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One drawback of conventional quantum state tomography is that it does not readily provide access
to single density matrix elements since it requires a global reconstruction. Here, we experimentally
demonstrate a scheme that can be used to directly measure individual density matrix elements of general
quantum states. The scheme relies on measuring a sequence of three observables, each complementary to
the last. The first two measurements are made weak to minimize the disturbance they cause to the state,
while the final measurement is strong. We perform this joint measurement on polarized photons in pure
and mixed states to directly measure their density matrix. The weak measurements are achieved using
two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and
polarization degrees of freedom of the photons. This direct measurement method provides an operational
meaning to the density matrix and promises to be especially useful for large dimensional states.
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Shortly after the inception of the quantum state, Pauli
questioned its measurability, and in particular, whether or
not a wave function can be obtained from position and
momentum measurements [1]. This question, now referred
to as the Pauli problem, draws on concepts such as
complementarity and measurement in an attempt to demys-
tify the physical significance of the quantum state. Indeed,
the task of determining a quantum state is a central issue in
quantum physics due to both its foundational and its
practical implications. For instance, a method to verify
the production of complicated states is desirable in quantum
information and quantum metrology applications.
Moreover, since a state fully characterizes a system, any
possible measurement outcome can be predicted once the
state is determined.

A wave function describes a quantum system that can be
isolated from its environment, meaning the two are non-
interacting and the system is in a pure state. More generally,
open quantum systems can interact with their environment
and the two can become entangled. In such cases, or even in
the presence of classical noise, the system is in a statistical
mixture of states (i.e., a mixed state), and one requires a
density matrix to fully describe the quantum system. In
fact, some regard the density matrix as more fundamental
than the wave function because of its generality and its
relationship to classical measurement theory [2].

The standard way of measuring the density matrix is
by using quantum state tomography (QST). In QST, one
performs an often overcomplete set of measurements in
incompatible bases on identically prepared copies of the
state. Then one fits a candidate state to the measurement
results with the help of a reconstruction algorithm [3]. Many
efforts have been made to optimize QST [4-7], but the
scalability of the experimental apparatus and the complexity
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of the reconstruction algorithm renders the task increasingly
difficult for large dimensional systems. In addition, since
QST requires a global reconstruction, it does not provide
direct access to coherences (i.e., off-diagonal elements),
which are of particular interest in quantum physics.

Some recent work has focused on developing a direct
approach to measuring quantum states [8—19]. Defining
features of direct methods are that they can determine the
state without complicated computations, and they can do so
locally, i.e., at the location of the measurement probe. For
example, direct measurement of the wave function has been
achieved by performing a sequence consisting of a weak and a
strong measurement of complementary variables (e.g., posi-
tion and momentum) [8]. In the subensemble of trials for
which the strong measurement results in a particular outcome
(i.e., “postselection”), the average weak measurement out-
come is a complex number known as the weak value [20,21].
The weak value is a concept that has proven to be useful in
addressing fundamental questions in quantum physics
[22-31], even beyond optics [32]. By foregoing postselection,
previous work [10,11] generalized the direct wave function
measurement scheme to measure mixed quantum states.
However, their method still does not provide direct access
to individual density matrix elements. Reference [9] proposes
a way to do this by performing an additional complementary
measurement after the wave function measurement sequence:
The second measurement serves as a phase reference and
enables the first and last measurements to probe the coherence
between any two chosen states in a certain basis. On top of
its applications, a direct measurement method provides an
operational meaning to the density matrix in terms of a
sequence of three complementary measurements.

In this Letter, we experimentally demonstrate the method
proposed in Ref. [9] by directly measuring any chosen
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element of a density matrix pg of a system S. By repeating
this for each element, we then measure the entire density
matrix, thereby completely determining the state of the
system. At the center of the method is a sequence of
incompatible measurements [33,34]. In order for these
measurements not to disrupt each other, they are made
weak, a concept that we outline now (for a review, see
Ref. [35]). Suppose one wishes to measure the observable
C. In von Neumann’s model of measurement, the measured
system & is coupled to a separate “pointer” system P whose
wave function is initially centered at some position and
has a width o. This coupling proportionally shifts the
position of the pointer by the value of C as described by
the unitary translation U = exp(—i6Cp/h), where p is the
pointer momentum operator and 6 is the strength of the
interaction. After the coupling, the pointer position ¢ is
measured. On a trial by trial basis, if 6 > o, the pointer
position will be shifted by Ag = éc and thus will indicate
that the result of the measurement of C is c.

