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We experimentally investigate the quantum criticality and Tomonaga-Luttinger liquid (TLL) behavior
within one-dimensional (1D) ultracold atomic gases. Based on the measured density profiles at different
temperatures, the universal scaling laws of thermodynamic quantities are observed. The quantum critical
regime and the relevant crossover temperatures are determined through the double-peak structure of the
specific heat. In the TLL regime, we obtain the Luttinger parameter by probing sound propagation.
Furthermore, a characteristic power-law behavior emerges in the measured momentum distributions of the
1D ultracold gas, confirming the existence of the TLL.
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Quantum many-body systems can exhibit phase transi-
tions even at zero temperature [1,2]. Here, quantum fluc-
tuations arising from Heisenberg’s uncertainty relation drive
the transition from one phase to another. In this regard, one-
dimensional (1D) quantum systems are special owing to
the significant microscopic fluctuations that induce a
continuous phase transition between a disordered state
and a Tomonaga-Luttinger liquid (TLL) [3–7]. Near the
transition point, a quantum critical (QC) regime emerges at
finite temperatures and separates these two phases [1,2,8].
Although the 1D low-energy physics is generally described
by the well-established TLL theory [3], experimental
investigations of the TLL and its related quantum criticality
are rare [9–11]. In this context, signatures of TLL were
found in some 1D systems, such as organic conductors [12],
carbon nanotubes [13], spin ladders [10], and quantum
gases [14,15]. Among these strongly correlated systems,
ultracold atomic gases offer a great precision and tunability
for studying quantum phase transitions [16,17] and critical
phenomena [18,19]. However, observation of quantum
criticality and determination of the TLL boundary in 1D
quantum gases remains elusive.
In this Letter, we report the observation of quantum

criticality and evidence of TLL in 1D ultracold Bose gases
of 87Rb. The atomic samples at different temperatures are
prepared in well-designed 1D harmonic potentials. Using a
high-resolution microscope, we measure the density pro-
files by in situ absorption imaging. The density scaling law
is obtained by rescaling these measurements at different

temperatures and chemical potentials. Based on the thermo-
dynamic relations [20–22], we derive the pressures and
entropy densities, which exhibit similar universal scaling
around the critical point. Moreover, we determine two
crossover branches that distinguish the QC regime from the
classical gas (CG) and the TLL through the double-peak
structure of the specific heat. To further investigate the
degenerate gas, we probe the propagations of density
disturbances and acquire the Luttinger parameters. Then
we characterize the phase correlation of the 1D ultracold
gas through its momentum distribution. According to the
bosonization-based theory [3,23], the obtained power-law
behavior in the momentum profiles confirms the existence
of the TLL.
The experiment starts by adiabatically loading a Bose-

Einstein condensate of ∼2 × 105 atoms into a single layer
of a pancake-shaped trap. We then confine the atoms into
an array of isolated tube-shaped traps arranged in a plane by
superimposing another red-detuned lattice with wavelength
λr ¼ 1534 nm into the system [see Fig. 1(a)]. Owing to the
homogeneity of the light beams among these tubes, they
are identical to each other with trap frequencies ωx ¼
2π × 22.2ð1Þ Hz and ω⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ωyωz
p ¼ 2π × 7.99ð1Þ kHz.

The spatial resolution of the imaging system (1.0 μm) is
slightly larger than the lattice spacing λr=2 ¼ 767 nm.
After acquiring around 400 high-resolution images for each
experimental setting, we then obtained very precise 1D
density profiles by averaging these images. The measured
temperatures [24], T ¼ 18–74 nK, and corresponding
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chemical potentials in the trap center, μ0 ¼ 67–93 nK,
satisfy the 1D conditions of kBT, μ0 ≪ ℏω⊥. The minimal
entropy per particle of 0.055(1) kB at T ¼ 17.9ð4Þ nK and
μ0 ¼ 67.1ð1Þ nK indicates that the 1D gas is strongly
degenerate. The dimensionless interaction parameter γ ≈
2ma1Dω⊥=ðℏn0Þ ¼ 0.04 ≪ 1 suggests that the central
region of the system is in the weakly interacting regime,
where m is the mass of the atom, a1D is the 1D effective
scattering length, and n0 is the line density at the center of
the 1D tube. Under such experimental conditions, the 1D
Bose gas can be described by the Lieb-Liniger model [28].
Within the local density approximation (LDA), the mea-
sured densities agree well with the theoretical predictions
from the YY exact grand canonical theory [21] [see
Fig. 1(a)].
For the one-dimensional Lieb-Liniger model [22,28]

