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We first show that the currently accepted statistical mechanics for granular matter is flawed. The reason
is that it is based on the volume function, which depends only on a minute fraction of all the structural
degrees of freedom and is unaffected by most of the configurational microstates. Consequently, the
commonly used partition function underestimates the entropy severely. We then propose a new
formulation, replacing the volume function with a connectivity function that depends on all the structural
degrees of freedom and accounts correctly for the entire entropy. We discuss the advantages of the new
formalism and derive explicit results for two- and three-dimensional systems. We test the formalism by
calculating the entropy of an experimental two-dimensional system, as a function of system size, and
showing that it is an extensive variable.
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The field of granular physics is in urgent need of
equations of state, the traditional provider of which is
statistical mechanics (SM). Yet, although a granular stat-
istical mechanical formalism was introduced a quarter of a
century ago [1–3], no such equations have been derived yet.
Granular SM is entropy based. Part of the entropy is
structural [1–3] and corresponds to the different spatial
arrangements of the grains, with each structural configu-
ration regarded as a microstate. These microstates depend
on Nsd structural degrees of freedom (DOFs) in d dimen-
sions, with Ns the number of contact position vectors (see
below). The volume subensemble is based on a volume
function W, which is analogous to the Hamiltonian in
thermal SM. Namely, the probability that the system be at a
structural microstate with volume V is presumed to be
e−V=X0 , in analogy to the Boltzmann factor e−E=kBT. The
factor X0 ¼ ∂hWi=∂S, called the compactivity, is the
analog of the temperature in thermal SM [1–3]. Every
grain configuration can support an ensemble of different
boundary forces, each giving rise to a different internal
stress microstate [4–9]. The boundary forces, ~gmðm ¼
1;…;MÞ are the DOFs that determine the stress micro-
states. The combined partition function is

Z ¼
Z

e−½Wðf~rgÞ=X0�−
P

ij
½F ijðf~rg;f~ggÞ=Xij�YNs

n¼1

d~rn
YM
m¼1

d~gm;

ð1Þ

where σij is the stress tensor, F ij ¼ Vσij is the force
moment tensor, and Xij ¼ ∂hF iji=∂S is the angoricity
tensor [4,8]. The identity of the structural DOFs, ~r, is
discussed below. The two subensembles are not

independent [8] and the total entropy, S, is the logarithm
of the total number of microstates, both structural and
stress. Numerical and experimental tests of the formalism
abound [10–15] and some inconsistencies were observed
[16]. In particular, that the compactivity does not equili-
brate in some systems [17].
Here, we first show that this stems from a fundamental

problem with the formulation of the volume ensemble—the
volume function, W in Eq. (1), is flawed in that it is
independent of most of the structural microstates that it is
supposed to describe. Consequently, it fails to account
correctly for the entire entropy. We then propose an
improved formulation that both accounts for all the micro-
states and is amenable to analytic treatment. We use the
new formulation to calculate the new partition function and
the mean volume in two (2D) and three dimensions (3D).
The mean volume calculation supports a recent claim that
an equipartition principle exists in these systems [8,18,19].
The problem with the volume function is independent of
the magnitudes of the boundary forces ~gm. Therefore, for
clarity, we take these to be negligibly small, which allows
us to neglect the force dependent term in Eq. (1). Including
large boundary forces is straightforward but irrelevant for
our purpose here.
In thermal systems, the partition function is a sum over

all microstates, each involving a unique combination of the
values of the DOFs, giving rise to a specific value of the
Hamiltonian, H, and hence of the Boltzmann factor.
Therefore,H must depend on all the DOFs. If its derivative
with respect to any DOF vanishes identically then H is an
incorrect measure of the system’s energy and it leads to
miscounting of the microstates and miscalculation of the
entropy. Thus, dependence on all the DOFs is an essential