In contrast, in weak measurement § < ¢, and the meas-
urement result is ambiguous since it falls within the original
position distribution of the pointer. However, this does have
a benefit: The small interaction leaves the measured system
relatively undisturbed and thus it can subsequently be
measured again [36]. By repeating the weak measurement
on an ensemble of systems and averaging, the shift of the
pointer can be found unambiguously. This average shift is
called the “weak average” (C) s and is equal to the expect-
ation value of a conventional (i.e., “strong’’) measurement:
(C)s = Trg[Cps] [9]. This differs from the weak value
normally encountered in that there is no postselection.

Unlike in strong measurement, C can be non-Hermitian.
This is the case when C is the product of incompatible
observables (which normally disturb each other).
Consequently, it is possible for the weak average to be
complex. What does this imply? Both the position q and the
momentum p of the pointer will be shifted according to
(C)s = (1/8)(a)p, where a = g + i26%p/h is the standard
harmonic oscillator lowering operator scaled by 2¢ [37].
The real part and the imaginary part of the weak average
are proportional to the average shift of the pointer’s position
and momentum, respectively.

Consider the weak measurement of an observable
composed of the following three incompatible projectors:

N =7, 7 Ty, (1)

where 7, = |a;)(a;| and &, = |by)(by|, which are com-
posed of eigenstates of the observables A and B, respectively.
These are maximally incompatible, or “complementary,” in
the sense that |(a;|b,)| = 1/+/d for a d-dimensional Hilbert
space. In the basis of the eigenstates of A, a density matrix
element is given by pg(i,j) = (a;ps|a;). This can be
connected to the weak average of the measurement sequence
in Eq. (1):

(Hy,a))s = Trslmy mpmaps) = ps(is j)/d. (2)

In fact, one can replace the weak measurement of the last
projector, 7z, , by a strong measurement without affecting the
weak average [9], thereby reducing the complexity of the
measurement apparatus. Thus, any density matrix element
can be obtained by selecting the first and last projectors
in the measurement sequence. Whichever state |b,) that is
chosen for the middle complementary projector serves as a
reference for zero phase in the density matrix by fixing @ = 0
for all values of a in (a|by) = exp (i0)/\/d. As such, |b)
should not be changed while measuring pg.

The experimental setup is shown in Fig. 1. We demon-
strate the technique by directly measuring the density
matrix of a photon polarization state. This is possibly
the simplest system for a demonstration, but it is also an
important one since it can act as a qubit from which
larger and more complicated quantum states can be con-
structed, such as in quantum computing. A HeNe laser at
633 nm is sent through a polarizing beam splitter (PBS) to
ensure that it is polarized. We treat the bright polarized
beam as a source of a large number of identically prepared
polarized photons. Instead of using a separate system,
we use the x and y transverse spatial distributions of the
photons as pointers. Both are Gaussian with widths ¢ =
250 ym (830 ym FWHM) that are set using a telescopic
arrangement of two convex lenses (f; =50 mm and
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FIG. 1. Direct measurement experimental setup. (a) State
preparation: We use a HeNe laser as a source of photons. The
photon polarization state is set using a half-wave plate (1/2)
and a quarter-wave plate (1/4). A spinning 4/2 is included
when generating mixed states. (b) Weak measurements: Two
subsequent weak measurements, z; and zp, are performed, each
with a walk-off crystal (BBO) that couples the polarization to a
spatial degree of freedom, x or y, our measurement pointers. Note
that 6, = 6, = 4. (c) Strong measurement: The final measure-
ment z; is performed by a polarizing beam splitter (PBS), and
the projection direction J is set by a 4/2. (d) Imaging: A 4f
arrangement of lenses forms an image of the crystal plane onto a
camera, allowing us to measure pointer positions. An additional
Fourier transform (FT) lens, either spherical or cylindrical,
is used to measure pointer momenta.
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f>» =100 mm). We set the photon polarization state
ps using a half-wave plate (1/2) and a quarter-wave
plate (1/4).

A weak measurement of polarization is implemented by
coupling the polarization degree of freedom (our system) to
a spatial one (a pointer). This is accomplished with a walk-
off crystal [beta barium borate (BBO)] that shifts the |I)
polarization component along x by 6 = 176 ym. If 6 > ¢
this implements a strong measurement of z; = |I) (/| since
the photon position unambiguously determines z;. If 6 < &
this is a weak measurement of z; [38]. In our demon-
stration, we find each of the four polarization density
matrix elements, ps(/, J), by measuring the three projector
observable, z;zpx;, where either I or J can be horizontal
(H) or vertical (V) polarization and |D) = (|H) + |V))/v/2
is a complementary state, the diagonal polarization.

