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The second law of thermodynamics places a limitation into which states a system can evolve into. For
systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that
a system can only evolve into another if the free energy goes down. Recently, it’s been shown that there are
actually many second laws, and that it is only for large macroscopic systems that they all become equivalent
to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often
more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve.
Here, we consider additional restrictions on how the coherences between energy levels can evolve.
Coherences can only go down, and we provide a set of restrictions which limit the extent to which they
can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted
to the transition rates between energy levels. We show that the limitations are matched in the case of a
single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher
dimensions, we conjecture that more severe constraints exist. We also introduce a new class of
thermodynamical operations which allow for greater manipulation of coherences and study its power
with respect to a class of operations known as thermal operations.
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We consider a quantum system in state ρS which can be
put in contact with a reservoir at temperature T. The second
law of thermodynamics, combined with the first law
(conservation of energy) states that the free energy

F ¼ TrðHρSÞ − TSðρSÞ ð1Þ

can only decrease, where SðρSÞ is the von Neumann
entropy (one can also take the course grained entropy,
but since we are interested in small quantum systems where
all degrees of freedom can be precisely measured, in
principle, taking the von Neumann entropy will help us
answer the questions we are interested in here.) SðρÞ ¼
−Trρ log ρ and H is the system’s Hamiltonian. Although
this is a necessary constraint on what state transformations
are possible, we now know that it is not sufficient. For
transitions between two states, diagonal in the energy basis,
there are a set of necessary and sufficient conditions which
must be satisfied in order for a state to transform into
another state. One has a family of free energies in the case
of catalytic processes [1] (i.e., where one is allowed an
ancilla which can be returned to its original state in the
spirit of theClausius-Planck formulation of the second law).
For noncatalytic transformations, the set of necessary and
sufficient conditions were proven to be majorization [2] in
the case when the Hamiltonian is H ¼ 0 and thermomajo-
rization [3] in general. It is only in the thermodynamic limit

that all these conditions become equivalent to the ordinary
second law of Eq. (1). However, for single finite systems
(sometimes called the single-shot scenario), the full set of
conditions is relevant. It is this finite regime which is
more relevant for quantum systems or even in the meso-
scopic regime, especially if long range interactions are
present.
Regarding states that are not diagonal in the energy basis,

thermomajorization (or the generalized free energies of
Ref. [1] in the catalytic case) are still necessary conditions
for state transformations and place conditions on the
diagonal entries of the state ρS (where we assume that
ρS is written in the energy eigenbasis). But these conditions
do not say anything about how off-diagonal elements
between different energies behave. Partial results were
obtained in Refs. [1,3] for the case where only the input
state is nondiagonal and simultaneously posted with this
Letter, in Ref. [4], where relations between purity and
quantum asymmetry in the spirit of coherences have been
formulated and the authors obtained the “free-energy
relation” for coherences (second law). However, finding
a complete set of quantum limitations is still a challenge.
Here, by providing a first systematic approach to coher-
ences, we will present a set of conditions, called damping
matrix positivity (DMP). Unlike the results of Refs. [1,3],
they are not necessary and sufficient, although we will
show that they are for the case of a qubit.
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Since we are interested in studying fundamental limi-
tations, we allow for the experimenter to perform the largest
possible set of operations within the context of thermody-
namics. Namely, we allow them to have access to a heat
bath at temperature T, and to perform any unitary. Since the
laws of physics must conserve energy, and we are interested
in how energy flows in thermodynamics, the unitary should
conserve the total energy of all systems it acts on, but this is
the only restriction. This provides a precise definition of
what we mean by thermodynamics, recasting it as a
resource theory known as thermal operations (TO). This
was introduced in Ref. [5] (cf. Ref. [6]) and applied later in
Refs. [3,7], where the addition of a work system enabled
one to compute the work required for a state transforma-
tion. We will define these operations more carefully and
then derive the restrictions they impose on state trans-
formations. In particular, we will present our conditions,
and discuss it in detail for qubits, where we see that DMP is
a necessary and sufficient condition for state transforma-
tions. As a result, we fully characterize the qubit-qubit case,
as well as provide limitations for higher dimensional states.
Then, we introduce a new class of operations we call
enhanced thermal operations, and study its power with
respect to TO. They appear to be more powerful, in that for
them, DMP are necessary and sufficient conditions for state
transformations, while for TO we believe DMP are not
sufficient. At least in the qubit case, TO can be described
by three conditions: completely positive trace preserving,
some commutation relation, and preservation of the Gibbs
state. We obtain a part of our findings by adapting results
for studies of the weak coupling between the system and
the heat bath, and dynamical semi groups [6,8–10].
Thermodynamics as a resource theory and thermal