PRL 116, 148001 (2016)
Selected for a Viewpoint in Physics

PHY S I CA L R EV I EW LE T T ER S
week ending
8 APRIL 2016

0031-9007=16=116(14)=148001(5) 148001-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.148001
http://dx.doi.org/10.1103/PhysRevLett.116.148001
http://dx.doi.org/10.1103/PhysRevLett.116.148001
http://dx.doi.org/10.1103/PhysRevLett.116.148001


test of any Hamiltonian-replacing function in granular SM.
We demonstrate below that the volume function not only
fails this test but it is also independent of almost all the
structural DOFs.
We consider an ensemble of identically generated static

systems in d dimensions, comprising all the mechanically
equilibrated configurations constructed from a collection of
N ≫ 1 grains. For simplicity, we constrain the mean
coordination number, z̄, to be the same for each system
in the ensemble. LetM ∼

ffiffiffiffi
N

p
≪ N andM ∼ N2=3 ≪ N be

the number of grains in contact with the boundary walls in
2D and 3D, respectively. The total number of boundary
grains is ðα − 1ÞM > M [α ¼ Oð1Þ] and includes grains
that do not touch the walls (see Fig. 1). The connectivity is
determined uniquely by the intergranular contact position
vectors and it is convenient to parameterize these by the
vectors, ~r, connecting nearest contacts around grains
[5,20]. In 2D, these vectors run clockwise around each
grain (Fig. 1) and a similar parameterization exists in 3D
[5,21]. In both 2D and 3D, there are ðNz̄ −MÞ=2 internal
intergranular contacts and ðNz̄þMÞ=2 contacts altogether.
To illustrate the problem with the volume function

consider the example in Fig. 2(a). Its volume is

W ¼ 1

2
ðj~rB × ~rCj þ jð~rB þ ~rCÞ × ~rDjÞ: ð2Þ

We neglect the contours of the boundary grains extending
outside the boundary vectors ~rB − ~rE, whose relative
contribution to the total volume is negligible for
N → ∞. The key point is that W does not depend on

the intercontact vectors surrounding grain A. Shifting grain
A as in Fig. 2(b), the volume of the system is still described
by Eq. (2), which depends only on the unchanged DOFs.
Thus, ∂W=∂~rA ¼ ∂W=∂~rA0 ≡ 0 andW cannot register that
the configurations in Figs. 2(a) and 2(b) are different.
This argument is general—the volume function of any

2D pack is (see Fig. 1)

W ¼ 1

2

XαM−2

m¼1

����
Xm
k¼1

~rk × ~rmþ1

����; ð3Þ

where ~rm extends between two nearest contacts of boun-
dary grain m, 1 ≤ m ≤ αM. This function depends only on
the boundary contacts—it is independent of any of the
interior ones. For N → ∞, the boundary length scales asffiffiffiffi
N

p
while the number of configurations can be estimated as

N! ∼ NN . In contrast, the boundary grains can make orderffiffiffiffi
N

p
! ∼

ffiffiffiffi
N

p ffiffiffi
N

p
configurations. Thus, the volume function

can register only
ffiffiffiffi
N

p ffiffiffi
N

p
=NN ¼ N

ffiffiffi
N

p
=2−N of all the pack’s

configurations—a minute fraction. This is equivalent to
describing a gas in a room by a Hamiltonian that depends
only on the gas molecules closest to the walls. Clearly, such
a Hamiltonian cannot account for all the entropy of the
system. Similarly, the volume function cannot be a good
descriptor of the granular entropy. Similarly, volume
functions in 3D depend only on the boundary inter-contact
vectors, i.e., only on Nð2N2=3=3−NÞ of the total number of
configurations—a vanishingly small fraction.
Note that this problem with the volume function is more

basic than the recently reported failure of the uniform
measure assumption in certain systems [22], which can be
overcome by introducing a nonuniform measure in Eq. (1).
Our new formulation below is similarly independent of this
issue and can be used with any measure.
Having concluded that the volume function is not a good

equivalent of the Hamiltonian, the question is, what could
replace it? We propose a connectivity function, C, that does
not suffer from these limitations

