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We observe effects of collective atomic motion in a one-dimensional optical lattice coupled to an
optomechanical system. In this hybrid atom-optomechanical system, the lattice light generates a coupling
between the lattice atoms as well as between atoms and a micromechanical membrane oscillator. For large
atom numbers we observe an instability in the coupled system, resulting in large-amplitude atom-
membrane oscillations. We show that this behavior can be explained by light-mediated collective atomic
motion in the lattice, which arises for large atom numbers, small atom-light detunings, and asymmetric
pumping of the lattice, in agreement with previous theoretical work. The model connects the
optomechanical instability to a phase delay in the global atomic backaction onto the lattice light, which
we observe in a direct measurement.
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Ultracold atoms in optical lattice potentials formed by
the interference of laser beams are a powerful system for
many-body physics [1], quantum information science [2],
and precision metrology [3]. In most optical lattice experi-
ments the lattice light is far detuned from any atomic
resonance, providing a conservative external potential with
negligible backaction of the atoms onto the lattice light.
The backaction is significantly enhanced when operating at
moderate atom-light detuning in the tens of MHz to GHz
regime [4–6] and at high atomic density. In this regime, the
lattice light can mediate long-range interactions that couple
the motion of atoms in different lattice potential wells.
These interactions have been predicted to give rise to a
variety of intriguing phenomena, ranging from spontaneous
self-ordering and crystallization of light and atoms [7,8] to
the appearance of traveling wavelike collective oscillations
of the atoms that can destabilize the entire lattice [9,10].
Moreover, the backaction onto the lattice light can also be
exploited to dynamically couple the atoms to other physical
systems such as micromechanical oscillators [11–15]. Such
hybrid atom-optomechanical systems offer new perspec-
tives for ground-state cooling and quantum control of
engineered mechanical structures [16–21] and for studies
of nonequilibrium quantum phase transitions [22].
In the experiments reported here we observe effects of

light-mediated collective atomic motion in an optical lattice
in the context of building a hybrid system where the lattice
light couples the atoms to a micromechanical membrane
oscillator. The membrane acts like an additional “supera-
tom” of particularly high polarizability, enhancing collec-
tive effects in the entire system and providing a convenient
way to directly detect the dynamics of the coupled system.
For large numbers of atoms in the lattice we observe a

dynamic instability of the coupled system, which can be
explained in a model that takes light-mediated interactions
of the atoms into account. These long-range atomic
interactions also lead to an additional phase delay in the
global atomic backaction onto the light field, which we
observe in experiments. The phase delay can induce
unstable behavior in the hybrid system if the atom-
membrane coupling is large, even if the lattice itself is
still stable. Our experiments show that light-mediated
atom-atom interactions are significant even in free-space
optical lattices, providing a way to study nonequilibrium
many-body physics [7–10,22] that is complementary to
experiments with atoms in optical cavities [23].
Our hybrid system is illustrated in Fig. 1(a). It consists

of a Si3N4 membrane oscillator with mass M ¼ 117 ng
and vibration frequency Ωm ¼ 2π × 276 kHz in an optical
cavity [24] and an ensemble of N ultracold Rubidium
atoms of mass m in an optical lattice. The lattice is
generated by a laser beam that also drives the membrane
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FIG. 1. (a) Optomechanical coupling scheme of atoms in an
optical lattice and a micromechanical membrane oscillator in an
optical cavity. (b) Modeling the atoms as beam splitters (BSs)
allows us to describe light-mediated collective motion of the
atoms (see text).
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cavity with a detuning Δ much smaller than the cavity
linewidth κ [25]. For large frequency detunings ΔLA of the
driving laser from the atomic transition and small atomic
densities, light-mediated atom-atom interactions are negli-
gible and the atoms oscillate with a frequencyΩa ∝