at zero temperature, a vacuum-to-TLL phase transition
occurs when we change the chemical potential in a positive
direction across the critical point μc ¼ 0. At finite temper-
atures, a QC regime emerges near μc and separates the CG
and the TLL phase. In the QC regime, the correlation
length ξ diverges as ξ ∝ jμ − μcj−ν, and the energy gap
Δ is inversely proportional to the correlation length
Δ ∝ ξ−z ∝ jμ − μcjνz, which vanishes as μ → μc [1,2,22].
Here ν and z are defined as the correlation length exponent
and the dynamic critical exponent, respectively. In this

context, the particle density in QC obeys a universal scaling
law, as nðμ; TÞ ¼ Tðd=zÞþ1−ð1=νzÞF ½ðμ − μcÞ=Tð1=νzÞ�, where
the dimensionality is d ¼ 1 and F ðxÞ is the scaling
function [5].
Such a universal scaling law is extracted from the

density profiles at temperatures ranging from 17.9(4) nK
to 74.4(7) nK. As shown in Fig. 1(b), we identify the
critical point using that the scaled density becomes temper-
ature independent at μc, i.e., the density profiles at different
temperatures intersect at the critical point. The critical
exponents ν and z are determined by the overlapping
feature of the rescaled density profiles [24]. The rescaled
measurements fall into a single curve with ν ¼ 0.56þ0.07

−0.08
and z ¼ 2.3þ0.6

−0.3 [Fig. 1(c)], confirming the emergence of
the quantum critical scaling. Here the uncertainties corre-
spond to a 95% confidence level. The critical exponents
agree with the predictions from the YY equation, ν ¼ 0.5
and z ¼ 2 [21,22]. The above properties of densities at
various temperatures and chemical potentials reveal the
nature of scaling invariance.
The thermodynamics of the 1D system at equilibrium

are described by the EOS. We can derive the local
pressure EOS from the atomic density via pðμ; TÞ ¼R
μ
−∞ nðμ0; TÞdμ0 [20] by introducing a proper cutoff in
the CG regime, as shown in Fig. 2(a). For the lowest
temperature experimentally probed T ¼ 17.9ð4Þ nK, the
population below μc is negligible and therefore the pressure
approaches that of the zero temperature result. Whereas at
higher temperatures, the pressure curves split clearly in the
QC regime and bunch up again at large chemical potentials.
From the pressure EOS, one can obtain other thermody-
namic properties. For example, the entropy density can be
deduced as Sðμ; TÞ ¼ ½∂pðμ; TÞ=∂T�μ [20]. Figure 2(b)
shows the entropy densities extracted from experimental
data and the theoretical curves. Peaks arise in the entropy
density curves and become flatter at higher temperatures,
revealing enhanced disorder in the QC regime. Moreover,
both the pressure and entropy densities [Figs. 2(c) and 2(d)]
have similar universal scaling laws with the same critical
exponents as those in the density scaling function [24].
In the scenario of quantum criticality, determining the