C ¼
XNz̄

q;p¼1

Xd
α;β¼1

bqp;αβrqαrpβ; ð4Þ
θ

m
m,m+1r

m+1

r
m

r
q

FIG. 1. A 2D granular pack, with ðα − 1ÞM ¼ 19 boundary
grains (shaded), of which M ¼ 10 contact the walls. The (solid
and dashed) vectors ~r connect a grain’s nearest contacts,
circulating clockwise. In 3D, the intercontact vectors circulate
clockwise around the facet that faces a cell, as seen from inside
the grain. The solid vectors in the figure form a nondirectional
spanning tree: they are independent, representing the independent
DOFs, they reach every contact and the dashed vectors are linear
combinations of them. There are αM ¼ 29 boundary vectors, and
our choice of spanning tree includes all of them but one.

A

r
C

r
B

r
D

r
E

r

E

r
A’

C

D

B

A

E

A
C

D

B

(b)(a)

FIG. 2. The volume function, Eq. (2), does not depend on the
intercontact vectors ~r surrounding grain A and therefore cannot
distinguish between configurations a and b.
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where the sum is over all the ~r vectors in the system. The
coefficients bqp;αβ will be identified below. The termW=X0

in Eq. (1) is then replaced by C=τ. We name

τ ¼ ∂hCi=∂S; ð5Þ
the “contacture” and it replaces the compactivity X0. Here S
is the entropy, i.e., the logarithm of the number of all the
possible configurations that the packing can be arranged
into under the ensemble’s constraints. τ is a measure of the
connectivity fluctuations—its increase corresponds to more
porous and less compact structures.
To determine the coefficients bqp;αβ, we require that C be

additive, i.e., that the entropy of a system, made up of two
subsystems, is the sum of their entropies. This constrains
bqp;αβ to have no cross terms and to be independent of q
and p. Additivity also constrains the connectivity function
to be a sum over all the ~r vectors, rather than only over an
independent subset of them. We also require that C be
independent of the coordinate system orientation, con-
straining bqp;αβ to be a scalar constant times the unit matrix.
The constant can be absorbed into the definition of τ and we
have

C ¼
XNz̄

q¼1

~rq · ~rq ¼
Xd
n¼1

~RðnÞ · ~RðnÞ; ð6Þ

where ~RðnÞ ≡ ðr1xn ; r2xn ;…Þ is a vector of the xn compo-
nent of all the ~r vectors. This connectivity-based formu-
lation is not only sensitive to all the structural microstates,
but C also has two significant advantages: it has the same
units in all dimensions, as the energy in conventional SM
and unlike the volume function, and it is quadratic,
enabling analytic calculations of the partition function,
as shown below.
Expression Eq. (6) is not as innocuous as it may look

since only Ns − 1 of all the ~r vectors are independent. We

separate ~RðnÞ into three subvectors, ~RðnÞ¼ð~RðnÞ
i ; ~RðnÞ

b ; ~RðnÞ
d Þ:

~RðnÞ
i contains the xn component of the internal independent

vectors and is ðNs − αMÞ long (see below); ~RðnÞ
b contains

the independent boundary contact vectors, of which there

are αM − 1 (see below); and ~RðnÞ
d contains all the remaining

Nd dependent vectors, which can be expressed in terms of
~RðnÞ
i and ~RðnÞ

b as: ~RðnÞ
d ¼ A1 · ~R

ðnÞ
i þ A2 · ~R

ðnÞ
b , where A1 and

A2 are, respectively, Nd × ðNs − αMÞ and Nd × ðαM − 1Þ
matrices. In terms of the independent vectors, we have

C ¼
Xd
n¼1

½~RðnÞ
i · ~RðnÞ

i þ ~RðnÞ
b · ~RðnÞ

b

þ ðA1
~RðnÞ
i þ A2

~RðnÞ
b Þ · ðA1

~RðnÞ
i þ A2

~RðnÞ
b Þ�: ð7Þ

The independent ~r vectors, of which there are many
choices, form a (nondirectional) spanning tree on the
contact network. We constrain our choice to include the

