
exciting a B site, we observe a small diffraction area, which
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is an indication of a weak-interaction (tight-binding)
scenario. In addition, due to the waveguide ellipticity,
we observe a very anisotropic and vertically oriented
dispersion pattern, implying Vy > Vx in model (1). In
Fig. 2(b), we observe how a ring mode (i.e., four out-of-
phase sites) could effectively be excited by choosing a right
index contrast δn (we ran several simulations to find that
δn≳ 0.67 × 10−3). In Fig. 2(c) we observe how a ring
profile with uniform phase structure is destroyed and
diffracts all over the lattice. This shows the importance
of setting the right phase structure (π) to effectively excite
the flat-band states. Finally, as a proof of the numerical
excitation of the ring mode, we generate a coherently
combined state by summing two neighboring ring modes
and propagating it along the system. As Fig. 2(d) shows, we
observe the output pattern of this combined state, showing
a perfect propagation of ring-mode combinations. We also
generated different simple and complex linear combina-
tions; all of them propagated without noticeable distortion.
The excitation of these localized states also gives rise to

the onset of different excited eigenstates coming from the
complete band structure of the lattice; in our numerical
simulations, this manifests itself as a very weak (negli-
gible) background radiation. We perform a longitudinal
Fourier transform analysis [22] and study the excited
frequency spectrum along the dynamics. We observe the
presence of a large and thin peak in the region of the
flat band, with a lower excitation of higher bands. By
increasing the index contrast δn, we notice that this flat-
band peak increases and the gap between the nearest

excited bands widens. Additionally, we perform simula-
tions for propagation distances up to L ¼ 50 cm to study
the robustness of the ring-mode excitation. By inspecting
the excited spectrum, we observe that the peak related
to the flat band remains strongly excited in comparison to
the rest of the excited spectrum. Although a realistic
excitation of a ring mode is not perfect, as it is in a discrete
nearest-neighbors model, we numerically find that the
generated background radiation is very weak and can be
considered negligible in comparison to the excited local-
ized state. For distances d and L considered in this Letter,
the effect of next-nearest neighbor interactions appears to
be negligible as well. This is due to the weak coupling
interaction coming from well-separated waveguides,
which makes model (1) a valid approximation to describe
the dynamics on this lattice.
To perform the experiments, we fabricate a Lieb pho-

tonic lattice using the direct femtosecond laser-writing
technique on a L ¼ 10 cm–long fused silica glass wafer
[27], as sketched in Fig. 3(a). In order to test the quality
of this lattice, we launch white light at the input facet and
take a microscope image at the output of the crystal [see
Fig. 3(b)]. In this figure, we observe the propagating modes
of each waveguide, which show a noticeable ellipticity that
strongly affects the coupling interactions between nearest
neighbors. We observe more evanescent light in between

FIG. 3 (color online). (a) Femtosecond laser-writing technique.
(b) Microscope image at the output facet of a Lieb lattice for
white-light propagation. (c) Experimental setup to study the
propagation of light patterns on a Lieb lattice.

FIG. 2 (color online). Output profiles for different input
conditions: (a) B-site excitation, (b) out-of-phase ring, (c) in-
phase ring, and (d) two added ring modes. λ ¼ 532 nm,
d ¼ 20 μm, δn ¼ 0.7 × 10−3, and L ¼ 10 cm. Color scheme:
inverted black and white map.
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vertical sites than in between horizontal ones [see inset
in Fig. 3(b)], due to the effective anisotropic coupling
(Vy > Vx).
The experimental observation of ring modes involves