crossover temperatures T� in quantum gases poses theo-
retical [6,7] and experimental challenges [19]. Here we
make a distinction of different regimes through the feature
of specific heat, cV ¼ Tð∂2p=∂T2Þμ, which manifests
different scales of the energy fluctuations in the grand
canonical ensemble. In ultracold atomic gases, obtaining a
cV of merit requires high-precision density measurements.
At finite temperatures, a double-peak structure of the
specific heat appears and marks two crossover temperatures
fanning out from the critical point [Fig. 3(a)]. The peak
values of the cV constitute two branches of the QC
crossover boundaries in Fig. 3(b). Here, the theoretical
curves and contour plot of specific heat are numerically
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FIG. 1. Experimental setup and density scaling law. (a) The 1D
system consists of an array of tubes created by a blue-detuned
“pancake” lattice and a red-detuned retro-reflected lattice. The
density profiles are measured by in situ absorption imaging.
The inset shows an average line density in comparison with the
prediction of the Yang-Yang (YY) equation. (b) The rescaled
densities at different temperatures intersect at the critical point
μc ¼ 0. Here ~n ¼ n=c, ~μ ¼ μ=ðℏ2c2=2mÞ, and ~T ¼ kBT=
ðℏ2c2=2mÞ, with c ¼ −2=a1D. The symbols denote the exper-
imental data; solid curves stand for the theoretical predictions.
(c) At different temperatures, the rescaled densities against
~μ= ~T1=νz collapse into a single curve around μc.

PRL 119, 165701 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

20 OCTOBER 2017

165701-2



calculated via the second-order derivation of the pressure.
The left branch indicates the 1D degenerate condition, i.e.,
the thermal de Broglie wavelength λT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2=ðmkBTÞ

p

is approximate to the atomic spacing 1=n. The right branch
separates the QC and a linear-dispersion TLL regime with a
crossover temperature T� ∼ jμ − μcjνz. In the TLL regime
of the phase diagram, the specific heat at a certain chemical
potential depends almost linearly on temperature [24],
reflecting a collective behavior of the quantum liquid.
The peaks of S and the valleys of cV reveal that quantum
fluctuations dominate the quantum critical behavior.
The low-energy properties of the TLL can be fully

described by the sound velocity vs and Luttinger parameter
K [4,6,29]. Here vs represents the propagating velocity
of density disturbances, which satisfies a linear dispersion
relation ω ¼ vsjkj. Experimentally, the sound velocity is
obtained by monitoring the propagation of density pertur-
bations in the 1D tubes. We apply a magnetic gradient
along the longitudinal direction (x axis) to create a spatially
dependent Zeeman splitting, which enables a spatially
resolved transfer of atoms from jF ¼ 1; mF ¼ −1i into
jF ¼ 2; mF ¼ 0i sublevel via microwave (MW) transi-
tions. With a resonant light pulse to remove the atoms
in the jF ¼ 2i states, density dips are generated in the
center of the 1D tubes. The profile of these defects is

approximately Gaussian ηn0e−x
2=2w2

, where the relative
amplitude η and the width w are tailored by adjusting the
MW strength. As shown in the insets of Fig. 4(a), such
negative perturbations split into two parts and then sym-
metrically propagate along the 1D tubes. For different
perturbing amplitudes, we resolve a linear relation
between the vs and the square root of remaining densityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ð1 − η=2Þp