αM − 1 independent boundary contact vectors (Fig. 1), as
this makes it easier to calculate the partition function.
Interestingly, this number holds both in 2D and in 3D,
which is shown as follows. In 2D, the boundary is a closed
perimeter of αM vectors, of which αM − 1 are clearly
independent. In 3D, the boundary is a 2D surface, made of
αM nodes and ζαM=2 vectors, where ζ is the surface’s
mean number of contacts per grain. Using Euler topological
relation for planar graphs, this surface consists of
ðζ=2 − 1ÞαM − 1 elementary loops, each of which has
one dependent ~r. Thus, in 3D, there are ζαM=2 −
½ðζ=2 − 1ÞαM − 1� ¼ αM − 1 independent surface vectors.
Using Eq. (7), the connectivity partition function is

Z ¼
Z

e−
P

d
n¼1

ð~RðnÞ
i ·B1·~R

ðnÞ
i þ~RðnÞ

b ·B2·~R
ðnÞ
b þ~RðnÞ

b ·B3·~R
ðnÞ
i Þ=τ

×
Yd
n¼1

dNs−αM ~RðnÞ
i dαM−1 ~RðnÞ

b ; ð8Þ

where B1; B2; B3 ¼ 1þ AT
1 · A1; 1þ AT

2 · A2; 2AT
2 · A1,

respectively. The exponential makes the contribution of
large ~r vectors to the partition function negligibly small,
allowing us to extend the integration to∞. The contribution
of very small ~r vectors is also negligible, allowing us to

ignore their absence. Integrating first over ~RðnÞ
i and then

over ~RðnÞ
b gives the structure partition function

Z ¼
�ðπτÞNs−1

jB1jjEj
�

d=2

; ð9Þ

where E≡ B2 − 1
4
B3 · B−1

1 · BT
3 . The mean connectivity is

hCi ¼ τ2∂τ lnZ ¼ ðNs − 1Þdτ=2. We see that hCi is shared
amongst all the DOFs, establishing a granular equipartition
principle similar to the one obtained in Ref. [8]. Explicitly,
the entropy is

S ¼ hCi
τ

þ lnZ ¼ d
2
½ðNs − 1Þ lnðeπτÞ − lnðjB1∥EjÞ�:

ð10Þ
To demonstrate the use of our formalism, we analyze 2D

experimental systems, each of 1172 discs of three different
radii, produced by the 3SR Lab [23]. For each system we
construct the contact network, choose a spanning tree,
express the dependent ~r vectors in terms of the independent
ones, calculate the matrices Ai, Bi and E, and then compute
the entropy using Eq. (10). Figure 3 shows the entropy for
nonoverlapping subsystems of different sizes. We find that
the entropy increases linearly with system size; i.e., it is
extensive. The increase rate depends on the unknown τ [see
Eq. (10)]. Our relation is linear without subtracting lnðN!Þ,
in contrast to Ref. [22].
Rewriting Eq. (8) as Z ¼ Lð1Þ, any structural expect-

ation value is hAi ¼ LðAÞ=Z. For example, the boundary
vectors satisfy
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h~rb;q · ~rb;qi ¼
Lð~rb;q · ~rb;qÞ

Z
¼ τd

2
ðE−1Þq;q: ð11Þ

Since h~r2b;qi is independent of system size, τ is inversely
proportional to a typical single entry of E−1. Similarly, the
mean magnitude square of an internal vector is
h~ri;q ·~ri;qi¼τdðG−1Þq;q=2, with G≡ B1 − 1

4
BT
3 · B−1

2 · B3.
Significantly, we verified numerically that the entries of
E−1 and G−1 are independent of system size, which
establishes that τ is an intensive variable.
To calculate the mean volume, we use Eq. (3) and define

the interior angle between neighbor vectors q and qþ 1
along the boundary (Fig. 1) as ½1 − ð2=αMÞ�π þ δθq;qþ1,
where δθq;qþ1 is its deviation from that of a regular
αM-sided polygon. It is straightforward to show that the
angle between boundary vectors ~rk and ~rmþ1 isP

