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We report on the experimental observation of vortex cluster shedding from a moving obstacle in an
oblate atomic Bose-Einstein condensate. At low obstacle velocities v above a critical value, vortex clusters
consisting of two like-sign vortices are generated to form a regular configuration like a von Kármán street,
and as v is increased, the shedding pattern becomes irregular with many different kinds of vortex clusters.
In particular, we observe that the Stouhal number associated with the shedding frequency exhibits
saturation behavior with increasing v. The regular-to-turbulent transition of the vortex cluster shedding
reveals remarkable similarities between a superfluid and a classical viscous fluid. Our work opens a new
direction for experimental investigations of the superfluid Reynolds number characterizing universal
superfluid hydrodynamics.
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The wake behind a moving obstacle is a classic subject
considered in fluid dynamics. Various flow regimes are
classified by the dimensionless Reynolds number
Re ¼ vD=ν, where v is the obstacle velocity, D is the
lateral dimension of the obstacle, and ν is the fluid viscosity
[1]. At low Re < 50, a laminar or steady flow is formed,
and as Re is increased, periodic shedding of vortices with
alternating circulation occurs, which is known as a von
Kármán vortex street. The vortex shedding frequency f
gives the Stouhal number St ¼ fD=v, which is a dimen-
sionless quantity that is a universal function of Re. With
further increasing Re > 105, the wake dynamics becomes
unstable and turbulent flow develops. The transition from
laminar to turbulent flow represents a universal character-
istic of classical fluid dynamics.
An interesting situation arises when a fluid has zero

viscosity; i.e., it becomes a superfluid. The Reynolds
number cannot be defined and furthermore, in contrast
to classical fluids, the superfluid carries vorticity in the
form of phase defects with quantized circulation. Would the
superfluid show universal behavior in the wake response to
a moving obstacle, and can we define a proper Reynolds
number Res characterizing it [2–5]? It has been clearly
demonstrated that a superfluid becomes dissipative via
quantum vortex emission when the obstacle velocity
exceeds a critical velocity vc [6–13]. Since turbulent flow
would be generated by strong perturbations of the obstacle
at significantly high v, the key issue is whether regular
vortex shedding like the von Kármán street occurs in an
intermediate v regime.
Recent numerical studies of two-dimensional vortex

shedding dynamics in atomic Bose-Einstein condensates
(BECs) presented affirmative answers to the question
[14–16]. In a narrow range of v above vc, vortex-antivortex
pairs or clusters of two like-sign vortices with alternating

circulation are periodically nucleated from the obstacle
[Fig. 1(c)] and for high v, a transition to turbulence
develops with irregular emission of many different kinds
of large vortex clusters [Fig. 1(d)]. It was noted that regular
vortex shedding is stable only with clusters consisting of
two like-sign vortices [14–16], and this is referred to as the
quantum version of the von Kármán vortex street in a
superfluid. Furthermore, Reeves et al. [16] observed for
large Gaussian obstacles that St exhibits a universal relation
to a superfluid Reynolds number defined as
Res ≡ ðv − vcÞD=ðℏ=mÞ, where ℏ is the Planck constant
divided by 2π and m is the particle mass, and a sudden
onset of turbulence at Res ≈ 0.7. The proposed Res was
applied in the data analysis of turbulence experiments with
superfluid helium [17].
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FIG. 1. (a) Schematic of the experiment. An impenetrable
obstacle, formed by focusing a repulsive Gaussian laser beam,
moves at velocity v in a highly oblate Bose-Einstein condensate
(BEC). Evolution of vortex shedding: (b) no excitations for
v < vc, (c) von Kármán street of clusters of two like-sign
quantum vortices for small v > vc [14–16], and (d) turbulent
shedding of diversely clustered vortices for v ≫ vc. Red and blue
circles represent vortices with clockwise and counterclockwise
circulations, respectively.
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In this Letter, we present an experimental study of
quantum vortex shedding from a moving Gaussian obstacle
in a highly oblate BEC. By means of spatially large BEC
samples and long-distance obstacle motion control, we
examine the evolution of the vortex shedding pattern as a
function of the obstacle velocity v. We observe regular
shedding of vortex clusters each consisting of two like-sign
vortices and a turbulence transition via diversifying the
cluster types. Furthermore, we observe the saturation of the
Stouhal number with increasing v, which is qualitatively
consistent with the numerical results in Ref. [16]. Our
results demonstrate remarkable similarities between a
superfluid and a classical viscous fluid in the wake
response to a moving obstacle.
Our vortex shedding experiment is performed with the

apparatus described in Refs. [11–13]. We prepare a highly
oblate BEC of 23Na atoms in a harmonic trapping potential
which is generated by combining a pancake-shaped optical
dipole trap and a magnetic quadruple trap. The radial and
axial trapping frequencies are ωr;z ¼ 2π × ð11.1; 400Þ Hz.
The atom number of the condensate is N0 ¼ 5.6ð4Þ × 106

and the radial Thomas-Fermi radius of the condensate is
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=mω2