, as vsðηÞ ¼ vsð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η=2

p
[30–32]. Based

on this relation, the sound velocities at vanishing pertur-
bations are determined as 2.24(1) and 2.21ð1Þ mm=s for
T ¼ 40ð3Þ nK and T ¼ 50ð3Þ nK, respectively. For a
uniform quantum gas, the Luttinger parameter K and the
vs have a relation as K ¼ ℏπn=mvs [24,33]. Whereas
for TLL in the harmonic trap, we can get an averaged
Luttinger parameter K̄ by employing the averaged density
and sound velocity over the TLL regime. In the cases of
T ¼ 40ð3Þ nK and T ¼ 50ð3Þ nK, the K̄ acquired from the
measured sound velocities and atomic densities are 16.9
and 17.2, respectively [24].
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FIG. 2. The dimensionless pressure ~p ¼ p=½ℏ2c3=ð2mÞ� and
entropy density ~S ¼ S=ðkBcÞ. The solid lines and the shaded
curves are the theoretical predictions from the YY equation. The
thickness of the shaded area indicates errors arising from the
temperature uncertainties. (a) The pressure equation of state
(EOS) (symbols) at different temperatures is deduced from the
density profiles. (b) Symbols denote the experimental data of
entropy densities extracted from the pressure. [(c) and (d)] Using
the same critical exponents ν and z for the density, the rescaled
pressures and entropy densities overlap and collapse into a single
curve around the critical point. Here pr and Sr are the regular
parts of the scaling functions. The error bars denote the �1σ
statistical errors.
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FIG. 3. The dimensionless specific heat ~cV ¼ cV=ðkBcÞ and its
phase diagram. (a) Experimental specific heat (red and blue
circles) at the temperatures of T ¼ 40ð1Þ nK and T ¼ 50ð1Þ nK,
respectively. The double-peak feature of specific heat marks out
the regimes CG, QC, and TLL. The shaded areas indicate the
theoretical predictions by taking account of the temperature
uncertainty. (b) Contour plot of specific heat in the T − μ plane
in which its peaks (dashed lines) separate three fluctuation
regimes. The QC and the TLL are classified by different critical
exponents z and ν. The dots denote the experimental data of the
specific heat peaks that mark the two crossover temperatures T�.
Here the error bars denote the �1σ fitting errors.
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For the TLL, one characteristic property of the TLL is
the interaction-dependent power-law behavior of correla-
tion functions [3,4,23,29]. Such quasilong-range order is
evident in the first-order correlation function gð1ÞðxÞ ¼
hψ†ðxÞψð0Þi, which features a power-law decay gð1ÞðxÞ ∝
x−1=2K in the uniform system at zero temperature [3]. The
momentum distribution of TLL is the Fourier transform of
this correlation function, i.e., nðkÞ ¼ R

∞
−∞ dxe−ikxgð1ÞðxÞ.

In a low-temperature atomic gas, the dominant phase
fluctuations give rise to a finite correlation length
lϕ ¼ ℏvsK=ðπkBTÞ [17,23] and modify the power-law
behavior of the momentum distribution. In this case, nðkÞ≃
AðKÞRe½Γð1=4K þ iklϕ=2KÞ=Γð1 − 1=4K þ iklϕ=2KÞ�,
where AðKÞ is a K-dependent parameter [23]. If the
system size L is much larger than the phase correlation
length lϕ, the inhomogeneity of the harmonic trap can be
safely neglected and the system can be treated using the
LDA [23,34,35].
To access the momentum distribution of the 1D gases,

we utilize a focusing technique during the time of flight
[36] instead of a conventional long-time expansion [24].
The momentum distribution of a 1D gas at T ¼ 40ð1Þ nK is
displayed by a log-log plot in Fig. 4(b). For this nonuniform
system, the averaged Luttinger parameter of the TLL
regime (μ ≥ T�) is K̄ ¼ 15.9, indicating a correlation
length of lϕ ¼ 1.9 μm. Thermal fluctuations break the
long-range phase correlations, making the momentum
distribution for k < 1=lϕ rather flat. Another characteristic
length is the healing length ∼0.1 μm, which determines the
high-momentum cutoff of our measurements. The mea-
sured nðkÞ exhibits a power-law decay at intermediate

