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Understanding the mechanism of fracture is essential for material and process design. While the
initiation of fracture in brittle solids is generally associated with the preexistence of material imperfections,
the mechanism for initiation of fracture in viscoelastic fluids, e.g., polymer melts and solutions, remains an
open question. We use high speed imaging to visualize crack propagation in entangled polymer liquid
filaments under tension. The images reveal the simultaneous propagation of multiple cracks. The critical
stress and strain for the onset of crack propagation are found to be highly reproducible functions of the
stretch rate, while the position of initiation is completely random. The reproducibility of conditions for
fracture points to a mechanism for crack initiation that depends on the dynamic state of the material alone,
while the crack profiles reveal the mechanism of energy dissipation during crack propagation.
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Understanding the conditions for rupture of polymer
melts and solutions under extension is a problem of both
industrial and fundamental interest. For example, in the
production of polymer fibers, a filament of a polymer melt
is subjected to fast extensional flow in order to align the
polymer molecules as much as possible. However, at the
same time, rupture of the melt filament must be avoided.
Polymer melts and solutions are viscoelastic materials,
meaning that they behave in a fluidlike way on slow time
scales and in a solidlike way on fast time scales. As a result
of extensive studies, a consensus has emerged that two
types of rupture modes may be identified for polymer liquid
filaments, a viscoelastic instability mode and an elastic
fracture mode [1]. The viscoelastic instability is also called
necking instability [2] or ductile failure [3]. The mode
generally occurs on a time scale that allows visual obser-
vation. It is generally assumed that an initially axis-
symmetric filament retains axis symmetry during rupture
of this mode [4]. In contrast, our understanding of elastic
fracture in polymer liquids is less satisfactory. While there
has been progress in the understanding of fracture in soft
solids [5–9] and model viscoelastic fluids [10,11], there is
currently no generally accepted theoretical framework for
describing the initiation and propagation of cracks in
entangled polymer melts and solutions. Part of the problem
is that elastic fracture typically occurs on such a fast time
scale as to make direct visual observations impossible.
Thus, even the simple question of whether the elastic
rupture mode in entangled polymer liquid filaments retains
axis symmetry or occurs via an edge fracture is unresolved.
The classical framework for crack propagation and

brittle fracture was provided by the Griffith theory [12].
Inherent in the Griffith framework is the preexistence of
material imperfections in the form of microcracks. When
the applied load exceeds a critical value corresponding to

the propagation threshold for the largest of the microcracks,
that crack begins to grow catastrophically, leading to
fracture. Since the size of the largest imperfection varies
from sample to sample, the fracture stress in brittle
materials is seldom reproducible. For liquids such as
polymer melts and solutions, surface tension eliminates
surface imperfections such as microcracks. The Griffith
condition is therefore not immediately applicable to poly-
mer melts and solutions. For viscoelastic materials,
Tabuteau et al. [10] applied the model by Pomeau [13]
and suggested that thermally induced fluctuations resulting
in weaker domains play the role of crack initiators.
Tabuteau et al. [10,11] also showed that the fracture stress
is typically of the order of the elastic modulus for the tested
viscoelastic fluids. A consequence of the Pomeau model is
that fracture conditions for viscoelastic liquids are much
more reproducible than they are for brittle solids.
The work described here is motivated by the need for

observations under well-defined conditions, from which a
theoretical framework for fracture in polymer melts and
solutions could be developed. In this Letter we show that
the elastic rupture mode in entangled polymer liquid
filaments is an edge fracture mode that breaks axis
symmetry. We also show that the fracture stress is orders
of magnitude higher than the elastic modulus. Moreover,
the conditions for initiation of fracture in polymer liquid
filaments are so well defined that multiple cracks are
initiated independently and propagate simultaneously.
Analysis of the crack profiles suggests that conditions
near the crack tip may be in the glassy regime.
We investigated fracture in liquid bridges formed from