Coupling a joint observable EF such as mpx; to a single
pointer is challenging for photons. Instead, we follow a
strategy commonly used for joint strong measurements
(e.g., those in Bell’s inequalities) in which one independ-
ently measures single observables and then evaluates corre-
lations between the independent results. In von Neumann’s
model, this corresponds to having two independent
pointers so that (EF)g = (1/8)*(qzqr)p, Where gq,, is the
position of the m = E, F pointer. In the weak measurement
analog, proposed in Ref. [37], one replaces ¢,, with a,,, so
(EF)s = (1/8)*(agag)p [9,39]. Thus, we can couple z;
and 7, to separate pointers and then measure correlations
between the momenta and positions of these pointers to
find the weak average. The final measurement in the
sequence 7; is strong, so the full joint expectation value is

s = (3) Terimmpan] = ps(r. /2. ()

where 7 = S ® P indicates the total Hilbert space, com-
bining the pointers and the system (d = 2).

In our experiment, we conduct two independent weak
measurements by sequentially introducing two walk-off
crystals in the beam path (see the Supplemental Material
[40] for the alignment procedure). The first measures z; by
inducing a displacement § along x. Combined with a 1/2 at
22.5°, the second crystal induces a displacement & along y,
measuring zp. The last projector x;, the strong measure-
ment, is implemented by a second /2 and a PBS where the
A/2 is used to choose the projected state J = H, V, i.e.,aJ
polarizer.

The lowering operators in the total pointer-system
expectation value in Eq. (3) imply the measurement of
positions and momenta of the photons. Experimentally,
we measure quantities such as the probability that a
photon is transmitted through the final J polarizer and
also has horizontal position x and vertical position y, i.e.,
Prob(x,y,J) [41]. From this, we can find expectation
values such as [[xyProb(x,y,J)dxdy = (xy)p, (see the

Supplemental Material [40] for an example). Then the
density matrix elements can be directly related to the joint
position (x, y) and momentum (p,, p,) expectation values of
the pointer state: '

2 o2
Relps(1,J)] = 7 <<x1yD>P,J ) <px1pyD>7>,J>’
P

ps(1.)) = 5 T (ayolps + Epdns). ()

Equation (4) is expressed using ¢ and o, where
o6, = h/2, to explicitly remove the unit dependence of
position and momentum. The subscript [ in, e.g., (x;yp)
indicates that the projector z; is coupled to the x pointer.

We measure the four joint expectation values in Eq. (4)
one at a time using a camera (a CMOS sensor with
resolution 2560 x 1920 and a pixel side length of
2.2 um). The position expectation value (xy) of the pointer
state is obtained using two convex lenses (f3 = 1000 mm
and f, = 1200 mm) in a 4f arrangement that images the
crystal plane onto the camera. The momentum expectation
value (p.p,) is obtained by adding a spherical lens
(f5 = 1000 mm) one focal length from the camera. We
replace the spherical lens with a cylindrical one (also f5) to
take a one-dimensional Fourier transform of the pointer
states and measure the expectation values (p,y) and (p,x)
by rotating the axis cylindrical lens. In order to obtain each
and every density matrix element, we repeat these four
measurements for all combinations of (I, J).

First, we measure the density matrix elements of the pure
state |y) = cos @|H) — e*/?sin 6|V'):

cos20

—e~127/2 co3 @ sin O
—e'@/2 cos @ sin O

sin%6

pﬂww=(
(5)

Figure 2(a) shows density matrix elements along path 1 in
the Poincaré sphere, which is traced by setting o =0
(i.e., removing the 1/4) and varying the fast axis of the 1/2
such that 6 € [0, 180°]. Figure 2(b) shows the same density
matrix elements along path 2, which is by traced by setting
a = —1 (i.e., the /4 fast axis is fixed) and again varying
the fast axis of the /2 such that 6 € [0, 180°]. As can be
seen, the measured density matrix elements closely follow
the theory curve. Deviations from the curve (e.g., near
0 = 90°) are likely due to imperfections in the wave plates,
which can introduce systematic errors both when preparing
the polarization state and aligning the BBO crystals.
Next, we generate mixed states by creating an incoherent
combination of pure states. This is achieved by introducing
a spinning 4/2 in the preparation stage. This 1/2 rotates
sufficiently fast such that, over the exposure time of the
camera, the measured result contains contributions from
many polarization states [40]. Specifically, we produce