ffiffiffiffiffiffi

P0

p
in

the lattice potential wells, adjustable via the driving laser
power P0 [26]. As predicted in [16–18] and observed in
[13,14], radiation-pressure forces mediated by the lattice
light couple the vibrations of atoms and membrane over a
large distance. In the absence of collective atomic effects all
atoms couple equally to the membrane, resulting in a linear
coupling of the membrane displacement xm to the atomic
center of mass displacement xa with a coupling constant
gN ¼ jrmjΩa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NmΩa=MΩm

p ð2F=πÞ, where F ¼ 570 is the
cavity finesse and rm ¼ 0.41 the membrane reflectivity
[16,17]. The coupling mechanism exploits the fact that a
displacement of the membrane induces a phase shift of the
reflected light, which displaces the lattice potential wells.
Conversely, a displacement of the atoms changes the
optical power traveling towards the membrane and with
this the radiation pressure force on the membrane.
Additional cooling lasers applied to the atoms result in
strong damping of the atomic motion at a rate Γa ≫ gN and
cool the atomic cloud to 4 mK. In the absence of atom-atom
interactions the coupling then leads to sympathetic cooling
of the membrane vibrations at a rate Γsym ¼ 4η2t2g2N=Γa

(for resonant coupling Ωa ¼ Ωm). Here η ≈ 1 is the in-
coupling efficiency into the optical cavity and t ¼ 0.71 the
amplitude transmission of the optical path between atoms
and membrane [13,14,17]. This has been used in the
experiments of Ref. [14] to cool a membrane oscillator
from room temperature to 0.7 K using the atoms as coolant.
The sympathetic cooling measurements of Ref. [14]

were performed with large light-atom detuning ΔLA ¼
−2π × 8 GHz from the F ¼ 2 ↔ F0 ¼ 3 transition of the
87Rb D2 line at λ ¼ 780 nm. Here we focus on small
ΔLA ≈ −2π × 1 GHz where the coupled dynamics
becomes drastically different. An instability occurs at large
atom numbers, where the membrane amplitude starts to
grow exponentially because the total membrane damping
rate Γtot ¼ Γm þ Γopt þ Γsym changes sign from positive to
negative. In Γtot we include the intrinsic membrane damp-
ing rate Γm ¼ 0.96 s−1 and standard cavity-optomechanical
damping at rate Γopt ¼ 10.6 s−1 [27], which arises from the
small red laser-cavity detuning Δ ¼ −0.06κ. We observe
this instability in experiments where we detect the mem-
brane amplitude with an additional detection beam and vary
the number of atoms in the lattice volume Nlat [25]. The
number of resonantly coupled atoms N is smaller than Nlat
because of the inhomogeneous transverse lattice profile.
As in [14], we estimate N ¼ ½ðπΓaÞ=2Ωm�Nlat. During the
preparation of the atomic ensemble the lattice is operating
at low driving laser power P0 ¼ 0.1 mW and the atoms do
not couple to the membrane because Ωa ≪ Ωm. At the start
of the coupling experiment the lattice is ramped up in 10 ms