operations.—In order to derive any laws of thermodynam-
ics we need to say what thermodynamics is—in other
words, define the class of operations which constitute
thermodynamics. Thermodynamics is then viewed as a
resource theory [2,3,5,7,11]. In the resource theory, one
considers some class of operations, and then asks how
much of some resource can be used to perform the desired
task and how this resource can be manipulated. In the case
of thermodynamics, it is viewed as a theory involving state
transformations in the presence of a thermal bath. To
describe it, one can then exploit some mathematical
machinery from single-shot information theory, where
one does not have access to many copies of independent
and identically distributed bits of information [12].
We wish to explore fundamental limitations on state

transformations; therefore, we should allow the experi-
menter to perform any unitary transformation. However,
any interaction allowed in nature has to conserve energy if
we consider the total system, and since thermodynamics
requires precise accounting of all sources of energy, the
unitary must conserve energy. Of course, we often consider
adding interaction Hamiltonians, or performing unitaries

which do not conserve energy, but this is only because we
are ignoring degrees of freedom which, if their change in
energy was taken into account, would restore energy
conservation. Here, we need to include these additional
systems, not only because we want to account for all
sources of energy, but because we want to understand
coherences and these additional systems may contain
coherences which could be transferred to our system.
We thus consider all systems with coherence as being part
of the system. Indeed all the standard thermodynamical
paradigms we are interested in can be made to fall within
thermodynamics in this manner [7]. We can thus use
thermal operations (TO) to study fundamental limitations
on the manipulation of coherences. The TO paradigm
preassumes that there is a heat bath, described by a
Gibbs state and helps to describe what can happen with
a system which can interact with the heat bath. It also treats
the microscopic system, without any approximations.
Formally, under TO one can (i) bring in an arbitrary

system in a Gibbs state with temperature T (free resource),
(ii) remove (discard) any system, and (iii) apply a unitary
that commutes with the total Hamiltonian.
The class of TO is generated by the unitaries U (which

act on the system, bath, and other ancillas), which obey the
energy conservation condition

½U;HS þHR þHW � ¼ 0; ð2Þ

where HW is a work system or a clock, or any other
object under consideration besides the system and bath.
Equation (2) is necessary and sufficient if we wish to ensure
that energy is conserved on every input state [3]. This is
natural if we wish to apply our thermal machine on
arbitrary unknown quantum states. Thus, an arbitrary
thermal operation is obtained by the implementation of
an energy-preserving U and tracing out the heat bath (see
also, Fig. 1). Precisely, Λ ∈ TO, when

ΛðρSÞ ¼ TrRðUτR ⊗ ρSU†Þ: ð3Þ

It is worth noting that it is Eq. (2) that prevents one from
creating coherences over energy levels if one doesn’t
already start with them. One can extend TO to the case
where one is allowed as a resource, a reference frame which
acts as a source of infinite coherence, and, in such a case,
one can lift the superselection imposed by Eq. (2) (in the
context of thermodynamics, see Refs. [7,13]).
Allowed state-to-state transformations under thermal

operations.—As we already mentioned, TO cannot create
coherent superpositions between eigenstates; but what are
the ultimate limitations for a general ðρ; HSÞ → ðσ; HSÞ
state-to-state transition? In Ref. [3] necessary and sufficient
conditions, in terms of monotones, have been put forward
for the block diagonal entries of a state written in the energy
basis. These conditions are discussed in the Supplemental
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Material, note 4 [14]. Here, by noticing some general
properties of TO, we will provide bounds for off-diagonal
elements—coherences, under the assumption that the
system Hamiltonian HS has a nondegenerate Bohr spec-
trum; i.e., there are no degeneracies in the nonzero
differences of energy levels of the Hamiltonian. To obtain
some of our results, we will adapt results derived for
open systems, precisely, for Davies maps under weak
coupling [8–10].
Properties of thermal operations.—Let us examine the

properties of TO. First, the diagonal elements of a density
matrix are not mixed with off-diagonal ones during
evolution under TO (i.e., they evolve independently).
Moreover, for systems having nondegenerated Bohr spec-
tra, coherences are not mixed among themselves. We can
thus say that TO are block diagonal; i.e., for an off-diagonal
(diagonal) element jiiShjj (jiiShij) of state ρS one gets (for
proofs, see, the Supplemental Material, note 2 [14])

ΛðjiiShjjÞ ¼ αijjiiShjj; i ≠ j ð4Þ

and

ΛðjiiShijÞ ¼
X

ij

pði → jÞjjiShjj; ð5Þ

where Λ is defined as in Eq. (3), αij are factors by which
the off-diagonal elements are multiplied (damped) during
the transition, and pði → jÞ is a transition probability of
moving element i into j, and pðiÞ is a probability of
occupying an energy state i.
TO are physical operations, so the dynamics should be

implemented by completely positive trace preserving maps
(CPTP maps). Together with the fact that under TO, the