r

p
≈ 105 μm, where μ is the condensate

chemical potential. At peak atomic density, the healing
length is ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
2mμ

p
≈ 0.38 μm and the speed of sound

is cs ¼
ffiffiffiffiffiffiffiffiffi
μ=m

p
≈ 5.1 mm=s. The condensate fraction of the

sample is over 80%.
An optical obstacle is formed by focusing a repulsive

Gaussian laser beam to the condensate [Fig. 1(a)]. The 1=e2

waist of the laser beam is σ ¼ 10.3ð11Þ μm ≈ 27ξ and its
potential height is V0=μ ≈ 1.8, giving the obstacle diameter
D ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðV0=μÞ

p
≈ 29ξ. The obstacle position is con-

trolled by steering the laser beam with a piezo-driven
mirror. Initially, we place the obstacle at 62 μm left from
the condensate center, and translate it linearly across the
center region by a distance L ¼ 114 μm at a constant speed
v [Fig. 1(a)]. After the obstacle sweeping, we turn off the
laser beam linearly within 20 ms, and take an absorption
image of the condensate after 36 ms time of flight [18].
With this experimental protocol, the critical velocity for
vortex shedding was measured to be vc ¼ 1.11ð5Þ mm=s.
Note that the local condensate density varies by ≈ 35%
along the obstacle trajectory. At the initial and final
positions, the local speed of sound and the obstacle
diameter are 20% smaller and 30% larger than those at
the center, respectively.
Figure 2(a) displays images of condensates for various

obstacle velocities v > vc [Fig. 2(a)]. In the imaging, a
vortex cluster appears as a large density-depleted hole
because during the time of flight vortex cores expand and
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FIG. 2. Quantum vortex shedding from a moving optical obstacle in a highly oblate BEC. (a) Images of BECs for various obstacle
velocities v, taken after 36 ms time of flight [18]. Because of vortex core expansion, a vortex cluster appears with a large density-
depleted hole, whose area depends on the cluster charge κ, i.e., the number of vortices in the cluster. (b) Normalized histograms of the
cluster hole area. Each histogram was obtained from over 100 image data as in (a). The dashed lines indicate the transition positions for
the charge number κ, which are determined from the multiple peak structure of the histograms.
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would merge when they are closely located [18]. Thus, the
cluster charge κ, i.e., the vortex number of a cluster, can be
inferred from the hole area. If some of vortices in a cluster
have different circulation, it would be indicated by local
bending of the hole shape [11,13]. For example, we see that
some of the big clusters for high velocities v ≥ 1.68 mm=s
show sharp bending tails in Fig. 2(a). When deciphering the
vortex configuration from an image, it is helpful to recall
that the total vortex numbers for both circulations should be
the same because of angular momentum conservation.
A visual examination of images in Fig. 2(a) shows the

following features of the vortex shedding. (i) Emission of
like-sign vortex clusters is very likely with the obstacle for
V0=μ > 1. This is in contrast to the case with a penetrable
obstacle (V0=μ < 1), where periodic shedding of vortex
dipoles was observed [13,19]. (ii) There is a certain low-v
range where κ ¼ 2 vortex clusters are dominantly gener-
ated. In particular, we observed frequent appearance of
somewhat periodic shedding patterns consisting of four
κ ¼ 2 clusters as shown in the first and second left images
for v ¼ 1.39 mm=s. In terms of cluster charge regularity,
this is consistent with the expected κ ¼ 2 von Kármán
vortex street [Fig. 1(c)] [14–16]. (iii) As v is further
increased, the vortex shedding pattern becomes irregular
with many different larger clusters, signaling a transition to
turbulence. Additional image data for various velocities are
provided in the Supplemental Material [20].
In our experiment, the occurrence probability of the four

κ ¼ 2 cluster shedding pattern was maximally about 10% at
v ¼ 1.39 mm=s. Such a low probability can be attributed to
the stochasticity of the incipient vortex shedding process.
The vortex configuration of the four κ ¼ 2 clusters was
quite reproducible [20], where three and one clusters are in
the upper and lower regions with respect to the horizontal
obstacle trajectory, respectively, which is different from the
typical zigzag pattern of von Kármán street. This can be
explained by the precession motion of vortices after shed
from the obstacle, which is caused by the inhomogeneous
density distribution of the trapped condensate [21]. The
precession effect is most significant for the first vortex
cluster. It is initially emitted at the lower side of the moving
obstacle with clockwise circulation and then, it precesses to
the upper region. When the first cluster has higher κ, as
shown in the first image for v ¼ 1.68 mm=s, it moves
further upward because of faster precession. The circulation
direction of the first cluster seems to be deterministic due to
possible asymmetry of the obstacle shape [14,22].
To quantitatively characterize the evolution of the vortex

shedding behavior, we analyze the cluster charge distribu-
tion as a function of v. We developed an image analysis
method for quantifying the area of each density-depleted
hole in an image, where the absorption image is trans-
formed into a binary image and a particle analysis is applied
[11,20]. The histogram of the hole area shows a clear
multiple peak structure [Fig. 2(b)], facilitating determining