several challenging stages for the preparation of a proper
initial condition. We essentially require the creation of the
appropriate amplitude and phase pattern to be used as an
input excitation, at the input facet of the array. In Fig. 3(c)
we describe our experimental setup. We use a Holoeye
LC2012 transmission spatial light modulator (SLM) to
modulate, simultaneously, the amplitude and phase of a
broad beam. We split the SLM display into two parts. In the
first path (region A), we modulate the amplitude of the
beam by tuning the angle of two polarizers (P). We
generate a pattern of several light disks of given radius
(to be adjusted to match waveguides at the input facet) and
given geometry (considering the Lieb structure). Once this
modulation is achieved, we pass this light pattern through
the second part of the SLM to modulate the amplitude
profile in phase (0 or π). This modulation is performed in
region B, by using an array of tuned half-wave (HWP) and
quarter-wave (QWP) plates, and polarizers (all components
were carefully tuned to optimize the required phase
modulation, as well as the intensity of the profile and
the respective input polarization [28]). After this stage, we
obtain an amplitude- and phase-modulated light pattern,
with a given polarization. In our experiment, light is
polarized in the horizontal direction x̂, in order to observe
a larger diffraction area [29]. Finally, we inject this
modulated pattern at the input facet of our Lieb photonic
lattice by using a 4× microscope objective (MO), and
observe the input profile with a CCD camera after being
reflected on a beam splitter (BS). We obtain the output
profile by using a 10×MO and a CCD camera. To study the
phase structure of different profiles, we interfere the input
and the output patterns with a wide-tilted plane wave.
We start studying the bulk diffraction by using a B-site

excitation, which is the input condition that better excites
the dispersive part of the linear spectrum [12]. We inject
light at the center of the lattice and observe the diffraction
pattern shown in Fig. 4(a). We found an excellent agree-
ment with respect to our numerical results [see Fig. 2(a)],
which is very important for the calibration of the effective
index contrast to be used in our simulations. Then, we
prepare a symmetric ring-mode input profile, having four
light disks with equal amplitude and a staggered phase
structure, and observe its perfect propagation along the
lattice [see Fig. 4(b)]. As the input profile is close but not
the exact ring mode of the system, the light relaxes to this
nonsymmetric configuration due to the anisotropic cou-
pling coefficients. By increasing the image contrast (not
shown here), we observe that a very weak radiation is also
generated across the lattice, which is a manifestation of the
presence of dispersive bands in the system. By interfering
the input and output ring-mode profiles with a tilted plane

wave, we observe that the phase structure is exactly the
expected one [see Fig. 4(b), inset]: There is a π-phase shift
difference between neighboring ring sites, as predicted
by the tight-binding model. This shows very nicely that
the initial discrete model prediction is valid in a realistic
environment, and that the fundamental properties of the
Lieb lattice are in fact observable in this experiment.
We further test the relevance of the phase structure on
the input condition by using an in-phase four-site ring
excitation, as shown in Fig. 4(c). The output pattern shows
a destruction of the initial localized profile due to the
excitation of different linear bands (the output phase profile
is not shown). This experiment agrees well with our
simulations shown in Fig. 2(c) with a difference of the
symmetry of the observed profile, which is essentially due
to intrinsic fabrication anisotropies or from input conditions
that are not perfectly aligned.
Finally, in order to probe the excitation of ring modes

as stationary states and their potential use for transmitting
optical information in narrow lattice regions, we combine
them in different configurations. First, we confirm our
numerics from Fig. 2(d), by preparing an initial condition
composed by two vertically added ring modes and observ-
ing its perfect propagation in Fig. 4(d1). This shows
experimentally the robustness of the application of the
discrete analysis. This pattern has no discernible back-
ground radiation and possesses the same predicted structure
for the combination of two anisotropic ring modes.

FIG. 4 (color online). Output experimental profiles for different
input conditions: (a) B-site excitation, (b) out-of-phase ring,
(c) in-phase ring, and (d) composed states excitation. In
(a)–(c) lower-left insets show the input intensity profile. Upper
insets in (b) and (c) show an interferogram of the ring mode with a
tilted plane wave for input (left) and output (right) profiles.
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Additionally, the vertical combination was designed think-
ing on the highest possible vertical diffraction that could
be excited; nevertheless, we observe a perfect localized
propagation. Finally, we test other linear combinations.
For example, in Fig. 4(d2) we observe the propagation of
two noninteracting ring modes along a diagonal. We also
study the propagation of more complex patterns by linearly
combining four ring modes. We construct and propagate a
completely additive combination of four rings [Fig. 4(d3)],
and a horizontally added and vertically subtracted one
[Fig. 4(d4)]. By carefully selecting the phase and location
of these modes, different linear patterns can be propagated
to create a code based on these highly localized funda-
mental states.
In conclusion, we have experimentally observed the