Gibbs state is preserved, we have a set of properties
fulfilled by TO. It is known [8,9] that these properties
are also satisfied by Davies maps appearing in the weak-
coupling regime for Hamiltonians with nondegenerate
Bohr spectra. Using the above properties, we obtain
constraints for the behavior of coherences. We thus get
bounds for off-diagonal elements that are determined by the
probability for staying in the same energy level.
Quantum states—second laws for off-diagonal ele-

ments.—We will now use the above properties of TO to
study allowed states transitions. From the property given
by Eqs. (4)–(5), we obtain that there exist two families of
bounds, one for diagonal elements of states (thermomajo-
rization) and the second one for coherences.
Suppose now that somehow we can transform the

diagonal of an input d-level state into another d-level state
with some other diagonal entries. Our main question is
then, how does this process affect coherences, i.e., the off-
diagonal elements?
To answer, let us use other properties of TO. As shown in

Ref. [8], the property of CPTP combined with formulas (4)
and (5) imply that the following matrix must be positive:

2
666664

pð0 → 0Þ α01 … α0n−1

α10 pð1 → 1Þ … α1n−1

..

. ..
. . .

. ..
.

αn−10 αn−12 … pðn − 1 → n − 1Þ

3
777775
≥ 0:

ð6Þ

We will call the above matrix the damping matrix, and the
above condition, damping matrix positivity (DMP). Let us
note that the matrix is crucial for processing coherences.
Indeed, positivity implies that the damping factors, in
particular, satisfy

jαijj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pði → iÞpðj → jÞ

p
: ð7Þ

Thus, the coherences must be damped at least by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pði → iÞpðj → jÞp

that comes from the 2 × 2 minors of
the matrix from Eq. (6). Since the present Letter first
appeared, the formulas has been generalized to the case of
an arbitrary spectrum in Ref. [15]. In the subsequent section
we will show that for qubits, this is the only constraint for
processing coherences by TO.
Qubit example.—For qubits, we have necessary and

sufficient sets of criteria, by showing that for a given
process on a diagonal, the damping factor (for coherences)
from Eq. (7) can always be equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pði → iÞpðj → jÞp

.
We will determine this optimal factor for an arbitrary ρ → σ
transition.

Going into detail, consider two states ρS ¼ ½ p α
α� 1 − p

�

and σS ¼ ½ q χ
χ� 1 − q

�, written in the energy eigenbasis of

TO

TO
Heat bath, HR System, HS

FIG. 1 (color online). One considers a system S in a quantum
state ρS with a fixed Hamiltonian HS, in contact with the thermal
reservoir (heat bath) R in a Gibbs state τR (possibly many copies
of it) with Hamiltonian HR—acting as a free resource. Inter-
actions (white arrows) between them are implemented under the
paradigm of thermal operations (TO), i.e., by energy preserving,
unitary operations U, commuting with the total Hamiltonian. The
goal is to obtain some other state σS. The energy spectrum of the
bath is highly degenerated (small or no degeneracy drastically
reduce the set of thermal operations) and its maximal energy will
tend to infinity. We also make an assumption that the dimension
of the bath is much larger than that of the system. Moreover,
initially, the total system is in the product state of the bath and
system τR ⊗ ρS.

PRL 115, 210403 (2015) P HY S I CA L R EV I EW LE T T ER S week ending
20 NOVEMBER 2015

210403-3



the Hamiltonian system HS, where * stands for complex
conjugation. We know that the evolution of diagonal
elements can be separated from off-diagonal ones, so the
former one uses thermomajorization (leading to four differ-
ent situations discussed in the Supplemental Material,
note 3 [14]). For the latter, we obtain that the decaying
rate of coherences depends only on the diagonal transition
rates (and, consequently, on elements of states and energies
associated with the Hamiltonian of the system). Namely,
coherences obey the following inequality:

jχj ≤ jαjκ; ð8Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − ~peβΔEÞðp − ~qeβΔEÞ

p

jp − ~peβΔEj ; ð9Þ

~q ¼ 1 − q, ~p ¼ 1 − p, e�βΔE ¼ e�βðEj−EiÞ, with Ei being
the energy of the system and β ¼ 1=kT the inverse temper-
ature. Note that the phases commute with the total
Hamiltonian of our setup, so we can restrict our attention
only to moduli of the coherences. We have necessary and
sufficient conditions for arbitrary qubit ρ → σ transitions
under TO, where for (a) diagonal elements we use
thermomajorization, (b) for coherences, Eq. (8) (in the
Supplemental Material, note 4 [14] we show that it can
be achieved with equality). In the Appendix, we also
express our damping factor in terms of relaxation times
(T2) [16,17].
Sufficiency of the second laws?—It is clear that for an