the quantized charge number κ for vortex clusters. The peak
structure becomes smooth for v > 1.6 mm=s because the
vortex cluster structure is diversified and complicated by
emitting more vortices.
Figure 3 displays various characteristics obtained from

the cluster charge distribution. The total vortex number is
estimated by Nv ¼

P
κκNκ, where Nκ is the average

number of charge-κ clusters. The total cluster number is
given by Nc ¼

P
κ≥2Nκ, excluding individual vortices with

κ ¼ 1, and the fractional population of charge-κ clusters is
Pκ ¼ Nκ=Nc. We observe three velocity regimes for vortex
shedding: (I) an individual vortex shedding regime with
Nv ¼ N1 just above the critical velocity vc, (II) a κ ¼ 2
cluster regime with P2 ≈ 0.8 and saturated N1, and (III) an
irregular shedding regime where many different types of
clusters are populated.
The transition to the irregular shedding regime appears

pronounced with a rapid decrease of P2 for v > 1.4 mm=s.
In the numerical study by Reeves et al. [16], a similar,
abrupt spreading in Pκ was observed in the transition from
the stable κ ¼ 2 cluster regime to turbulence. Furthermore,
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FIG. 3. Regular-to-turbulent transition of the quantum vortex
shedding. (a) Total vortex number Nv (solid red diamonds),
individual (κ ¼ 1) vortex number N1 (open red diamonds),
(b) the number of emitted vortex clusters, Nc, and (c) the
fractional populations Pκ of charge-κ clusters as functions of
v. The vertical solid line denotes the critical velocity vc and the
two dashed lines mark the transitions from (I) an individual
vortex shedding regime to (II) a κ ¼ 2 cluster shedding regime
and (III) an irregular shedding regime. The error bars indicate the
standard deviation of measurements.
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they showed that for a large obstacle, the transition occurs
at the superfluid Reynolds number Res ≡ ðv − vcÞD=
ðℏ=mÞ ≈ 0.7, irrespective of D. Our observed value of v ¼
1.4 mm=s gives Res ≈ 1.2 with vc ¼ 1.1 mm=s. Its direct
comparison to the numerical prediction is limited due to the
density inhomogeneity of the trapped BEC.
The Stouhal number St is another characteristic quantity

in vortex shedding dynamics. For a cylindrical obstacle in a
classical fluid, St ≈ 0.2 over a wide range of Re from 102 to
105. Noting that St ¼ D=λ, where λ ¼ v=f is the periodic
spacing of vortex clusters, in our experiment the Stouhal
number can be estimated approximately as St ≈ ðD=2LÞNc
when Nc=2 cycles of cluster emission proceed over the
distance L. In Fig. 3(b), we observe the saturating behavior
of Nc with increasing v, which is qualitatively consistent
with the numerical results of Ref. [16] that St increases and
approaches to St∞ ≈ 0.14 with increasing Res. Despite a
large uncertainty due to the small value of Nc as well as the
aforementioned inhomogeneous density effect, the satu-
rated value of Nc ≈ 4 suggests St∞ ∼ 0.2. We note that
when we turn off the laser beam, the vortices residing in the
density-vanishing region of the obstacle would be forcibly
released [20], which can result in overestimation of St.
Finally, we want to discuss the experimental require-

ments for stable observation of the von Kármán vortex
street in a trapped BEC. First, it is necessary to have a long
obstacle translation distance L, i.e., L ≫ D=St, allowing
for multiple events of cluster shedding. This means that
reducing D with smaller σ and lower V0 would be
preferable when L is limited by the finite spatial size of
the trapped condensate. We empirically confirmed it in our
efforts to optimize the appearance probability of von
Kármán vortex street. However, when V0 was too close
to μ, the shedding pattern became excessively stochastic
and κ > 1 cluster emission was less likely [19]. Longer
streets of κ ¼ 2 vortex clusters were indeed observed with a
smaller and harder obstacle [Fig. 4(a)], but its appearance
probability was lower than 5% and we noticed that the
Gaussian beam profile was not clean. A larger condensate
is definitely beneficial, but having R=ξ ∼ 103 is experi-
mentally challenging.

Second, because the velocity window for von Kármán
street is quite narrow in v=vc, precise control of the
condensate motion is extremely important. Uncontrolled
small dipole oscillations of the condensate can make
observation of von Kármán street elusive. In our trap,
dipole oscillations of 1 μm corresponds to relative velocity
oscillations of ≈0.07 mm=s. For the same reason, it would
be highly desirable to have a homogeneous sample, at least,
along the obstacle trajectory. Assuming the universality of
vortex shedding dynamics, one might consider dynamic
control of v and V0 for constant v=vc.
In conclusion, we have observed vortex cluster shedding

in a Bose atomic superfluid and its transition from regular
to turbulent shedding with increasing obstacle velocity.
This work reveals the striking similarities between a
superfluid and a classical fluid in vortex shedding dynam-
ics. We expect that our work can be directly extended with
even larger samples and various obstacle diameters to
investigate the universality of the vortex shedding dynam-
ics [16].
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