m
q¼k ½ð2π=αMÞ − δθq;qþ1�. The 2D volume is then

V2D ¼ 1

2

XαM−2

m¼1

Xm
k¼1

rkrmþ1 sin
Xm
q¼k

�
2π

αM
− δθq;qþ1

�
: ð12Þ

For M ≫ 1, the sum over the constant term 2π=αM
dominates over the fluctuations δθq;qþ1 and we take it
out of the integral. Since k ≠ mþ 1, the integration over
rkrmþ1 yields hjrbji2 ¼ hr2bi and, using Eq. (11), we obtain

hV2Di ≈
α2M2

2π
hr2bi ≈

α2M2τ

2π
UE ∼ Nτ; ð13Þ

where UE ≡ TrfE−1g=ðαM − 1Þ is the average of the
diagonal element in the matrix E−1. Since τ ¼ Oð1Þ then
hV2Di ∼M2 ∼ Ns and the mean volume is also shared
equally amongst the DOFs—reaffirming the granular
equipartition principle [8].
In 3D we specialize to starlike systems, where all the

boundary contact positions are uniquely defined in terms of
the angles from an origin in the system. The volume is then
a sum over tetrahedra, whose apexes are at one of the
system’s internal contacts (e.g., the closest to the contact
network centroid) and whose bases are the triangular facets
that make the network’s boundary

V3D ¼ 1

3

XNtriangles

n¼1

jð~rn1 × ~rn2Þ · ~ρnj

¼ 1

3

XNtriangles

n¼1

����ð~rn1 × ~rn2Þ ·
�XKn

k¼1

~rnk

�����: ð14Þ

The first sum is over the boundary triangles, ~rn1 and ~rn2 are
two edges of triangle n, and ~ρn is the vector from the
tetrahedron apex to the contact point that these two edges
share. The second sum is over the Kn independent contact
vectors that make ~ρn. The angles between the triangle
edges, αn, are distributed around π=3. The angles that the
vectors ~rnk make with ~ρn, cos θnk ¼ ð~rnk · ~ρn=jrnkjjρnjÞ, are
distributed around θ ¼ 0. Evaluating the sum by averaging
separately over the angles and the magnitudes of the
contact vectors, gives

hV3Di ¼
NtrianglesK̄n

2π2
hjrbji2hjriji

¼ ð3=2Þ3=2NtrianglesK̄n

2π2
UEU

1=2
G τ3=2; ð15Þ

where K̄n is the mean number of ~r vectors between the
system centroid and the boundary triangles. UG ≡
TrfG−1g=ðNs − αMÞ is the average of the diagonal
element in the matrix G−1. From dimensional consider-
ations, only Ntriangles ∼ N2=3 and K̄n ∼ N1=3 depend on N in
Eq. (15) and hence hV3Di ∼ N. This substantiates the
existence of an equipartition principle in 3D too.
To conclude, we have pointed out a flaw in the original

entropic formalism of granular SM—the volume function
depends only on a minute fraction of the DOFs and is
insensitive to most microstates. This results in a significant
underestimate of the number of microstates and hence of
the entropy. We then proposed to replace the volume
function by a connectivity function, which is additive
and depends on all the structural DOFs. The compactivity
must then be replaced by a new measure—the contacture, τ.
The new formulation was used to obtain analytical expres-
sions for the entropy and for several expectation values, as
well as to analyze 2D experimental systems. We verified
that the entropy is extensive, τ is intensive, and calculated
the mean volume in 2D and 3D. The mean volume was
shown to be proportional to the number of structural DOFs,
supporting an equipartition principle [8,18,19]. The flaw
pointed out here probably explains the observations in
Eq. [17] that the stress-based angoricity equilibrates in
subsystems while the volume-based compactivity does not,
casting doubt on the usefulness of the compactivity as a
good descriptor of the structural fluctuations.
It is difficult to compare our method with recent attempts

at static granular statistical mechanics as a glasslike
transition [24,25]. These rely on studying the jamming
dynamics, using conventional positions and momenta,