two model entangled polymer liquids stretched in uniaxial
extensional flows at constant stretch rates at 120 °C (about
30 °C higher than their corresponding glass transition
temperatures Tg). The two samples, PS-864k=4k-33
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(Tg ¼ 92 °C) and PS-864k=4k-17 (Tg ¼ 89°C), consist of a
nearly monodisperse polystyrene (PS) of 864 kg=mole
diluted in a styrene oligomer of 4 kg=mole, with PS volume
fraction of 33% and 17%, respectively. The styrene oligomer
is well below the entanglement molecular weight
(Me ¼ 13.3 kg=mole) and can be considered as a solvent
[14,15]. Such systems may be modeled by the highly
successful tube theory for monodisperse linear polymer
melts and solutions [16]. In particular, their linear viscoelas-
tic (LVE) properties can be described by the three tubemodel
[16] parameters: the number of entanglements per chain (Z),
the number ofKuhn segments per entanglement (Ne), and the
relaxation time of one entanglement (τe) (see Supplemental
Material [17] to calculate Z andNe). The LVE properties are
obtained from small amplitude oscillatory shear measure-
ments and the result of PS-864k=4k-33 is shown inFig. 1 (see
Fig. S1 in Supplemental Material [17] for PS-864k=4k-17
and a commercial PS melt). The storage modulus G0
represents the elastic property of the sample, while the loss
modulus G00 represents the viscous property (energy dis-
sipation). The three crossover points are associatedwith three
time constants: the relaxation time of the polymer chain (also
called reptation time, τrep), the relaxation time of one
entanglement (τe), and the relaxation time of one Kuhn
segment (τ0) [19]. The values of the parameters are listed in
the inset of Fig. 1; the final time constant, the Rouse time
τR ¼ Z2τe, is a characteristic time for relaxation of polymer
chain stretching. The polymer liquids have two characteristic
moduli: A glassymodulusG0 that is the same for both liquids
here and an elastic modulus Ge that is proportional to the
entanglement density. The latter is about four times bigger for
PS-864k=4k-33 than for PS-864k=4k-17.
The samples were stretched in uniaxial extensional flows

using the VADER 1000, Rheo Filament ApS, a commer-
cially available filament stretching rheometer [20]. The inset

of Fig. 2(a) shows an example of a filament (quenched)
during stretching. Assuming incompressibility of the melts,
the Hencky strain of the liquid in the midfilament plane is
defined as ε ¼ −2 lnðD=D0Þ, where D0 is the initial
diameter in the midfilament plane and D is the diameter
at time t. The diameters are measured by a laser micrometer
during stretching and a control loop [21] is used to adjust the
plate motion to ensure a constant value of the stretch rate
defined as _ε ¼ dε=dt. Nondimensional stretch rates are
given by the Weissenberg number Wi ¼ _ετR. All experi-
ments leading to fracture have Wi > 1 meaning that the
polymer chains are stretched [19].
We find the critical stress and strain for fracture to be

highly reproducible functions of the stretch rates as
indicated in. Fig. 2(a). For each stretch rate shown, there
are two measurements presented, and in each case the
fracture happens at the same stress and the same Hencky

FIG. 1. Storage modulus G0 and loss modulus G00 as a function
of angular frequency ω for PS-864k=4k-33 at the reference
temperature 120 °C. The inset lists the values of the tube model
parameters for both PS-864k=4k-33 and PS-864k=4k-17
at 120 °C.