to P0 ¼ 3.4 mW, which tunes the atomic oscillation
frequency into resonance with the membrane frequency.
The red traces in Fig. 2(a) exemplarily show how the mean
square membrane displacement hx2mðtÞi subsequently
evolves with time for different Nlat. For the smallest Nlat
we observe strong damping of the membrane motion
resulting in a steady state value below the optomechanical
cooling level (blue curve). This is the sympathetic cooling
effect observed in [14]. Subsequent atom loss from the
ensemble on the time scale of several seconds reduces the
cooling effect as expected from Γsym ∼ N. For the next
larger Nlat the membrane amplitude decreases only after
some atoms have been lost. For even larger Nlat the system
becomes unstable. Now the membrane amplitude increases
after the turn-on and performs limit cycle oscillations at a
large amplitude hx2mðtÞi=hx2m;thðtÞi ≈ 100 before it slowly
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FIG. 2. Observation of self-oscillations. (a) Evolution of
hx2mðtÞi with time for different Nlat. Red traces: Lattice is ramped
up at t ¼ 50 ms. Blue trace: Lattice is running at P0 ¼ 3.4 mW
continuously with Nlat ¼ 0. Dashed gray: Room temperature
level. (b) Total membrane damping rate Γtot versus Nlat. Filled red
circles: Data extracted from traces as in (a). Larger red circles:
Data points of traces in (a). Empty blue circles: Numerical
simulation with exact model with four beam splitters (BS). Empty
green diamonds: As blue, but with 2 BS. Empty orange squares:
As blue and green, but with only 1 BS. Empty red triangles:
Simulation of linearized model with 2 BS fitted to the data. For
all four curves, Γa ¼ 233 s−1 and α ¼ 0.11. Insets: Simulated
displacement xi of an array of 10 BS as a function of time for
0.3 × 107 (left) and 8 × 107 (right) atoms.
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decreases when atoms are lost. Here hx2m;thðtÞi1=2 is the
room temperature thermal amplitude of the membrane.
Thus, we find that at large atom number the presence of the
atoms induces an instability, corresponding to negative Γtot.
This behavior is not predicted by previous theoretical
descriptions of the atom-membrane coupling [16,17],
which neglect collective atomic effects. From the slopes
of hx2mðtÞi after the turn-on of the lattice, we can extract Γtot,
which is plotted in Fig. 2(b) against Nlat (filled red circles).
We can model the observed behavior if we take light-

mediated interactions between the atoms in different lattice
wells into account. Following [10], we model the combined
effect of the NBS atoms in each potential well as a thin BS
as illustrated in Fig. 1(b) with reflection and transmission
coefficients given by the dimensionless atomic polariz-
ability density ζ ¼ ½Γ=ð−ΔLAÞ�½NBSλ

2=ð4πσLÞ�, where Γ is
the natural linewidth of the atomic transition and σL the
transverse area of the laser beam. The imaginary part of ζ is
omitted since jΔLAj ≫ Γ. We calculate the forces on the
nBS ¼ N=NBS atomic BSs and the membrane using the
transfer matrix method. The detailed model is presented
in [25], where we apply the theory of [10] to our system.
With this model we perform numerical simulations of the
coupled dynamics and extract a theoretical value for Γtot.
The model predicts the instability at large N and that
anharmonicities in the atomic potential stop the exponential
growth of the membrane amplitude and stabilize the limit
cycle oscillation.
The blue (green) circles (diamonds) in Fig. 2(b) show the

result of numerical simulations with the atoms distributed
over four (two) atomic BSs. The red triangles are the result
of an analytical analysis (see below) and the orange squares
show the damping rate for one atomic BS, i.e. without
collective effects. The numerical simulations have been
performed for a reasonable Γa ¼ 233 s−1, andNlat has been
scaled by a factor α ¼ 0.11 for the simulation to match the
data. This is plausible as the temperature of the atomic
cloud (≈4 mK) is larger than the depth of the coupling
lattice (≈500 μK) so that not all atoms are trapped. Both
traces (blue and green) do not exactly reproduce the data.
This can be due to the fact that the model of the atomic
ensemble is greatly simplified. As we operate the system
when the lattice is overlapped with a large magneto-optical
trap [25], we do not have direct access to the atoms taking
part in the coupling. However, the main features such as the
initial linear increase of Γtot and the subsequent decrease
leading to negative damping are confirmed by the model
and the numbers match roughly. If we replace the mem-
brane by a fixed mirror, we also simulate unstable behavior
as in [9,10] but for larger Nlat.
The traces with four and two BSs differ only slightly,

whereas the simulation with only one atomic BS (orange
squares) does not show the instability [28] indicating that
coupled motion of atoms in different lattice wells plays
an essential role. We observe that the behavior quickly