arbitrary transitions, there are many stochastic maps that
lead to the same final state and each such map can be
implemented by possibly many unitary transformations.
We need such unitaries that damp as little as possible, the
off-diagonal elements of the density matrix—for which, the
inequalities coming from the 2 × 2 minors of the Choi map
from Eq. (7) are all saturated. This would optimize the
preservation of coherences. But, is it always possible? As
we have shown, for qubits, for every state-to-state tran-
sition, we have only one channel that realizes it and we can
always make the inequality that gives us a dumping factor
for coherences tight. This uniqueness of channel may
not be true anymore for higher dimensional states. In
the Supplemental Material, note 6 [14], we choose a
qutrit state-to-state transition ð0; 1

2
; 1
2
Þ → fðe−βΔE21=2Þ;

½ð1 − e−βΔE21 þ e−βΔE20Þ=2�; ½ð1 − e−βΔE20Þ=2�g, which can
only be realized by a unique set of transition probabilities.
For this set of transition probabilities, one is not able to
find a unitary map that at the same time realizes the exact
states transition and leads to the saturation of bounds for
coherence preservation.
Enhanced thermal operations: a class of operations

which saturate the DMP criteria.—As we already have
observed, in the case when one considers Hamiltonians

with nondegenerated Bohr spectra, the properties of TO
used in this Letter are similar to those occurring when
one studies Davies maps for many-level systems. We
shall now introduce a class of operations that is defined
by these properties. Wewill call this class enhanced thermal
operations.
We define enhanced thermal operations (ETO) in the

following way. Λ ∈ ETO when (i) ½Λ; ĤS� ¼ 0, (ii) it is
CPTP, and (iii) it preserves the Gibbs state.
Here, ĤS is a superoperator defined by ĤSðXÞ ¼ ½HS; X�

for all operators X. The first property gives us that under
ETO, one is able to realize all possible transformations
that satisfy the constraints given by Eq. (6). We will use
our previous findings to compare the power of these two
classes.
We show that for qubits, TO are equal to the new class

and as a result we have laws for any state-to-state transition
under TO. Essentially, for qubits, TO can already saturate
the bound given by Eq. (6) and thus do no worse than
enhanced thermal operations. For qutrits, we provided a
family of initial and final states ρ and σ that by enhanced
thermal operations, one can transform ρ into σ exactly, but
it is not possible under TO. Based on this, one can try to
conclude that TO are outperformed by enhanced thermal
operations, and, what is more, state transitions by TO are
not equal to the ones under enhanced thermal operations
(the latter statement is stronger, it could be that the set of
TO is smaller than enhanced thermal operations, but both
classes lead to the same laws of transformations). However,
it is not a conclusive result, because one can try to
approximate the channel that is used to realize the transition
under TO from the previous section, which may lead to the

QUBITS:

TO = ETO

d > 2:

ETO

? TO

FIG. 2 (color online). Comparison of thermal operations and
enhanced thermal operations for qubits (d ¼ 2) (a) and d > 2 (b).
For d ¼ 2, they are equivalent, and from the Birkoff primitive
given in Ref. [7] TO can reproduce not only the extreme maps
(when our bounds are saturated) but any other from ETO with an
arbitrary precision. On the other hand, when d > 2, ETO may be
a wider class than thermal operations. However, we only have a
counterexample for an exact qutrit state-to-state transition, where
we find a transition that can be realized by ETO, but not by TO.
Studies of approximate states transitions are needed to verify the
possible gap between TO and ETO.
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saturation of the bound for optimal coherences preserva-
tion; see also Fig. 2.
Discussion and open questions.—We study the limit of

state-to-state transformations under thermal operations,
focusing mostly on coherences and their preservation.
We also introduce a new class of operations—enhanced
thermal operations, and compared its power to TO. A
natural research direction is to study whether they really
outperform thermal operations if we are only concerned
about approximate transformations.
It would also be interesting to check how state transitions

look if we add additional ancillas, and allow them to be
returned in approximately the same state as before. Such
catalytic thermal operations were studied in Ref. [1] and
depending on the level of approximation, they effectively
allow one to only approximately conserve energy on the
system.
Finally, we have seen that the second laws we have

introduced in the form of the DMP criteria are not strictly
necessary and sufficient limitations on thermodynamical
transformations. This likely means that there are more
second laws which have to be satisfied. Finding them is an
interesting open question.
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