FIG. 2. Results of filament stretching measurements.
(a) Measured stress as a function of Hencky strain at different
stretch rates at 120 °C. For each rate the filament fractures at the
end of the measurement. The inset shows the photos of one
filament of PS-864k=4k-33 at Hencky strain 0 and 1.5, respec-
tively. (b) Critical stress for fracture as a function of Weissenberg
number Wi. The inset shows the corresponding critical strain at
fracture as a function of Wi.
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strain (see also Fig. S2(a) in Supplemental Material [17]).
In particular, for the stretch rate of 0.1 s−1, the two
measurements were performed on samples with different
initial sizes (D0 ¼ 3.6 and 2.6 mm, respectively), so there
is no observable dependence on sample size. For the stretch
rate of 0.06 s−1, after the experiment the two broken ends
of the filament were pushed back together with an applied
force. After waiting a time longer than the reptation time of
the sample, the second measurement was performed and
the reproducibility was almost perfect, in accordance with
the liquid nature of the melts. It is well known that the
rheological behavior of viscoelastic fluids follows the time-
temperature superposition principle, whereby the internal
time constants of a material may be adjusted by changing
the temperature [22]. We use this principle to determine
whether the stress limit is a function of the rate of stretching
compared with the rate of relaxation of the sample only. For
the two plots at 0.3 s−1 in Fig. 2(a), the first measurement
was performed at 120 °C, while the second measurement
was performed at 115 °C at a lower stretch rate that
corresponds to 0.3 s−1 at 120 °C. Importantly, the critical
stress and strain are unchanged when the data measured at
two different temperatures are shifted to the same reference
temperature. This observation indicates that the “internal
clock” of the melts plays an important role in the fracture
process. Furthermore, Fig. 2(b) shows that with increasing
stretch rate, the critical stress increases only slightly, and
the critical strain is almost the same. The weak dependence
on strain rate is in agreement with the thermally activated
crack nucleation model for the fracture of viscoelastic
fluids [23]. Moreover, while the entanglement density of
PS-864k=4k-33 is almost four times that of PS-864k=
4k-17, they fracture at a similar critical stress. The value of
the critical stress is between the corresponding elastic
modulus Ge and glassy modulus G0 (see Fig. 1) of both
liquids and is at least two orders of magnitude higher than
Ge. This observation suggests that substantial chain stretch
is involved in the fracture process, and that the relevant
thermal fluctuations responsible for crack initiation happen
on a shorter length and time scale than Rouse dynamics,
i.e., shorter than entanglement dynamics.
While the dynamical conditions (stress and strain) are

evidently highly reproducible, the position of the fracture is
completely random [see Fig. S2(b) in Supplemental
Material [17]]. High speed imaging of the fractures
(Fig. 3; see also Fig. S3 in Supplemental Material [17])
reveals an additional phenomenon that further underpins
the intriguing nature of fracture in viscoelastic liquids.
Once conditions for fracture have been reached, more than
one crack is initiated and multiple cracks propagate
simultaneously. Figure 3 shows the captured cracks in
PS-864k=4k-33 (see also movie S1 in Supplemental
Material [17]). The entire process of crack propagation
is rather short (about 200 ms) compared with the time for
stretching (about 26 s). We let crack 1 refer to the main

crack that leads to the complete fracture of the filament.
The axial distance between observed multiple cracks along
the filament amounts in some instances to more than four
filament diameters [see Fig. S3(a) in Supplemental Material
[17]]. This distance suggests that there is initially no stress
field interaction between the propagating cracks, and that
the initiation of crack 2 is independent of the existence
of crack 1. As crack 1 grows, the stress near that crack
continually increases due to the reduction in area. When
crack 1 is roughly one third through the filament, it
accelerates significantly as shown in Fig. 4(c), which
shows the crack length L as a function of time measured
from image analysis of frames in Fig. 3. The velocities of
crack propagation obtained from the slope of the plot are
2 mm=s in the slow process and 70 mm=s in the faster
process, respectively. Once crack 1 reaches the point of
filament failure the stress is relieved and all other cracks
close up upon removal of the driving force. The crack
propagation velocities may be compared with the velocity
for transmission of a shear wave in a linear viscoelastic
liquid [22]. This velocity is given by vs ¼ ðG�=ρÞ1=2f,
where ρ is the density, G� ¼ ðG02 þ G002Þ1=2 is the absolute
value of the complex modulus, f ¼ ½2ðx − x1=2Þ�1=2= tan δ,
x ¼ 1þ ðtan δÞ2, and tan δ ¼ G00=G0 is called the loss
tangent. The relevant values of the two moduli are
determined from a representation as in Fig. 1.
To estimate the strain rates in the crack propagation zone,

we analyze the profiles in terms of the de Gennes
viscoelastic trumpet model [24]. Based on the stress field
for an infinitely sharp line crack, the overall shape of a
fracture profile uðxÞ is divided into different spatial regions