excitation of a new special type of localized state embedded
into the continuum, consisting of a compact mode residing
in the flat band of a Lieb photonic lattice. We have matched
the right realistic conditions to observe this very funda-
mental weak-coupling mode and demonstrated the reality
of flat-band systems. We have demonstrated the need to
have a correct phase structure to be able to excite these
localized entities. Additionally, we have combined these
modes to create composite coherent and localized states,
which propagate without diffraction across the lattice. This
shows the possibility of creating different patterns and
propagating them as a secure image transmission mecha-
nism. Our results show a new way to propagate localized
patterns by using the very fundamental properties of flat-
band systems that can be found and studied in a broad class
of physical systems, ranging from solid state and magnet-
ism to photonics. Our results provide a novel scheme
of confining and controlling light. We foresee possible
applications in, e.g., telecommunication and sensing [30].

The authors wish to thank A. Desyatnikov for
valuable discussions. This work was supported in part
by Fondef IDeA CA13I10244, Fondecyt Grants
No. 1120123, No. 3140608, and No. 1151444,
Programa ICM Grant No. RC-130001, Programa de
Financiamiento Basal Grant No. FB0824, the Deutsche
Forschungsgemeinschaft (Grant No. 462/6-1), and the
German Ministry of Education and Research (Center for
Innovation Competence program, Grant No. 03Z1HN31).

*rodrigov@uchile.cl
†Present address: Departamento de Física, Universidad del
Atlántico, Barranquilla, Colombia.

[1] V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).
[2] R. T. Scalettar, D. J. Scalapino, R. L. Sugar, and S. R. White,

Phys. Rev. B 44, 770 (1991).
[3] E. H. Lieb, Phys. Rev. Lett. 62, 1201(1989).
[4] K. Kusakabe and H. Aoki, Phys. Rev. Lett. 72, 144

(1994).

[5] H. Aoki, M. Ando, and H. Matsumura, Phys. Rev. B 54,
R17296(R) (1996).

[6] D. Leykam, O. Bahat-Treidel, and A. S. Desyatnikov,
Phys. Rev. A 86, 031805(R) (2012).

[7] F. Diebel, D. Leykam, S. Kroesen, C. Denz, and A. S.
Desyatnikov, in Advanced Photonics, OSATechnical Digest
(Optical Society of America, Washington, DC, 2014), paper
NW3A.1.

[8] J. D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, and S. Flach,
Phys. Rev. Lett. 113, 236403 (2014).

[9] R. Shen, L. B. Shao, B. Wang, and D. Y. Xing, Phys. Rev. B
81, 041410 (2010).

[10] N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev. A
83, 063601 (2011).

[11] V. Apaja, M. Hyrkas, and M. Manninen, Phys. Rev. A 82,
041402 (2010).

[12] D Guzmán-Silva, C. Mejía-Cortés, M. A. Bandres, M. C.
Rechtsman, S. Weimann, S. Nolte, M. Segev, A. Szameit,
and R. A. Vicencio, New J. Phys. 16, 063061 (2014).

[13] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P.
Öhberg, E. Andersson, and R. R. Thomson, arXiv:1412.6342
[Phys. Rev. Lett. (to be published)].

[14] J. Mur-Petit and R. A. Molina, Phys. Rev. B 90, 035434
(2014).

[15] J. von Neumann and E. Wigner, Phys. Z. 30, 465 (1929).
[16] E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 78, 075105

(2008).
[17] M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar,

Phys. Rev. Lett. 108, 070401 (2012).
[18] D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Phys.

Rev. Lett. 100, 183902 (2008).
[19] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte,

A. Szameit, and M. Segev, Phys. Rev. Lett. 107, 183901
(2011).

[20] S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A.
Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and
Y. S. Kivshar, Phys. Rev. Lett. 111, 240403 (2013).