120401-3



PRL 117, 120401 (2016)

PHYSICAL REVIEW LETTERS

week ending
16 SEPTEMBER 2016

+ Re[p(H,H)]
-© Relp(V,V)]
-~ Re[p(V,H)]
—+ Im[p(V,H)]

Probability amplitude

Probability amplitude

0 40 80 120 160
Input state 6 (deg)

FIG. 2. Direct measurement of density matrix elements for pure
polarization states. (a) and (b) Density matrix elements along
paths 1 and 2 in the Poincaré sphere, respectively. The bold lines
are the theoretical matrix elements given by Eq. (5), while the
markers are data points. The shaded region in these plots
represents one standard deviation from averaging over ten trials
and is mostly smaller than the size of the markers. (c) Poincaré
sphere: Path 3 corresponds to the measurement of mixed states,
shown in Fig. 3. The shaded regions indicate an interval of Af =
45° to help the reader link the paths to the 6 axes in (a) and (b).

< 1/2 isin(,bcosqb)
pP= )

. (6)
—isingcos ¢ 1/2

where ¢ is the angle between horizontal and the fast axis of
the 1/4. We generate a series of such mixed states [see
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v Y
FIG. 3.

Fig. 3(b)] and vary their purity Tr[p?] between 1/2 and 1 by
adjusting ¢. This corresponds to path 3 in the Poincaré
sphere, as shown in Fig. 2(c). To measure the accuracy of
our measured density matrices, we compute the trace

distance [Tr[\/ (B —p)" (B — p)]|/2 (B is the measured state),

which is shown in Fig. 3(c). The trace distance can be
interpreted as a measure of the maximum probability of
distinguishing between two states, p and f#, with an optimal
measurement. For our results, this probability is always
less than 4.9%. We also note that the measured density
matrix may not be positive semidefinite due to measurement
uncertainties. Consequently, if one requires a positive
semidefinite matrix, one would need to employ additional
algorithms such as a maximum-likelihood estimation.

To summarize, we directly measure the density matrix
elements of photons in both pure and mixed polarization
states using three sequential measurements, each comple-
mentary to the last. The first two measurements are weak
to minimize their disturbance on the state, while the last
measurement is strong. The average joint result of this
measurement sequence gives any chosen density matrix
element, and hence it can be used to operationally define
the density matrix.

We anticipate that this method will be of use in practical
applications. Since the last measurement can be weak,
it could function as a noninvasive probe to determine a
quantum state in sifu, such as during a quantum compu-
tation or a molecular evolution. Moreover, one could
envisage directly observing global properties of a state,
such as the existence of nonclassical correlations [34], by
measuring coherences or entanglement witnesses with our
method. Lastly, direct measurement has already proven to
be efficient for measuring large dimensional pure states in

50 100
Input State ¢ (deg)
< 5
()
8 4
G
B 3
a
o 2
[&]
c 1
vh o 50 100
H Input State ¢ (deg)

Direct measurement of mixed states. (a) Measured density matrices. The color is proportional to the measured probability
amplitudes. (b) States with various degrees of purity Tr[p?] can be generated by varying the fast axis angle ¢ of a 1/4, as shown in
Eq. (6). The bold line is the theory, while the markers are data points. The states follow path 3 in the Poincaré sphere shown in Fig. 2. We
do not show statistical uncertainties, as they are smaller than the markers. (c) The trace distance is half the Euclidean distance between
the measured and theory states on the Poincaré sphere, and it is always less than 0.049 (i.e., 4.9%).
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various physical systems [13,17,18]. Quantum state tomog-
raphy typically requires O(d?) measurements in O(d)
bases and finds the full density matrix at once. Thus,
as d increases, the experimental procedure and the
reconstruction algorithm become increasingly complicated.
In contrast, our direct measurement method requires three
measurements in only two bases to determine any chosen
density matrix element regardless of the system dimension
d. Consequently, in systems with a large d, the method is
an attractive alternative to tomography as a way to locally
characterize a potentially mixed quantum state.

This work was supported by the Canada Research Chairs
(CRC) Program, the Natural Sciences and Engineering
Research Council (NSERC), and the Cananda Excellence
Research Chairs (CERC) Program.
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