FIG. 3. Crack propagation in uniaxial extensional flow for
PS-864k=4k-33 stretched at 0.1 s−1 at 120 °C. The time t ¼ 0 is
set at the frame where the filament breaks. The minus sign in the
time for other frames means it happens before the fracture.
The white line in the middle is light shining through the filament.
The breaking of the line around −150 ms reveals the existence of
crack 1, which is otherwise not visible before −5.4 ms since it is
on the front of the filament.
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depending on the distance x from the crack tip. According
to the trumpet model, in region I where x < Vτ (τ is the
smallest time constant), the viscous dissipation is negligible
and the material can be considered as an elastic solid. A
classical parabolic shape uðxÞ ∼ x1=2 is expected in this
region. We use the Kuhn segment relaxation time τ ¼ τ0
from Fig. 1. In region II where x > Vτ, the material can be
considered as a viscous liquid and the fracture shape is
predicted as uðxÞ ∼ x3=2. Therefore, the overall fracture
profile looks like a trumpet. In the work by Tabuteau et al.
[10,11], the parabolic shape in region I has been exper-
imentally observed for a viscoelastic emulsion. Saulnier
et al. [25] observed the trumpet profile in regions I and II
for adhesive fracture between a polymer melt and a solid
surface. However, for cohesive fractures, the complete
trumpet profile including the viscous region II has so far
eluded observation.
Figures 4(a) and 4(b) plot the fracture profile uðxÞ for

PS-864k=4k-33 from Fig. 3. The overall shape of the
fracture as a function of time is well described by a trumpet
profile. All extracted fracture profiles are fitted with a
narrow region of uðxÞ ¼ ax1=2 near the crack tip, while the
remaining profile is described by uðxÞ ¼ bx3=2 þ c, where
a, b, and c are constants (see also Figs. S4 and S5 in
Supplemental Material [17]). While the single relaxation
time model by de Gennes describes the profile qualitatively,
it does not give a complete quantitative description. Thus,
the size of the elastic region near the crack tip is predicted
to be about Vτ0 ≈ 60 nm, which is considerably smaller
than the optical resolution and the parabolic distance used
in Figs. 4(a) and 4(b). The local shear rate during crack
propagation is calculated as _γ ¼ Vðd2u=dx2Þ, which is
plotted in Figs. 4(a) and 4(b) for the viscous region
[uðxÞ ∼ x3=2] (see also Fig. S5 in Supplemental Material
[17]). The shear rate in Fig. 4(a) corresponds to the slow
stage (V ¼ 2 mm=s) while in Fig. 4(b) it corresponds to the
fast stage (V ¼ 70 mm=s). It is clear that the frequencies
(see Fig. 1) that correspond to the local shear rate in the
crack propagation are in the range 1=τe < ω < 1=τ0 where
the viscous component (energy dissipation) dominates the
elastic component (G00 > G0). This is consistent with the
fact that most of the crack profile follows the viscous part of
the trumpet model. On the other hand, the moduli in this
regime predict a shear wave velocity much larger than the
observed propagation speed V. Therefore, we expect that a
full nonlinear simulation of the crack propagation will be
needed to model the process.
In this Letter we have shown elastic fracture of model

polymer liquids under well-defined extensional deforma-
tions. In all observed cases, the fracture initiates at the edge
and propagates inward, thereby breaking the axis symmetry
of the liquid filament. The crack profiles are qualitatively
described by the de Gennes trumpet model with brittle
conditions near the fracture tip and a viscous region in a
tearing zone away from the tip. The highly reproducible

FIG. 4. Crack profile and crack length at different times during
crack propagation for PS-864k=4k-33 stretched at 0.1 s−1 at
120 °C. (a) Corresponding to crack 2 in Fig. 3. (b) Corresponding
to crack 1 in Fig. 3. The black solid lines are uðxÞ ¼ ax1=2, and
the black dashed lines are uðxÞ ¼ bx3=2 þ c, where a, b, and c are
constants and have been adjusted to fit the captured profiles. The
gray solid lines are the local shear rates. (c) Crack length as a
function of time obtained from two independent measurements.
Depending on the angle of the facture facing the camera, the
actual crack length may be longer than observed. Therefore, the
plots in the figure are vertically shifted to get a master curve.
The shift of measurements when compared to the dashed lines
visible in (b) may also be due to the slight angle mismatch
between the crack and the camera.
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fracture conditions as well as the simultaneous independent
initiation of more than one crack strongly support the
argument ([13]) that thermally induced fluctuations are
responsible for crack initiation in polymer melts or sol-
utions. We further hypothesize that such fluctuations lead
to spots of lower entanglement density in the sample, but a
quantitative model is needed to prove the matter.
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