FIG. 3. Entropy vs number of particles of the 2D experimental
granular systems of Ref. [23].
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energy and temperature. The lack of ergodicity forces these
into questionable relations between energetic and structural
ensembles, e.g., that each energetic state corresponds to one
structural configuration [25]. The analysis of the jamming
state focuses on a particular, protocol-dependent state,
where description based on force DOFs is complete
[26,27]. At the same time our SM approach addresses
the full phase space, including both structural and
force DOFs.
A major advantage of the new formulation is the

Gaussian form of the partition function in all dimensions,
making possible the derivation of exact results, as we
demonstrated. In particular, it paves the way to an explicit
equation of state relating the means of the volume and the
stress. It would be interesting to revisit previous analyses
with the new formulation, including the coupling between
the structure and stress microstates [8,28], and study the
contacture equilibration, as in Ref. [17]. We look forward to
numerical and experimental tests of the new formulation.

This work has been funded in part by EPSRC—EP/
H051716/1 and two Alan Howard PhD Scholarships.

*r.blumenfeld@imperial.ac.uk
[1] S. F. Edwards and R. B. Oakeshott, Physica (Amsterdam)

38D, 88 (1989); 157A, 1080 (1989).
[2] A. Mehta and S. F. Edwards, Physica (Amsterdam) 157A,

1091 (1989).
[3] S. F. Edwards, in Proceedings of the International School of

Physics: Enrico Fermi, edited by G. E. Chiarotti, E. Fumi,
and M. P. Tosi (North Holland, New York, 1990), Vol. 106,
pp. 849.

[4] S. F. Edwards and R. Blumenfeld, in Powders and
Grains, Stuttgart, edited by R. Garcia-Rojo, H. J. Herrmann,
and S. McNamara, (Balkema, Leiden, Netherlands, 2005),
pp. 3–5.

[5] R. Blumenfeld and S. F. Edwards, Eur. Phys. J. E 19, 23
(2006).

[6] S. Henkes, C. S. O’Hern, and B. Chakraborty, Phys. Rev.
Lett. 99, 038002 (2007).

[7] L. A. Pugnaloni, I. Sánchez, P. A. Gago, J. Damas, I.
Zuriguel, and D. Maza, Phys. Rev. E 82, 050301(R)
(2010).

[8] R. Blumenfeld, J. F. Jordan, and S. F. Edwards, Phys. Rev.
Lett. 109, 238001 (2012).

[9] D. Bi, J. Zhang, R. P. Behringer, and B. Chakraborty,
Europhys. Lett. 102, 34002 (2013).

[10] D. Bi, S. Henkes, K. E. Daniels, and B. Chakraborty, Annu.
Rev. Condens. Matter Phys. 6, 63 (2015).

[11] E. R. Nowak, J. B. Knight, E. Ben-Naim, H. M. Jaeger, and
S. R. Nagel, Phys. Rev. E 57, 1971 (1998).

[12] M. Schröter, D. I. Goldman, and H. L. Swinney, Phys. Rev.
E 71, 030301 (2005).

[13] S. McNamara, P. Richard, S. K. De Richter, G. Le Caër, and
R. Delannay, Phys. Rev. E 80, 031301 (2009).

[14] S. Zhao, S. Sidle, H. L. Swinney, and M. Schröter,
Europhys. Lett. 97, 34004 (2012).

[15] T. Aste and T. Di Matteo, Phys. Rev. E 77, 021309 (2008).
[16] S. Zhao and M. Schröter, Soft Matter 10, 4208 (2014).
[17] J. G. Puckett and K. E. Daniels, Phys. Rev. Lett. 110,

058001 (2013).
[18] M. Alam and S. Luding, Granular Matter 4, 139 (2002).
[19] H. Q. Wang and N. Menon, Phys. Rev. Lett. 100, 158001

(2008).
[20] R. Blumenfeld and S. F. Edwards, Phys. Rev. Lett. 90,

114303 (2003).
[21] G. Frenkel, R. Blumenfeld, Z. Grof, and P. R. King, Phys.

Rev. E 77, 041304 (2008).
[22] D. Asenjo, F. Paillusson, and D. Frenkel, Phys. Rev. Lett.