converges for more than two BSs suggesting that only a
few collective atomic modes are relevant. The insets in
Fig. 2(b) show exemplarily how the displacements xi of ten
BSs evolve as a function of time for 0.3 × 107 atoms and
8 × 107 atoms. For the small atom number all BSs move in
phase and do not interact so that only their center of mass
motion couples to the membrane. For the large atom
number a traveling wavelike collective oscillation appears.
In this case more than one collective atomic mode must
take part in the coupling. Given the fast convergence for
more than two BSs we have a closer look at the simplest
model, the membrane coupled to a stack of two BSs. For
this two-BS model we linearize the radiation pressure
forces around the steady state positions of the BSs and
the membrane and expand the linear coefficients up to third
order in ζ. This model enables us to describe the onset of
instability, but does not cover the regime of limit cycles. We
find the following linear equations of motion for the
displacement of the membrane xm and the two atomic
BSs x1 and x2:

ẍm ¼ −Γ0
m _xm −Ω2

mxm þ kmmxm þ km1x1 þ km2x2;

ẍ1 ¼ −Γa _x1 þ k1mxm þ k11x1 þ k12x2;

ẍ2 ¼ −Γa _x2 þ k2mxm þ k21x1 þ k22x2; ð1Þ

with Γ0
m ¼ Γm þ Γopt and coefficients

kmm ¼ Nm
2M

Ω2
aRð−2þ 10νÞf2;

km1 ¼
Nm
2M

Ω2
aRð1 − 9νÞf;

km2 ¼
Nm
2M

Ω2
aRð1 − νÞf;

k1m ¼ Ω2
að1 − νÞf; k2m ¼ Ω2

að1 − 9νÞf;
k11 ¼ Ω2

að−1þ νÞ; k21 ¼ Ω2
a8ν;

k12 ¼ 0; k22 ¼ Ω2
að−1þ νÞ: ð2Þ

Here R ¼ ηt2 is the lattice amplitude reflection coef-
ficient, f ¼ 2jrmj½ð2FÞ=π� the cavity enhancement factor,
and ν ¼ ½ðA2ζ2Þ=8� a dimensionless parameter that
depends on the polarizability density ζ ∝ N of a single
atomic BS and the lattice asymmetry A ¼ ð1 − R2Þ=R.
The parameter ν describes the effect of collective atomic
motion in leading order of ζ, and ν ¼ 0 recovers the case of
noninteracting atoms. In the experimentsA is fixed, so that
ν scales with N. A numerical simulation of these simplified
equations of motion [red triangles in Fig. 2(b)] reproduces
the exact result with two BS (green diamonds) as expected.
For ν ≪ 1, i.e. small N, both BSs couple to the membrane
equally and move independently of each other. We can then
rewrite the equations of motion as a coupling between the
membrane displacement xm and the atomic center of mass
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displacement xa ¼ ðx1 þ x2Þ=2 reproducing the result of
Refs. [14,17]. However, for larger N (large ν) the atoms
interact with each other and the membrane does not
couple to a single atomic mode any more. Note that the
dynamics described by the set of Eqs. (1) is nonconserva-
tive (k21 ≠ k12 ¼ 0), a consequence of the cascaded nature
of the system.
The instability can also be understood in a feedback

picture: The coupled atom-membrane motion becomes
unstable if a signal traveling from the membrane to the
atoms and back experiences a phase delay of 360° and a loop
gain larger than unity [29]. A system of only two coupled
harmonic oscillators, such as the membrane coupled to one
atomic oscillator (e.g., the atomic center of mass motion),
cannot become unstable as the maximum phase delay
collected in one round trip stays below 2 × 180° ¼ 360°.
If an additional harmonic oscillator, e.g., in form of a second
collective atomic mode, takes part in the coupling, the
atomic backaction onto the laser beam traveling towards
the membrane can be delayed by more than 180°, providing
a necessary condition for instability of the coupled system.
To directly observe this phase delay, we performed