momenta with a linear slope of −1.66 (1=lϕ ≤ k ≤ 20=lϕ).
As the system satisfies the condition of LDA (L ≫ lϕ), we
obtain a theoretical curve of nðkÞ by using the parameter K̄.
This curve has an asymptotic power-law decay with the
slope −1þ 1=2K at large momenta (k > 40=lϕ) [23,24].
The inhomogeneity of the harmonic potential might lead to
some modification to nðkÞ, which would have an extended
flat region at small momenta and a Lorentzian distribution
with power-law exponent −2 at intermediate momenta
[34,35]. However, within the accessible range, our exper-
imental result agrees well with the theoretical prediction
[23], indicating that TLL behavior dominates the system
and the momentum distribution can be qualitatively
understood by considering a uniform gas with the same
K̄. For a comparison, we also measure the momentum
distribution of a classical gas with T ¼ 209ð1Þ nK and
μ0 ¼ −111ð1Þ nK. Both the spatial and the momentum
distribution of this gas show classical Gaussian profiles as
predicted by the Boltzmann distributions.
In the TLL regime, although the Fermi liquid theory

cannot describe 1D systems due to collective behavior
herein, two important features of quantum liquid still retain;
i.e., the compressibility κ is independent of temperature
and the specific heat cV is linearly proportional to temper-
ature [37–39]. Therefore, we employ a dimensionless
Wilson ratio to characterize different regimes, RW ¼
ðπ2k2B=3Þκ=ðcV=TÞ [37,38,40,41]. An equivalence between
the Wilson ratio and the Luttinger parameter has been
proved in the uniform TLLs [38,41]. This relation indicates
that the particle number fluctuation and the energy fluc-
tuation are on an equal footing with respect to T. In our

FIG. 4. Evidences for TLL. (a) Measurements of sound velocity. The upper inset shows the generation process of the excitation in the
sample. The excitation signal is obtained by subtracting the perturbated cloud from the initial density. The lower inset shows the
propagation of a negative perturbation in 1D tubes with amplitude η ¼ 0.17ð1Þ and a Gaussian width w ¼ 4.0ð4Þ μm. The red and blue
circles are experimental sound velocities versus excitation ratios at temperature T ¼ 40ð3Þ nK and T ¼ 50ð3Þ nK. The red and blue
curves are the fitting results. (b) Momentum profiles of the 1D gases. The red circles and blue squares stand for the experimental
momentum distributions for a degenerate gas at T ¼ 40ð1Þ nK and a classical gas at T ¼ 209ð1Þ nK, respectively. All the experimental
data are normalized to the zero-momentum value of the degenerate gas. The red solid curve is the theoretical prediction by considering
the finite-temperature effect and the averaged Luttinger parameter. The red dashed curve is an auxiliary straight line with a slope of
−1.66, while the blue solid curve follows a Gaussian distribution. (c) Wilson ratio RW and Luttinger parameter K. The red and blue
circles are experimental RW at T ¼ 40ð1Þ nK and T ¼ 50ð1Þ nK, while the shaded areas indicate the theoretical predictions. Two
diamond points represent the averaged Luttinger parameter of the TLL regime. The error bars represent the �1σ statistical errors.
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experiment, the derived RW approaches the averaged K in
the TLL regime [see Fig. 4(c)]. The connection between the
RW and K provides a novel method for determining the
Luttinger parameter in the solid-state system [37], where the
sound velocity is hard to measure. Meanwhile, the crossover
features of the QC regime can also be characterized by the
“critical cone” in the phase diagram of RW [24].
In summary, we present a systematic study of the

quantum criticality and TLL behavior in 1D quantum
gases. The 1D density profiles of ultracold Bose gases
with a minimum entropy per particle 0.055kB have been
obtained with a high precision. Using these density
profiles, we have determined universal scaling laws, the
EOS, and crossover temperatures of this system.
Afterwards, the Luttinger parameters have been obtained
by the measured sound velocities and atomic densities. In
our nonuniform system, the momentum distribution that
exhibits a power-law decay at intermediate momenta is well
consistent with the TLL theory. Our experiment provides
prototypical methods for studying quantum critical phe-
nomena and quantum liquids, not only in other spinless
quantum gases [14,15,33,42,43] but also in quantummany-
body systems involving rich spin (and charge) interactions
and symmetries, such as spin chains [11,44], the Yang-
Gaudin model [45], and the Hubbard model [46].
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