112, 098002 (2014).
[23] F. Calvetti, G. Combe, and J. Lanier, Mech. Cohes.-Frict.

Mater 2, 121 (1997); V. Richefeu, G. Combe, and G.
Viggiani, Géotechnique Lett. 2, 113 (2012).

[24] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and
F. Zamponi, Nat. Commun. 5, 3725 (2014).

[25] C. Rainone, P. Urbani, H. Yoshino, and F. Zamponi, Phys.
Rev. Lett. 114, 015701 (2015).

[26] E. Lerner, G. Düring, and M. Wyart, Soft Matter 9, 8252
(2013).

[27] O. Gendelman, Y. G. Pollack, I. Procaccia, S. Sengupta, and
J. Zylberg, arXiv:1505.06626 [Phys. Rev. Lett. (to be
published)].

[28] R. Blumenfeld, J. F. Jordan, and S. F. Edwards, AIP Conf.
Proc. 1542, 1186 (2013).

PRL 116, 148001 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
8 APRIL 2016

148001-5

http://dx.doi.org/10.1016/0167-2789(89)90176-0
http://dx.doi.org/10.1016/0167-2789(89)90176-0
http://dx.doi.org/10.1016/0378-4371(89)90034-4
http://dx.doi.org/10.1016/0378-4371(89)90035-6
http://dx.doi.org/10.1016/0378-4371(89)90035-6
http://dx.doi.org/10.1140/epje/e2006-00014-7
http://dx.doi.org/10.1140/epje/e2006-00014-7
http://dx.doi.org/10.1103/PhysRevLett.99.038002
http://dx.doi.org/10.1103/PhysRevLett.99.038002
http://dx.doi.org/10.1103/PhysRevE.82.050301
http://dx.doi.org/10.1103/PhysRevE.82.050301
http://dx.doi.org/10.1103/PhysRevLett.109.238001
http://dx.doi.org/10.1103/PhysRevLett.109.238001
http://dx.doi.org/10.1209/0295-5075/102/34002
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014336
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014336
http://dx.doi.org/10.1103/PhysRevE.57.1971
http://dx.doi.org/10.1103/PhysRevE.71.030301
http://dx.doi.org/10.1103/PhysRevE.71.030301
http://dx.doi.org/10.1103/PhysRevE.80.031301
http://dx.doi.org/10.1209/0295-5075/97/34004
http://dx.doi.org/10.1103/PhysRevE.77.021309
http://dx.doi.org/10.1039/c3sm53176g
http://dx.doi.org/10.1103/PhysRevLett.110.058001
http://dx.doi.org/10.1103/PhysRevLett.110.058001
http://dx.doi.org/10.1007/s10035-002-0110-x
http://dx.doi.org/10.1103/PhysRevLett.100.158001
http://dx.doi.org/10.1103/PhysRevLett.100.158001
http://dx.doi.org/10.1103/PhysRevLett.90.114303
http://dx.doi.org/10.1103/PhysRevLett.90.114303
http://dx.doi.org/10.1103/PhysRevE.77.041304
http://dx.doi.org/10.1103/PhysRevE.77.041304
http://dx.doi.org/10.1103/PhysRevLett.112.098002
http://dx.doi.org/10.1103/PhysRevLett.112.098002
http://dx.doi.org/10.1002/(SICI)1099-1484(199704)2:2%3C121::AID-CFM27%3E3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1099-1484(199704)2:2%3C121::AID-CFM27%3E3.0.CO;2-2
http://dx.doi.org/10.1680/geolett.12.00029
http://dx.doi.org/10.1038/ncomms4725
http://dx.doi.org/10.1103/PhysRevLett.114.015701
http://dx.doi.org/10.1103/PhysRevLett.114.015701
http://dx.doi.org/10.1039/c3sm50515d
http://dx.doi.org/10.1039/c3sm50515d
http://arXiv.org/abs/1505.06626
http://arXiv.org/abs/1505.06626
http://dx.doi.org/10.1063/1.4812149
http://dx.doi.org/10.1063/1.4812149