experiments in which the phase shift induced by the
membrane was mimicked by a fiber electro-optic modulator
(EOM) and the atomic backaction onto the lattice power
was detected with a photodiode as depicted in the inset of
Fig. 3(a) [25]. Figures 3(a) and 3(b) show how amplitude and
phase of the photodiode signal evolve as a function of the
EOMmodulation frequencyΩ for different Nlat. The dashed
(dashed-dotted) traces show the expected behavior for the
one-BS model used in Refs. [14,17] (the two-BS model); see
[25]. The one-BS model predicts a maximum phase delay of
180°. In contrast, for large atom numbers the data and the
two-BS model show phase delays> 180° indicating that the
one-BS model is not sufficient to describe the system and
showing that the coupled atom-membrane motion can
indeed become unstable. For the theory curves the inhomo-
geneously broadened atomic ensemble has been modeled
with all atoms (N ¼ Nlat) and an increased, inhomogene-
ously broadened atomic linewidth Γa [25] in contrast to
Fig. 2(b) where only the resonant atoms are taken into
account. Insufficient knowledge of the exact properties of the
atoms in the lattice makes a more precise modeling of the
atomic backaction difficult. The great simplification in
modeling the atomic ensemble as well as uncertainties in
the signal calibration lead to a discrepancy in the signal
amplitude heights between data and theory. Still, the one-
and two-BS model show a drastic difference in the phase
behavior for realistic parameters.
An additional phase delay enters into our system from the

propagation time delay between atoms and membrane
τprop ¼ 30 ns and the finite response time of the cavity
τcav ¼ 0.6 ns. However, these delays are of minor impor-
tance for the stability of our system, which was confirmed by
varying the path length between atoms and membrane [25].

In summary, we observed for the first time light-
mediated atom-atom interactions in a free-space optical
lattice giving rise to collective atomic oscillations and
lattice instabilities. In our experiment these effects are
enhanced by coupling the atoms to a distant dielectric
membrane oscillator, which at the same time serves as a
sensitive probe for the light-mediated collective atomic
motion. The instabilities and collective dynamics in this
hybrid system are described well by a model adapted from
Asboth et al. [10].
Our experiment shows that substantial light-mediated

atom-atom interactions can arise in free-space optical
lattices in a regime of large atom numbers, moderate
atom-light detuning, and asymmetric driving of the lattice.
This offers new possibilities for the study of many-body
physics, such as the spontaneous crystallization of atoms
and light into a structure that features phononlike excita-
tions and bears similarities to a supersolid [8]. Moreover,
our results are relevant for the development of hybrid atom-
optomechancial systems in the quantum regime [11–15].
The configuration studied in our experiment has been
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FIG. 3. Atomic backaction on the lattice light. (a) Amplitude
(electrical power) and (b) phase of atomic backaction versus
modulation frequency Ω. Dashed vertical lines: Membrane
frequency Ωm=2π ¼ 276 kHz and frequency of the atoms in
the center of the trap Ωað0Þ=2π ¼ 450 kHz. Shaded areas:
region in which the coupled system can become unstable if
the coupling is strong enough. Inset in (a): Measurement setup.
PD: photodiode. Thick dashed (dashed-dotted) lines: Behavior
expected from the one-BS model (two-BS model) for
N ¼ 3 × 108, Ωa ¼ 2π × 275 kHz, Γa ¼ 2π × 150 kHz, and
R ¼ 0.06. The modeled amplitudes are scaled down by
43 dB to adjust to the data.
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proposed for ground-state cooling of mechanical oscillators
in regimes where purely optomechanical techniques fail
[16–18]. Variants of the setup have been suggested for the
generation of nonclassical vibrational states of mechanical
oscillators [20,21]. In both cases, light-mediated atom-atom
interactions have to be taken into account. Finally, such
interactions could be harnessed to study nonequilibrium
quantum phase transitions [22].
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