[21] G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and
S. Longhi, Phys. Rev. Lett. 111, 220403 (2013).

[22] R. A. Vicencio and C. Mejía-Cortés, J. Opt. 16, 015706
(2014).

[23] S. Flach and A. Gorbach, Phys. Rep. 467, 1 (2008).
[24] F. Lederer, G. I. Stegeman, D. N. Christodoulides, G.

Assanto, M. Segev, and Y. Silberberg, Phys. Rep. 463, 1
(2008).

[25] J. He, Y.-X. Zhu, Y.-J. Wu, L.-F. Liu, Y. Liang, and S.-P.
Kou, Phys. Rev. B 87, 075126 (2013).

[26] D. L. Bergman, C. Wu, and L. Balents, Phys. Rev. B 78,
125104 (2008).

[27] A. Szameit and S. Nolte, J. Phys. B 43, 163001 (2010).
[28] I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M.

Sánchez-López, and F. Mateos, J. Appl. Phys. 94, 3697
(2003).

[29] S. Rojas-Rojas, L. Morales-Inostroza, U. Naether, G. B.
Xavier, S. Nolte, A. Szameit, R. A. Vicencio, G. Lima, and
A. Delgado, Phys. Rev. A 90, 063823 (2014).

[30] C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D.
Joannopoulos, and M. Soljačić, Nature (London) 499, 188
(2013).

PRL 114, 245503 (2015) P HY S I CA L R EV I EW LE T T ER S week ending
19 JUNE 2015

245503-5

http://dx.doi.org/10.1103/PhysRevLett.58.2794
http://dx.doi.org/10.1103/PhysRevB.44.770
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevLett.72.144
http://dx.doi.org/10.1103/PhysRevLett.72.144
http://dx.doi.org/10.1103/PhysRevB.54.R17296
http://dx.doi.org/10.1103/PhysRevB.54.R17296
http://dx.doi.org/10.1103/PhysRevA.86.031805
http://dx.doi.org/10.1103/PhysRevLett.113.236403
http://dx.doi.org/10.1103/PhysRevB.81.041410
http://dx.doi.org/10.1103/PhysRevB.81.041410
http://dx.doi.org/10.1103/PhysRevA.83.063601
http://dx.doi.org/10.1103/PhysRevA.83.063601
http://dx.doi.org/10.1103/PhysRevA.82.041402
http://dx.doi.org/10.1103/PhysRevA.82.041402
http://dx.doi.org/10.1088/1367-2630/16/6/063061
http://arXiv.org/abs/1412.6342
http://arXiv.org/abs/1412.6342
http://dx.doi.org/10.1103/PhysRevB.90.035434
http://dx.doi.org/10.1103/PhysRevB.90.035434
http://dx.doi.org/10.1103/PhysRevB.78.075105
http://dx.doi.org/10.1103/PhysRevB.78.075105
http://dx.doi.org/10.1103/PhysRevLett.108.070401
http://dx.doi.org/10.1103/PhysRevLett.100.183902
http://dx.doi.org/10.1103/PhysRevLett.100.183902
http://dx.doi.org/10.1103/PhysRevLett.107.183901
http://dx.doi.org/10.1103/PhysRevLett.107.183901
http://dx.doi.org/10.1103/PhysRevLett.111.240403
http://dx.doi.org/10.1103/PhysRevLett.111.220403
http://dx.doi.org/10.1088/2040-8978/16/1/015706
http://dx.doi.org/10.1088/2040-8978/16/1/015706
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1103/PhysRevB.87.075126
http://dx.doi.org/10.1103/PhysRevB.78.125104
http://dx.doi.org/10.1103/PhysRevB.78.125104
http://dx.doi.org/10.1088/0953-4075/43/16/163001
http://dx.doi.org/10.1063/1.1601688
http://dx.doi.org/10.1063/1.1601688
http://dx.doi.org/10.1103/PhysRevA.90.063823
http://dx.doi.org/10.1038/nature12289
http://dx.doi.org/10.1038/nature12289

